
Generating the Superstable Configurations of a Graph

via its Acyclic Orientations

A Thesis

Presented to

The Division of Mathematics and Natural Sciences

Reed College

In Partial Fulfillment

of the Requirements for the Degree

Bachelor of Arts

Sofia D. Wright

May 2014

Approved for the Division
(Mathematics)

Dave Perkinson

Acknowledgements

Thank you Dave Perkinson for being a source of motivation, knowledge and wisdom
throughout this process. Thank you Mom and Dad for supporting me always. Thank
you to my best friends back home for being there when I needed you, and to the
friends I have made here for contributing to my education more than any book ever
has. You are all super, and you keep me stable.

Table of Contents

Introduction . 1

Chapter 1: Background Math . 3
1.1 Superstable Configurations . 3

1.1.1 Divisors, Firing Scripts, and the Jacobian Group 3
1.1.2 Firing Scripts and the Laplacian Matrix 4
1.1.3 Fixing a Sink . 5
1.1.4 Introducing Superstables . 7

1.2 Acyclic Orientations . 8
1.3 Converting Acyclic Orientations to Superstables 9

1.3.1 Dhar’s Algorithm . 9
1.3.2 Proof of the Bijection . 9

Chapter 2: The Algorithm . 13
2.1 Generating Acyclic Orientations . 13

2.1.1 Toy Example . 13
2.1.2 Defining a Poset . 15
2.1.3 The First Piece of Code: Compute AO 16
2.1.4 Expanding the Code for the Entire Graph 19
2.1.5 Unique Source Acyclic Orientations 20

2.2 Conversion to Superstables . 21
2.2.1 Maximal Superstables . 21
2.2.2 Find All Superstables . 21

Chapter 3: Testing for Time . 23
3.1 The Pre-Existing Code . 23
3.2 The Results . 24

Conclusion . 27

Appendix A: The Code (in Sage programming language) 29

References . 39

Abstract

Superstable configurations on a graph G are the elements of a finite abelian group
associated with G through a certain chip-firing game. Benson [2] defines a bijection
between these superstable configurations and the group of unique-source acyclic ori-
entations on G. In this thesis we expand upon an algorithm created by Squire [5]
to generate the acyclic orientations of a graph and use the bijection to generate the
superstable configurations.

Introduction

Let G be a connected, finite, simple graph with vertex set V and edge set E (thus, G
is undirected, unweighted, and has no loops). Imagine this graph as a representation
of a community, where the vertices V represent people in the community and the
edges E represent social connections between these people: two vertices that share
an edge are acquainted with each other, while two vertices that are unconnected by
an edge likewise do not have any social connection. We will call acquaintances of v
the neighbors of v.

Each person-vertex in this community may possess some amount of money (a
positive integer value), or may owe some amount of money (a negative integer value).
They may change their monetary possession by lending and borrowing from their
neighbors. But in the interest of being fair, they follow these rules: if a person-
vertex v borrows some number of dollars from one neighbor, she must borrow an
equal amount from all of her neighbors. Likewise, people-vertices must lend to all of
their neighbors in equal amounts as well (see Figure 1).

$5
v

$1

$2
v

$1

$1

Figure 1: In a lending move, vertex v lends an equal amount of dollars to each of
its neighbors.

Say the wealth in some community is distributed in a certain way, call this distri-
bution D, and person v borrows one dollar from each of her neighbors; this creates
a new distribution, call it D′. But there is some relation between these two distri-
butions, in that D′ can be achieved from D by a simple borrowing, and easily revert
back to D if v were to lend a dollar to each of her neighbors. We call the set of all dis-
tributions that can be achieved from D, by any number of borrowings and lendings,
the equivalence class of D.

Since we know how the rules of borrowing and lending work, given any wealth
distribution D we can find all elements in its equivalence class. Thus, we can represent
an entire equivalence class by just a single distribution from the class. We can imagine
that, for a larger community, it would then be convenient to look at just the set of

2 Introduction

representatives of the equivalence classes.
To describe a nice set of representatives for these equivalence classes, imagine that

the goal of our community is to get all community members out of debt. Naturally
this might not be possible, so to this end we could imagine that one benevolent
individual, call her person-vertex q, might volunteer as tribute and take on the only
debt in the community. All other members could borrow and trade dollars amongst
themselves, and borrow from q, until only q would have a negative number of dollars.

Then we could imagine that the non-q vertices of our community, because they
are fairly benevolent themselves, would cooperate amongst themselves, borrowing
and lending, to try and bring q as much out of debt as possible without going into
debt themselves. They would eventually achieve a distribution of wealth such that
there was no further possible single-vertex or teamwork lending or borrowing move
that could be made without sending some non-q vertex into debt. This type of
distribution has a name: superstable configuration.

The set of all superstable configurations, or superstables, of the graph make up
a representative group of the equivalence classes [4]. In this paper we are concerned
with calculating the superstables of a given graph in as efficient a process as possible.

A computer algorithm already exists in the Sage mathematics software system [6]
for finding the superstable configurations of a graph. But this algorithm seems in-
efficient; through a laborious process of repeated stabilizing (adding dollars to the
system and then lending and borrowing between vertices until a certain balance is
achieved) it computes a “dual” set to the superstables, then converts them to the
desired superstable configurations.

There exists a simple bijection [2] between the set of superstables of a graph G and
another important set in graph theory, the set of acyclic orientations on G (acyclic
orientations will be defined in Section 1.2). Then, an algorithm that may be more
efficient than what exists could be to generate all acyclic orientations on a graph and
then convert those, via the bijection, to superstables. In this paper we present and
code this algorithm. Our hope is that this will be a more efficient—specifically, a
quicker—process than the existing algorithm for generating superstables.

In Chapter 1 we present the background math necessary for understanding the
process and the motivation behind this algorithm. We introduce divisors and firing
scripts, specify those concepts for configurations, and look at the structure of the
superstable group. Then we introduce acyclic orientations and go on to describe
and prove the bijection between acyclic orientations and the maximal superstable
configurations.

In Chapter 2 we first present a small-scale example of how our algorithm works.
Then we present the pseudocode for the multiple steps in the algorithm, from gener-
ating the acyclic orientations to converting those to maximal superstables.

Finally, in Chapter 3 we test the runtime of our algorithm on different graphs,
alongside the runtime for the pre-existing Sage code, and discuss the results.

Chapter 1

Background Math

1.1 Superstable Configurations

1.1.1 Divisors, Firing Scripts, and the Jacobian Group

Let G = G(V,E) be a graph with vertex set V and edge set E. We now convert the
analogy of our borrowing and trading community into more formal language.

The distribution of wealth amongst our vertex-people is called a divisor of G.
Formally, a divisor of G is an element of the free abelian group on the vertices of G.
So a divisor takes the form D =

∑
v∈V dvv, for dv ∈ Z. This value, dv, represents the

number of “dollars” currently held by vertex v. We define the degree of a graph as
deg(D) =

∑
v∈V dv. The set of divisors on G is denoted by Div(G).

Like the distribution of dollars between vertices, the divisor on a graph can be
changed by vertices lending to and borrowing from their neighbors. When v lends to
its neighbors, we call this a vertex firing on v or say that we have fired v. When v
borrows from its neighbors, we talk about a reverse-firing on v, though for simplicity
we may continue to say v borrows.

We can represent a combination of vertex firings by an expression called a firing
script. A firing script σ, like a divisor, is an element of the free abelian group on the
vertices of G and can be expressed as σ =

∑
v∈V svv, for sv ∈ Z. The coefficient sv

represents the number of times that v is fired.
If a divisor D′ ∈ Div(G) can be obtained by a series of vertex firings or reverse-

firings, represented by firing script σ, from a divisor D ∈ Div(G), we say that D
and D′ are linearly equivalent and write D ∼ D′. We represent this transformation
by the notation D

σ→ D′. If D ∼ D′, then deg(D) = deg(D′). For D ∈ Div(G), the
set of all D′ ∈ Div(G) such that D ∼ D′ is called the equivalence class of D.

The set of representatives of this equivalence class can be discussed as the group
Div(G) modulo the equivalence ∼. This group is known as the Picard group and is
denoted Pic(G) = Div(G)/∼.

Example 1.1.1. We have a simple graph G on vertices {u, v, w, x}, pictured be-
low. We assign to G the divisor D = 3u − 2w + 5x. Suppose we apply firing
script σ = 2x − w, so we fire x twice and borrow at w once. The resulting divisor

4 Chapter 1. Background Math

is D′ = 2u+ v + 3w.

u

w

x

v

3

−2

5

0
σ = 2x− w

D = 3u− 2w + 5x

2

3

0

1

D′ = 2u+ v + 3w

1.1.2 Firing Scripts and the Laplacian Matrix

It is simple to observe a single vertex firing on a small graph, but we need a tool
for calculating multiple firing moves on any size of graph. The tool we use is the
Laplacian matrix.

A divisor D is written as a linear equation. However, if we impose an ordering
on the vertices, say (v1, ..., vn), and let di be the coefficient of vi in D, then we can
represent D as simply an ordered list, or a vector, of the di values. This suggests an
isomorphism with Zn:

Div(G)
∼−→ Zn

D =
n∑
i=1

divi 7−→ (d1, ..., dn).

Assume an ordering (v1, ..., vn) on the vertices ofG. Define the degree of a vertex v,
denoted deg G(v), as the number of edges in E incident to v. Let M be the n × n
diagonal matrix, with Mii = di for i ∈ (1, ..., n). Let A be the n×n adjacency matrix
for G,

Aij =

{
deg G(v) for i 6= j
0 for i = j.

Then the Laplacian matrix is defined as

L = M−A.

1.1. Superstable Configurations 5

Note that the ith column of L represents the rules for borrowing at vertex vi, and
conversely the ith column of −L represents the rules for firing vertex vi. If D

vi→ D′,
then D − L(vi) = D′.

Like divisors, firing scripts can be represented as elements of Zn. So if for firing
script σ we have D

σ→ D′, then D − L(σ) = D′ (see Example 1.1.2).
Since the image of L encodes the borrowing moves that distinguish the equivalence

classes of D, then the Picard group is isomorphic to Zn modulo im(L):

Pic(G) = Div(G)/∼ ∼−→ Zn/im(L). (1.1)

Example 1.1.2. The graph from Example 1.1.1 with vertex ordering (u, v, w, x) has
Laplacian matrix

L =

2 0 0 0
0 3 0 0
0 0 3 0
0 0 0 2

−

0 1 1 0
1 0 1 1
1 1 0 1
0 1 1 0

 =

2 −1 −1 0
−1 3 −1 −1
−1 −1 3 −1

0 −1 −1 2

 .

We can view the divisor from Example 1.1.1 as a vector, D = (3, 0,−2, 5), and the
same for the firing script, σ = (0, 0,−1, 2). Then we can apply σ to D and determine
the results using the graph’s Laplacian matrix:

D − L(σ) =

3
0
−2

5

−

2 −1 −1 0
−1 3 −1 −1
−1 −1 3 −1

0 −1 −1 2

0
0
−1

2

 =

2
1
3
0

 = D′.

1.1.3 Fixing a Sink

We now return to another component of our introductory analogy: the benevolent
person-vertex who volunteers to take on the entire debt of the community so that all
the others can be out of debt. On our graph G(V,E), we choose such a vertex q ∈ V
and call it a sink.

First, we define a subset of Div(G). Let Div0(G) be the set of divisors of degree
zero, i.e,

Div0(G) = {D =
∑

v∈V dvv ∈ Div(G) |
∑

v∈V dv = 0}.
An isomorphism can be defined between Div(G) and Div0(G) by fixing a sink

vertex q. Let Ṽ = V \{q}. Then for D ∈ Div(G), D′ ∈ Div0(G), and k ∈ Z, we have
the isomorphism of groups,

Div(G)
∼−→ Z×Div0(G)

D 7−→ (deg(D), D − deg(D)q)

D′ + kq ←− [(k,D′).

The same equivalence relation that applies to Div(G) also applies to Div0(G), and
we can likewise define classes in Div0(G): the class of a divisor D ∈ Div0(G) is the
set of all D′ ∈ Div0(G) such that D ∼ D′.

6 Chapter 1. Background Math

If D ∼ D′, then deg(D) = deg(D′), hence,

D−deg(D)q ∼ D′−deg(D′)q.

From this, the previous isomorphism induces an isomorphism for the Picard group:

Pic(G) = Div(G)/∼ ∼−→ Z×Div0(G)/∼ (1.2)

D 7−→ (deg(D), D − deg(D)q)

D′ + kq ←− [(k,D′).

We call Div0(G) the Jacobian of G and denote it Jac(G).
For D =

∑
v∈V dvv ∈ Div0(G), we know dq = −

∑
v∈Ṽ dv, hence, we can forget the

value on q. With this adjustment in thinking, we consider the distribution of wealth
in a graph on just the vertices in Ṽ = V \{q}. A configuration, c, of G with respect

to q is an element of the free abelian group on Ṽ and so takes the form c =
∑

v∈Ṽ cvv,
where cv is the number of dollars on v. We denote the set of configurations on G with
fixed sink q by Config(G, q).

There is a clear mapping from Div(G) onto Config(G, q), since for any divi-
sor D, we can set the value dq = 0 and then ignore q to produce a configuration c.
Likewise there is a mapping from Config(G, q) onto Div(G). For c =

∑
v∈Ṽ cvv,

then deg(c) =
∑

v∈Ṽ cv. Then, for any configuration c ∈ Config(G, q), we have
c− deg(c)q ∈ Div(G). These mappings induce the isomorphism

Div0(G)
∼−→ Config(G, q))

D 7−→ Dq=0

c− deg(c)q ←− [c.

Thus, we can specify most concepts that we looked at for divisors to apply to
configurations. A firing script σ that does not involve q (i.e, sq = 0) can be applied
to a configuration c in the same way that it is applied to a divisor. For c, c′ ∈
Config(G, q) and for some firing script σ, if c

σ→ c′ we say c and c′ are linearly
equivalent and write c ∼ c′. We also have equivalence classes of configurations, and
the configurations modulo this equivalence form a group, Config(G, q)/∼.

Suppose, for some configuration c, we have cv ≥ 0 for all v ∈ V . Then we
write c ≥ 0. Given some c ≥ 0 and a transformation c

σ→ c′, we say σ is a legal firing
move if c′ ≥ 0.

As with divisors, we can calculate firing script transformations for configurations
using matrices and vectors. The reduced Laplacian, L̃, with respect to q is the Lapla-
cian matrix with the column and row corresponding to q removed. Like with the
Laplacian and divisors, the columns of −L̃ represent the rules for firing at those
corresponding vertices on a configuration. Thus, if c

σ→ c′, then c− L̃(σ) = c′.
The previous isomorphisms (1.1) and (1.2) induce the following chain of isomor-

phisms:

Jac(G) = Div0(G)/∼ ∼−→ Config(G, q)/∼ ∼−→ Zn−1/im(L̃).

1.1. Superstable Configurations 7

q

r

s t

u

a)

q

0

3 2

0

b)

q

0

2 2

0

c)

q

0

1 2

0

Figure 1.1: Three possible configurations on the vertex set {r, s, t, u} with sink ver-
tex q: (a) depicts a non-stable configuration, since vertex s can be legally fired; (b)
depicts a stable, but not superstable, configuration, since no single vertex can be fired
but the vertex set {s, t} can be legally fired; (c) depicts a superstable configuration,
as it has no legal vertex firings.

1.1.4 Introducing Superstables

Suppose we have firing script σ = v, a single vertex in Ṽ . This is our basic vertex
firing. Recall, for c, c′ ∈ Config(G), c

σ→ c′ is a legal firing if c′ ≥ 0. If a configura-

tion c ≥ 0 and for all v ∈ Ṽ there does not exist a legal vertex firing, we say c is a
stable configuration.

For some configurations, no legal single vertex firings are possible, but it might be
possible to make a legal set firing. In a set firing, we take some subset W of Ṽ and fire
all vertices in W at once. As a script firing, this would be expressed as σ =

∑
v∈W v.

(Note that, if W is a set of just a single vertex, then this firing is equivalent to a
vertex firing). If a configuration c has no legal set firings, we call c a superstable
configuration (Figure 1.1).

A graph usually has multiple superstable configurations. Denote the set of super-
stable configurations on a graph G with respect to sink q by SS(G, q). For configura-

tions c and c′, we say c ≥ c′ if and only if cv ≥ c′v for all v in Ṽ . If c is a superstable
configuration and c ≥ c′ for all superstables c′ ∈ SS(G), then we say c is a maximal
superstable configuration.

We stabilize a non-negative configuration c by continually firing any vertex v that
has cv ≥ deg(v) until no such vertex exists, i.e, until there are no more legal vertex
firing moves possible; the resulting configuration is stable.

The set of superstables SS(G, q) forms a group with the operation ∗ defined as
follows: for c, c′ ∈ Config(G, q), we let c ∗ c′ represent the configuration formed by
stabilizing c+ c′. It is well-known that this operation is well-defined [4].

8 Chapter 1. Background Math

Every configuration of G is uniquely equivalent to an element in SS(G, q) [4]. This
means that every equivalence class of configurations can be uniquely represented by
a superstable configuration. Thus, SS(G, q) is isomorphic to Config(G, q)/∼, so we
have the chain of isomorphisms,

Jac(G)
∼−→ Config(G, q)/∼ ∼−→ SS(G, q).

Since Config(G, q)/∼ ∼→ Zn−1/im(L̃), it follows (Holroyd, Lemma 2.8 [4]) that

|SS(G, q)| = |Jac(G)| = det(L̃).

1.2 Acyclic Orientations

We now introduce a new concept: the orientation of a graph. Consider traversing a
graph G by moving between neighbor vertices along their shared edge. If an edge uv
between vertex u and vertex v is assigned a direction of traversal, say the edge can
be traversed from u to v but not from v to u, then we call this a directed edge and
denote it (u, v). A graph in which all edges are assigned a direction is called a directed
graph, or digraph. We can also call this an oriented graph, and the set of directions
that correspond to each edge an orientation.

If one can traverse a series of directed edges to get from u to v, we say v is reachable
from u and call this series of edges a directed path. A directed path that ends on the
vertex it started at is a directed cycle. For this paper we are concerned with the
orientations on a graph that do not contain any cycles—the acyclic orientations. We
denote the set of all acyclic orientations on a graph G by Ao(G).

The indegree of a vertex v is the number of its incident edges that are directed
towards v under a given configuration. For a graph with orientation α, we denote
this by indegα(v). A vertex with indegree equal to zero, in other words a vertex that
only has incident edges directed away from it, is called a source vertex. An acyclic
orientation must always have at least one source. We call an orientation that has only
a single source vertex a unique source orientation (Figure 1.2). If we choose to fix
vertex q as the unique source, then the set of q-unique source orientations, Ao(G, q),
is a subset of Ao(G).

a)

q

u

v

w

b)

q

u

v

w

Figure 1.2: (a) An acyclic orientation with unique source q. (b) This orientation is
not acyclic, since the set of edges {(u, v), (v, w), (w, u)} forms a cycle.

1.3. Converting Acyclic Orientations to Superstables 9

1.3 Converting Acyclic Orientations to Supersta-

bles

Now we finally arrive at what was promised in our introduction: a bijection between
the unique-source acyclic orientations on a graph and that graph’s maximal super-
stable configurations. We prove that such a bijection exists largely with the help of
Dhar’s algorithm [3].

1.3.1 Dhar’s Algorithm

For a subset W of the vertices V of a graph G and a vertex v ∈ V , let outdegW (v)
be the number of edges {u, v} in G such that u ∈ V \W . We now describe Dhar’s
algorithm, as it applies to configurations.

input: A configuration c on the graph G.
output: A subset W of vertices of G, possibly empty.

Step 1. Let W = Ṽ = V \q.
Step 2. If there exists v ∈ W such that cv < outdegW (v), remove v from W .
Step 3. Repeat step 2 until it does not apply anymore (i.e. there is no such v

in W).

In the end, W is empty if and only if c is a superstable configuration.

To verify the conclusion, we recall the definition of a superstable configuration:
if there exists a subset of vertices of c which can be legally fired, then it is not
superstable. At the end of Dhar’s algorithm, W represents that very subset—a set of
vertices that can be legally fired. Thus, if c is superstable, then W must be empty.

To prove the other direction, suppose that W is empty at the end of the algorithm.
Let U be a nonempty subset of Ṽ , so at the start of the algorithm U ⊆ W = Ṽ .
Since W is empty at the end, then through the course of the algorithm, all vertices
in U will be removed from W . Let u be the first vertex of U removed from W . Then
right before u is removed, we have cu < outdegW (u). But since we still have U ⊆ W ,
then outdegW (u) < outdegU(u), so cu < outdegU(u), so U is not a legal firing set.
We conclude that c is superstable.

1.3.2 Proof of the Bijection

We define a mapping from Ao(G, q) to SSmax(G) as follows: given an orientation α ∈
Ao(G, q), we get the configuration

c = c(α) =
∑
v∈Ṽ

(indegα(v)− 1)v. (1.3)

First we verify that, for any unique-source acyclic orientation α, the config-
uration c = c(α) is superstable. We run Dhar’s Algorithm on c. Start with W = Ṽ .
There will be at least one vertex v in the neighbors of q that is a “source” in the
subgraph on W , i.e, the only edges directed towards v come from outside W (from q).

10 Chapter 1. Background Math

In this case, indegα(v) = outdegW (v), so clearly cv = indegα(v)−1 < outdegW (v); by
Step 2 of Dhar’s Algorithm, we remove v from W . Then repeat for another “source”
vertex of the new W . By construction, this inequality will hold for all vertices, so all
vertices will be eventually removed, leaving empty W . Which, by the conclusion of
Step 3 of Dhar’s algorithm, confirms that c(α) is superstable.

We will prove that c(α) is maximal once we have defined some helpful lemmas
(Lemma 1.3.1 and Lemma 1.3.2). These lemmas will also be used to prove the exis-
tence of the bijection, stated in the following theorem:

Theorem 1.3.1. The mapping c: Ao(G, q)→ SSmax(G) is a bijection.

Before proving this, we define an inverse mapping, a: SS(G, q)→ Ao(G, q). Again
we turn to Dhar.

input: A configuration c ∈ SS(G, q).
output: An acyclic orientation with unique source q .

Step 1. Let W = Ṽ .
Step 2. Choose v in W such that cv < outdegW (v). Orient all edges accounted

for by outdegW (v) in towards v. Remove v from W .
Step 3. Repeat Step 2 until all vertices have been removed from W .

We verify that Step 3 is in fact valid: Since c is superstable, there will always be
a v in W that meets the criterion of Step 2, otherwise that subset W could be legally
fired, contradicting the definition of superstable. So all vertices will eventually be
removed.

We can also verify that the orientation on G produced by this process will be
unique-source acyclic. Since at Step 2 we are always orienting the edges in towards W ,
and since vertices are never added to W , only removed, then we know there will be no
cycles in the produced orientation. Moreover, since every vertex in V save for q will
be addressed at Step 2 and have at least one edge oriented towards it, then q is the
unique source in the final orientation. So we have a mapping SS(G, q)

a→ Ao(G, q).
Now we introduce our lemmas.

Lemma 1.3.1. c ≤ c(a(c)), for all configurations c ∈ SS(G, q).

Proof. If we apply the configuration mapping to the orientation a(c) ∈ Ao(G, q), we
get c(a(c)) =

∑
v∈Ṽ (indega(c)(v)−1)v. From Step 2 defining a: SS(G, q)→ Ao(G, q),

we have that

cv < outdegW (v) ≤ indega(c)(v) = c(a(c))v + 1

for all v ∈ Ṽ , so c ≤ c(a(c)).

Lemma 1.3.2. c(α) ≤ c(α′) iff α = α′, for any α, α′ ∈ Ao(G, q).

Proof. If α = α′, then c(α) = c(α′). Now suppose c(α) ≤ c(α′); we want to
prove α = α′.

1.3. Converting Acyclic Orientations to Superstables 11

Consider, c(α) ≤ c(α′) implies indegα(v) ≤ indegα′(v), for all v ∈ V . But∑
v∈Ṽ

(indegαv) =
∑
v∈Ṽ

(indegα′v) = |E|,

where |E| is the number of edges of G. This is only possible if indegα(v) = indegα′(v).
We claim that this is sufficient to show that α = α′. To verify this, we describe yet
another implementation of Dhar’s Algorithm.

input: A unique source acyclic orientation, α.
output: A sequence of subsets of vertices, seq(α).

Step 1. Let W = V , Ŵ = [], seq(α) = [].

Step 2. Let Ŵ = all source vertices of W , with respect to α on the subgraph
G(W,EW). Let W = W\Ŵ . Add Ŵ to seq(α).

Step 3. Repeat Step 2 until all vertices have been removed from W .

The result is a sequence of sets Ŵi of sources corresponding to a sequence of
shrinking subsets Wi of the vertices. This sequence uniquely determines α.

Suppose that this process is run on two orientations, α and α′. To finish the proof,
consider that at each iteration of Step 2 for α and α′,

outdegW (v) = indegα(v) = indegα′(v)

for all v. But outdegW (v) determines W at each iteration, and thus determines the
sequence. So indegα(v) = indegα′(v) implies seq(α) = seq(α′).

Thus, indegα(v) = indegα′(v) implies α = α′.

We are now equipped to verify that c(α) is maximal, for all α. Suppose c(α) ≤ c′

for some c′ ∈ SS(G, q). By Lemma 1.3.1,

c(α) ≤ c′ ≤ c(a(c′)).

Then, by Lemma 1.3.2, α = a(c′). But then c(α) = c(a(c′)), so we must have
c(α) = c′. Hence, c(α) is maximal.

Proof of Theorem 1.3.1. To prove that c is a bijection, we show that it is onto and
one-to-one.

Let c ∈ SSmax(G, q). We apply to c the mapping a, then c, to get c(a(c)). By
Lemma 1.3.1 we know c ≤ c(a(c)). But c is maximal, so we must have equal-
ity, c = c(a(c)). Thus, when mapping from SSmax(G, q), the composition c ◦ a is
the identity mapping. This requires that a: SSmax(G, q) → Ao(G, q) is one-to-one
and c: Ao(G, q) → SSmax(G, q) is onto.

Conversely, suppose that c(α) = c(α′) for some α, α′ ∈ Ao(G, q). Then by
Lemma 1.3.2, we must have α = α′. So c is one-to-one. Thus c is a bijection.

Chapter 2

The Algorithm

2.1 Generating Acyclic Orientations

In this chapter we present an algorithm for finding all unique source acyclic orien-
tations of a given graph. We adapt and build on an algorithm developed by Squire
[5]. We assume that the graph is simple (i.e, it has no loops or multiple edges) and
connected.

To outline the overall process to find the acyclic orientations on a graph with
unique-source q: we will remove q from the graph and generate the acyclic orientations
on the remaining graph G\q. In order for the final output to have q as the only source,
we will only keep orientations from this process that have no other sources except
for q. Then we will add q back into these graphs as a source the only source.

The core of this process is the generation of the acyclic orientations on the sub-
graph G\q. To develop this process, we will first look at a simple example.

2.1.1 Toy Example

Say we have the graph G defined on vertices {u, v, w, x}:

u

w

x

v

Consider the subgraph H that consists of just the edge uw. Then there are
exactly two orientations that can be assigned to H, orienting the edge uw either u
to w or w to u, and neither of these are cycles; so we say the acyclic orientations
of H are Ao(H) = {{(u,w)}, {(w, u)}}. For general notation, let an oriented graph
on underlying graph H be denoted by Hα.

Take the edge vx, the only edge in G that is not incident to H. Then the edges

14 Chapter 2. The Algorithm

between H and vx are Ecross = {uv, vw,wx}; let a set of orientations on these edges

be denoted ~Ecross. Choose one orientation of H, say Hα = {(u,w)}. Assign an
orientation to the edge vx, say (v, x). Since there are so few edges in Ecross, we can

easily orient these edges so that the ultimate digraph, Gα = Hα ∪ (v, x) ∪ ~Ecross, is
acyclic (Figure 2.1).

u

w

x

v

u

w

x

v

u

w

x

v

u

w

x

v

u

w

x

v

u

w

x

v

Figure 2.1: Fixing the edge orientations (u,w) and (v, x) gives five possible assign-
ments of orientations on Ecross = {uv, vw,wx} such that the orientation on the entire
graph is acyclic.

Orienting vx the other way, as (x, v), would give us another set of acyclic ori-
entations on G. Likewise, if we went back to H and chose the other orientation,
Hα = {(w, u)}, we would have two new sets of acyclic orientations, one for each ori-
entation of vx. All these orientations together would make up the complete set Ao(G)
of acyclic orientations on G.

Note that on a more complicated graph with more connecting edges, it would not
be so easy to choose directions to assign to Ecross so that the resulting orientation is
acyclic. For this reason, we codify the selection by defining a relation between edges
and using posets, as described in Sections 2.1.2 and 2.1.3.

Returning to our example, now suppose that G is a subgraph of some larger
graph F . Then we could repeat the process for directed subgraph Gα, some new
edge yz in F\G that is disjoint from uw and vx (i.e, y, z /∈ {u, v, w, x}), and the
edges connecting those. In this way a recursive process is established that we can
use to determine all acyclic orientations on a set of disjoint edges and the edges that
connect them. This process is formally presented in Section 2.1.3.

However, this process is not sufficient for producing the acyclic orientations over
the entire graph for every graph. Some graphs do comprise solely a set of disjoint
edges and their connecting edges (in which case the process described up to this point
would be sufficient) but many graphs do not fit such requirements (the most basic
example of this is the complete graph on three vertices). In Section 2.1.4 we expand
this process to be sufficient for any simple graph.

2.1. Generating Acyclic Orientations 15

2.1.2 Defining a Poset

A partially ordered set, or poset, comprises a base set S and a relation R on the
elements of this set, such that this relation is reflexive, transitive, and antisymmetric.
We denote a poset by P(S,R). The relation imposes an order to the elements of S.
If a ∈ S precedes b ∈ S under this ordering, we write a � b. An upset U is a subset
of S such that if a is in U and a � b, then b is in U .

Let Hα be an oriented subgraph of G and let Jα be an oriented complete subgraph
of G. In our case we will be looking at a poset with base set Ecross, the unoriented
edges between Hα and Jα. Let uv and wx be edges in Ecross, where {u,w} are vertices
of H and {v, x} are vertices of J . Then we define the relation � as follows: we will
say uv � wx if w is reachable from u and v is reachable from x (Figure 2.2). This
defines our poset P(Ecross, R).

u

w x

v
Hα Jα

Figure 2.2: We define our poset relation: uv � wx if w is reachable from u in Hα

and v is reachable from x in Jα. In this case, Jα comprises just a single directed edge.

Note that in the case where Jα comprises just a single edge vx (as in our toy
example, and what we will see in Algorithm 2), then the requirement for v to be
reachable from x is equivalent to saying that vx is oriented (x, v). In the case where Jα
is a single vertex v (which we will see in Algorithm 3), it is clear that v is always
reachable from itself, so the only requirement of consequence for the relation is for w
to be reachable from u.

Let U be the set of all upsets on the poset defined above. Let Ao(Ecross) be all sets

of orientations on the edges of Ecross such that, for ~Ecross ∈ Ao(Ecross) the directed

graph Gα = Hα ∪ Jα ∪ ~Ecross is acyclic. We claim that there is a bijection between U
and Ao(Ecross).

Squire [5] provides a proof of this claim for any Jα, but for the purposes of this
paper we present a simpler proof for only the case when Jα consists of a single directed
edge, say J = (x, v) for vertices x and v of graph G.

First we show that there is an injection from the acyclic orientations Ao(G) on
the graph G = H ∪ {v, x} ∪ Ecross to the upsets U of our poset P(Ecross, R). Define
the mapping as follows: for some orientation α ∈ Ao(G) define Uα to be the set of
edges e ∈ Ecross that are oriented from {x, v} to vertices of H. Since our graph is
acyclic, by our definition for the poset relation R we must have that Uα is an upset.
The mapping is clearly one-to-one.

Now we show an injection exists from the upsets U to the acyclic orientations Ao(G).
Let Jα = (x, v). We define a mapping from U to the orientations on G. For U ∈ U ,

16 Chapter 2. The Algorithm

we consider each e ∈ Ecross. If e ∈ U , we orient e from (x, v) to Hα. If e ∈ Ecross\U ,
we orient it from Hα to (x, v). Let Gα be the resulting oriented graph. We show
that Gα must be acyclic by contradiction.

Suppose Gα contains a cycle that includes oriented edges e1 and e2 in ~Ecross. Let u
and w be vertices in H such that e1 = (v, u) and e2 = (w, x). Then to complete the
cycle, w must be reachable from u in Hα. So uv � wx. The edge uv is directed (v, u),
from {x, v} to H, so by our definition of the upset U above uv ∈ U . Then by the
general definition of an upset, wx ∈ U . But then wx would also have to be oriented
as (x,w), from {x, v} to H, which contradicts our original assumption of the cycle. So
we conclude Gα is acyclic, giving us our injection. This proves the bijection between
Ao(G) and U .

The proof for when Jα is a single vertex is similar.

2.1.3 The First Piece of Code: Compute AO

The recursive process illustrated in the toy example forms the cornerstone of the
acyclic orientation generation; we describe it in the algorithm, Compute AO (Al-
gorithm 1). The algorithm takes as input the graph G = G(E, V), a set of dis-
joint edges Edisj ⊆ E, the set of all acyclic orientations on a subgraph H of G,
denoted by Ao(H), and some subset of vertices N ⊆ V . Let E ′ denote the set of
all edges between separate elements of Edisj and all edges between elements of Edisj

and H. The algorithm returns as output the set of all acyclic orientations on the
subgraph G′ = H ∪ Edisj ∪ E ′.

We will explain the purpose of the the subset of vertices N shortly. Compute AO
does not perform any operations directly on N , merely carries it through the recursion
and feeds it to the helper function Ao Edge.

For each edge uv in Edisj, we take some acyclic orientation Hα ∈ Ao(H) and an
orientation (u, v) on uv, then generate all the orientations on the edges between uv
and Hα. To do this we write the helper function Ao Edge (Algorithm 2). Then
we repeat this with the same orientation Hα but with uv oriented (v, u). If we do
this for every orientation in Ao(H), we produce the set of acyclic orientations on the
subgraph H ′ = H ∪ {uv} ∪Ecross, where Ecross ⊆ E ′ is the set of all edges between H
and {uv}. Then we recursively perform Compute Ao again with this new set of
acyclic orientations Ao(H ′) and with Edisj\{uv}. (Note: in Algorithm 1, Ao(H ′) is
denoted by next Ao). The recursive process ends when all edges have been removed
from Edisj.

The helper function Ao Edge (Algorithm 2) takes the oriented subgraph Hα of G
and an edge in G\H with a given orientation (x, v), and returns all orientations on
the cross edges, Ecross, between the vertices of (x, v) and of Hα.

The first part of the code (Lines 3-12) assigns the relations on the edges Ecross

that will be used in the edge poset P(Ecross, R). It is the relation R described in
the previous section, with the subgraph Jα being the single edge (x, v): for directed
edges (u, v) and (w, x), we will say (u, v) � (w, x) if w is reachable from u and v is
reachable from x. We then define a poset on the edges with this relation (Line 13).
Each upset of this poset corresponds to a unique acyclic orientation, as we described

2.1. Generating Acyclic Orientations 17

Algorithm 1 Compute AO (G,Edisj,Ao(H), N).

1: if Edisj 6= [] then
2: choose some uv ∈ Edisj

3: next Ao := []
4: for Hα ∈ Ao(H) do
5: Ao1 := ao edge(G, (u, v), Hα, N)
6: Ao2 := ao edge(G, (v, u), Hα, N)
7: next Ao := next Ao ∪ Ao1 ∪ Ao2
8: Ao(G) := compute ao(G,Edisj\{uv}, next Ao, N)

9: return Ao(G)

and proved in Section 2.1.2: for a given upset U , all edges in U orient from (x, v)
to Hα, while all edges in Ecross not in U orient from Hα to (x, v) (Lines 21-24).

Here is where the subset of vertices N becomes relevant. The ultimate purpose
of this algorithm is to generate all unique-source acyclic orientations. Recall that
the process Compute AO will be performed on a graph with the intended source
removed: G\q. Then q will be added as a source to each acyclic graph at the end.
To ensure that q is the only source in the final product, we want Compute AO to
return only graphs which have no sources, save for the neighbors of q which will have
edges directed to them from q and so will not be sources when q is added back in.

We define the subset N ⊆ V to be the set of neighbors of q. Let degG(x) be the
number of edges incident to a vertex x on an undirected graph G and let degα(x)
be the number of oriented edges incident to a vertex x under a (maybe partial)
orientation α. For an arbitrary directed edge e = (x, v), let e− = x.

Then, when we add a directed edge e to an orientation, we check the following
(lines 17-22, 32-36): if e− is not in N and if all of its incident edges have been assigned
a direction (i.e, degG(e−) = degα(e−)) then we check that e− is not a source (i.e, that
indegα(e−) is greater than zero). If this condition is not met, we do not keep that
given orientation in our results.

18 Chapter 2. The Algorithm

Algorithm 2 Ao Edge (G, (x, v), Hα, N).

1: Ecross := all edges between vertices {x, v} and the vertices of Hα

2: R := [] // The relations for the poset.
3: for all vertices u in Hα that are neighbors to v do
4: for all vertices w reachable from u do
5: if vw ∈ Ecross then
6: add vu � vw to R

7: if xw ∈ Ecross then
8: add vu � xw to R

9: for all vertices u in Hα that are neighbors to x do
10: for all vertices w reachable from u do
11: if xw ∈ Ecross then
12: add xu � xw to R

13: U := all upsets of the poset P(Ecross, R)
14: result := []
15: add edge (x, v) to Hα

16: if Ecross = [] then
17: keep := True
18: if x /∈ N and degG(x) = degα(x) then
19: if indegα(x) = 0 then
20: keep := False

21: if keep = True then
22: append Hα to result

23: else
24: for S ∈ U do
25: keep := True
26: for e ∈ Ecross do
27: if e ∈ S then
28: orient e from (x, v) to Hα

29: else
30: orient e from Hα to (x, v)

31: add edge e to Hα

32: if e− /∈ N and degG(e−) = degα(e−) then
33: if indegα(e−) = 0 then
34: keep := False

35: if keep = True then
36: append Hα to result

37: return result

2.1. Generating Acyclic Orientations 19

2.1.4 Expanding the Code for the Entire Graph

As we noted previously, many graphs comprise more than just a set of disjoint edges
and their connecting edges. We can run Compute Ao on such a graph and a disjoint
subset of its edges, but we will be left with some extra vertices and their incident
edges that are not assigned an orientation. To address this problem, we write another
code for these left-over vertices.

Ao Vertex (Algorithm 3) works similarly to Ao Edge, but instead of taking as
input an edge it takes a single vertex. The methods for establishing relations for the
edge poset, for assigning orientation from the upsets of this poset, and for removing
orientations with multiple sources are the same.

Algorithm 3 Ao Vertex (G, v,Hα, N).

1: Ecross := all edges between vertices {x, v} and the vertices of Hα

2: R := []
3: for all vertices u in Hα that are neighbors to v do
4: e := (v, u)
5: for all vertices w reachable from u do
6: if (v, w) ∈ Ecross then
7: add (v, u) � (v, w) to R

8: U := all upsets of the poset P(Ecross, R)
9: result := []
10: for S ∈ U do
11: keep := True
12: for e ∈ Ecross do
13: if e ∈ S then
14: orient e from v to Hα

15: else
16: orient e from Hα to v

17: add edge e to Hα

18: if e− /∈ N and degG(e−) = degα(e−) then
19: if indegα(e−) = 0 then
20: keep := False

21: if keep = True then
22: append Hα to result

23: return result

In order to use Ao Edge and Ao Vertex, we need to identify a set of disjoint
edges and the set of edges of remaining vertices. This process (codified in Algorithm 4:
Startsets) works as follows: remove an edge e of a graph G and its corresponding
vertices (so any edges incident to e are also removed from G), and add e to a set Edisj.
Repeat this process until there are no edges left. Then whatever vertices remain form
their own set Vo.

The next step is to combine our separate algorithm components – Compute Ao,
Ao Edge, Ao Vertex, and Startsets – into one process.

20 Chapter 2. The Algorithm

Algorithm 4 Startsets(G(V,E)).

1: Edisj := []
2: Vo := V
3: for uv ∈ E do
4: remove uv from E
5: append uv to Edisj

6: delete vertices {u, v} from Vo

7: return [Edisj, Vo]

2.1.5 Unique Source Acyclic Orientations

We assemble our algorithm components in Algorithm 5. Given a graph and source q
as input, we remove q from G (line 2). Working with this subgraph, G′ = G\q, we run
Startsets to determine the set of disjoint edges Edisj and the remaining vertices Vo.

Then Compute Ao performs its recursive function, building from an empty
digraph as its first directed subgraph, to generate all acyclic orientations on the
subgraph covered by edges of Edisj. Next we add the vertices of Vo by applying
Ao Vertex to each vertex v in Vo for each acyclic orientation generated by Com-
pute Ao.

Finally, we add back in the vertex q with all its incident edges directed away from
it, making it a source. This gives us our generator for all acyclic orientation with a
fixed unique source of any simple, connected graph.

Algorithm 5 Acyclic Orientations With Source(G, q).

1: source neighbors := neighbors of q in G
2: G′ = G\q
3: Edisj := startsets(G′)[0]
4: Vo := startsets(G′)[1]
5: Dα := an empty digraph
6: Ao(G′) := compute ao(G′, Edisj,{Dα},source neighbors)
7: for v ∈ Vo do
8: Ao helper := []
9: for Hα ∈ Ao(G′) do
10: Ao(v) := ao vertex(G′, v,Hα,source neighbors)
11: Ao helper := Ao helper ∪ Ao(v)

12: Ao(G’) := Ao helper

13: for Gα ∈ Ao(G′) do
14: for u ∈ source neighbors do
15: add oriented edge (q, u) to Ao(G)

16: return Ao(G)

2.2. Conversion to Superstables 21

2.2 Conversion to Superstables

2.2.1 Maximal Superstables

We now return to the bijection between acyclic orientations and maximal supersta-
bles introduced in Section 1.3.1: cv = indeg(v) − 1, for all v ∈ V . Our function
Find Max Superstables (Algorithm 6) applies this mapping, taking in a graph
and a source and returning all maximal superstable configurations (as vectors of co-
efficients of the configurations).

Algorithm 6 Find Max Superstables(G(V,E), q).

1: Ao(G, q) := acyclic orientations with source(G, q)
2: SSmax := []
3: for Gα ∈ Ao(G, q) do
4: c := []
5: for v ∈ V do
6: cv := indeg(v)− 1
7: append cv to c

8: append c to SSmax

9: return SSmax

2.2.2 Find All Superstables

Having produced the maximal superstables of G, it is a simple task to find all super-
stable configurations of G from there. Let Down be a function that, when given an
ordered list c of integers, produces all lists of integers that are component-wise less
than or equal to c, i.e, ci ≥ c′i for all i. The final piece of our code is then as follows:

Algorithm 7 Find Superstables(G, q).

1: SSmax := find max superstables(G, q)
2: SS(G, q) := down(SSmax)
3: return SS(G, q)

Chapter 3

Testing for Time

Recall, one of our motivations was to create an algorithm that will produce the
superstable configurations on a graph faster than the algorithm already implemented
in Sage. To see if we achieved this, we run our new algorithm and the pre-existing
algorithm on a variety of graphs and compare the run times between the two.

3.1 The Pre-Existing Code

Before comparing our code to the pre-existing Sage code, we briefly look at how the
pre-existing code works [6].

The pre-existing algorithm produces the superstables via the recurrent config-
urations. To understand recurrent configurations, we consider our graph and the
distribution of dollars amongst vertices as a system that can have dollars added to it
from the outside. If we continually add dollars to non-sink vertices, and then stabilize
the resulting configuration, there are a finite number of stable configurations we can
get. If we did this many times, there would be some stable configurations that would
appear again and again—these are the recurrent configurations.

Formally, a stable configuration c is recurrent if, for any configuration c′, there
exists some nonnegative configuration c′′ such that the stabilization of c′ + c′′ (the
component-wise addition of the two configurations) is c.

There is a duality between the recurrent configurations and the superstable con-
figurations. Let cmax be the maximal stable configuration. Then some configuration c
is superstable if and only if cmax − c is recurrent [4]. Since the zero configuration
(cv = 0 for all v) is superstable, then cmax is itself recurrent.

The pre-existing code computes the recurrent configurations as follows: start
with cmax. For all vi ∈ Ṽ = V \q, stabilize cmax + vi. The resulting stable config-
urations form a set R of recurrent configurations. For each c ∈ R, we stabilize c+ vi
for all vi ∈ Ṽ , which gives us a new set of recurrent configurations. We repeat this
process until a round of stabilization produces no new recurrent configurations.

Once the code has this set of recurrent configurations, it uses the above described
duality to produce all superstable configurations from the recurrents.

We will refer to that pre-existing code as the recurrents code (RC), and our new

24 Chapter 3. Testing for Time

code as the acyclic orientations code (AOC).

3.2 The Results

We run the recurrents code and the acyclic orientations code on four types of graphs
and compare the runtimes. The basic graphs we look at are the complete graph, the
wheel graph with the center vertex as the source, the wheel graph with an outside
vertex as the source (see Figure 3.1), and the cycle graph—each over a range of
different numbers of vertices n = |V |.

a)

q

b)

qc

c)

qo

d)

q

Figure 3.1: a) A complete graph on n = 5 vertices with source q at an arbitrary
vertex; b) a wheel graph on n = 6 vertices with source qc at center vertex; c) a wheel
graph on n = 6 vertices with source qo at an arbitrary outer vertex; d) a cycle graph
on n = 5 vertices with source q at an arbitrary vertex.

The runtime results are presented in Table 3.1. We record the number of vertices
(|V | = n), the number of edges (|E|), and the runtimes in seconds for each code (AOC
for the acyclic orientations code and RC for the recurrents code). We also record the
number of edges on the graph when the sink is removed, since our code works by
generating all acyclic orientations on G\q and then adding q as the source.

We see that our acyclic orientations algorithm consistently runs faster for n > 4
on the complete graph and wheel graph. For the cycle graph, the recurrents algorithm
is faster for smaller n, but at some number of vertices n > 30, the acyclic orientations
code achieves the faster runtime.

3.2. The Results 25

Table 3.1: Acyclic Orientations Code Run Times (AOC) vs. Recurrents Code Run
Times (RC) in Seconds, on Different Types of Graphs

Graph Type n |E| |E\{q}| AOC (s) RC (s)

Complete 3 3 1 0.01 0.00
4 6 3 0.01 0.00
5 10 6 0.04 0.05
6 15 10 0.53 1.41
7 21 15 65.87 152.83

Wheel (q = center) 3 3 1 0.01 0.00
5 8 4 0.02 0.02
7 12 6 0.10 0.25
9 16 8 1.92 5.27

10 18 9 8.40 30.64

Wheel (q = outside) 3 3 1 0.01 0.00
5 8 5 0.03 0.02
7 12 9 0.17 0.31
9 16 13 2.15 6.81

10 18 15 7.73 39.79

Cycle 3 3 1 0.01 0.00
5 5 3 0.01 0.00
7 7 5 0.04 0.01
9 9 7 0.09 0.02

11 11 9 0.16 0.04
13 13 11 0.24 0.07
20 20 18 0.66 0.37
30 30 28 1.85 1.71
40 40 38 3.44 5.41
50 50 48 5.80 12.26
60 60 58 9.84 28.56

Conclusion

We produced an algorithm to generate the superstable configurations of a graph via
its unique-source acyclic orientations. One of our objectives was for this algorithm
to operate faster than the already existing algorithm that generates the superstables
via the recurrent configurations in Sage. Our runtime results show that we were
successful in this endeavor.

However, there may be ways to improve our algorithm to make it run faster yet.
We propose some possible inefficiencies with our algorithm and suggested improve-
ments:

• Our code relies on certain functions that are already built into Sage—notably, in
Algorithm 2, to find all vertices reachable from a given vertex (Lines 4 and 10)
we rely on the breadth-first-search function in Sage, and for calculating the
upsets (Line 13) we rely on the Sage function that produces the order ideals
of a poset. The process that happens in these functions could be picked apart
and incorporated into the process of the code to be more efficient. For instance,
instead of performing a breadth-first-search from every vertex, it is possible
that we could build on the reachability we have already determined, i.e, if u is
reachable from v and w is reachable from u, then we know that w is reachable
from v.

• The code may run faster if written in a different programming language, such
as C, instead of the Python-based Sage.

Appendix A

The Code (in Sage programming
language)

Here is the exact code for our algorithm.

def _compute_ao(G,Edisj,Ao_H,N):

r"""

Given Edisj, a set of disjoint edges of G, and Ao_H, a set of digraphs

on some subset of G, recursively find all acyclic orientations of G

that contain some element of Ao_H.

INPUT:

G -- Graph

Edisj -- Set of non-adjacent edges

Ao_H -- set of digraphs

N -- a subset of vertices

OUTPUT:

Array of acyclic orientations on the vertices

EXAMPLES::

sage: g = graphs.CompleteGraph(4)

sage: h = DiGraph()

sage: Aos = [h]

sage: e = [(0,1),(2,3)]

sage: result = compute_ao(g,e,Aos,N)

sage: for i in range(len(result)):

result[i].show(layout=’circular’,figsize=2)

"""

if Edisj != []:

q1 = list(Edisj[0])[0]

q2 = list(Edisj[0])[1]

next_Ao = []

for Ha in Ao_H:

30 Appendix A. The Code (in Sage programming language)

Ao1 = _ao_edge(G,(q1,q2),Ha,N)

Ao2 = _ao_edge(G,(q2,q1),Ha,N)

next_Ao += Ao1 + Ao2

Edisj.remove(Edisj[0])

Ao_H = _compute_ao(G,copy(Edisj),copy(next_Ao),N)

return Ao_H

def _ao_edge(G,(x,v),Ha,N):

r"""

Given an acyclic orientation Ha on a subgraph of G and the oriented

edge (x,v) of G, find all the ways of orienting the edges between Gp

and (x,v) so that the resulting subgraph is acyclic.

INPUT:

G -- Graph

Ha -- DiGraph (with underlying undirected graph a subgraph of G)

(x,v) -- vertices of G, not in Gp, sharing an edge oriented from x to v

N -- a subset of vertices

OUTPUT:

list of DiGraphs

EXAMPLES::

sage: G = graphs.CompleteGraph(4)

sage: h = DiGraph()

sage: h.add_edge((0,1))

sage: aos = ao_edge(G,(2,3),h,N)

sage: for i in range(len(aos)):

aos[i].show(layout=’circular’,figsize=2)

"""

E = [set(e) for e in G.edges(false)]

We want to create a poset of all the edges connecting Gp and (x,v)

cross_edges = []

relations = [] # relations for the edge poset

verts = [u for u in G.neighbor_iterator(v) if Ha.has_vertex(u)]

We define the relation: (v,u) <= (x,w) if x is reachable from v and u is

reachable from w.

for u in verts: # for all vertices u that are neighbors to v

e = E.index(set((v,u)))

for w in Ha.breadth_first_search(u): # for all vertices reachable from u

if G.has_edge((v,w)):

relations.append([e,E.index(set((v,w)))])

if not set((v,w)) in cross_edges:

cross_edges.append(set((v,w)))

if G.has_edge((x,w)):

relations.append([e,E.index(set((x,w)))])

if not set((x,w)) in cross_edges:

cross_edges.append(set((x,w)))

verts = [u for u in G.neighbor_iterator(x) if Ha.has_vertex(u)]

31

for u in verts: # for all vertices u that are neighbors to x

e = E.index(set((x,u)))

for w in Ha.breadth_first_search(u): # for all vertices reachable from u

if G.has_edge((x,w)):

relations.append([e,E.index(set((x,w)))])

if not set((x,w)) in cross_edges:

cross_edges.append(set((x,w)))

elts = [E.index(i) for i in cross_edges]

P = Poset([elts, relations])

upsets = P.dual().order_ideals_lattice().list()

result = [] # set of DiGraphs - the orientations corresponding

to the upsets

if cross_edges==[]:

keep = True

Ho = copy(Ha)

Ho.add_edge((x,v))

if x not in N and G.degree(x) == Ho.degree(x):

if Go.in_degree(x) == 0:

keep = False

if keep == True:

result.append(Ho)

If there are edges between (x,v) and Ha, we need to assign orientations

to those. Each upset in the edge poset corresponds to a unique acyclic

orientation.

else:

for up in upsets:

Ho = copy(Ha)

Ho.add_edge((x,v))

for i in range(len(cross_edges)):

q1 = list(cross_edges[i])[0]

q2 = list(cross_edges[i])[1]

if elts[i] in up: # i is a set of edges; cross_edges[i] is

a set of vertices.

if q1 in (x,v): # Appropriate orientation for edges in

upset is from {x,v} to Ha.

Ho.add_edge((q1,q2))

if q1 not in N and G.degree(q1) == Ho.degree(q1):

if Ho.in_degree(q1) == 0:

keep = False

else:

Ho.add_edge((q2,q1))

if q2 not in N and G.degree(q2) == Ho.degree(q2):

if Ho.in_degree(q2) == 0:

keep = False

else:

if q1 in (x,v): # Appropriate orientation for edges not

in upset is from Ha to {x,v}

Ho.add_edge((q2,q1))

if q2 not in N and G.degree(q2) == Ho.degree(q2):

if Ho.in_degree(q2) == 0:

keep = False

else:

Ho.add_edge((q1,q2))

if q1 not in N and G.degree(q1) == Ho.degree(q1):

32 Appendix A. The Code (in Sage programming language)

if Ho.in_degree(q1) == 0:

keep = False

if keep == True:

result.append(Ho)

return result

def _ao_vertex(G,v,Ha,N):

r"""

Given an acyclic orientation Ha on a subgraph of G and a vertex v in G,

find all the ways of orienting the edges between Ha and v so that the

resulting subgraph is acyclic.

INPUT:

G -- Graph

Ha -- DiGraph (with underlying undirected graph a subgraph of G)

v -- vertices of G, not in Gp

N -- subset of vertices

OUTPUT:

list of DiGraphs

EXAMPLES::

sage: G = graphs.CompleteGraph(3)

sage: h = DiGraph()

sage: h.add_edge((0,1))

sage: aovs = ao_vertex(G,2,h,N)

sage: for i in range(len(aovs)):

aovs[i].show(layout=’circular’,figsize=2)

"""

E = [set(e) for e in G.edges(false)]

cross_edges = []

relations = [] # relations for the edge poset

verts = [u for u in G.neighbor_iterator(v) if Ha.has_vertex(u)]

for u in verts:

e = E.index(set((v,u)))

for w in Ha.breadth_first_search(u):

if G.has_edge((v,w)):

relations.append([e,E.index(set((v,w)))])

if not set((v,w)) in cross_edges:

cross_edges.append(set((v,w)))

elts = [E.index(i) for i in cross_edges]

P = Poset([elts, relations])

upsets = P.dual().order_ideals_lattice().list()

result = [] # set of DiGraphs - the orientations corresponding

to the upsets.

Each upset in the edge poset corresponds to a unique acyclic orientation.

for up in upsets:

Ho = copy(Ha)

for i in range(len(cross_edges)):

33

q1 = list(cross_edges[i])[0]

q2 = list(cross_edges[i])[1]

if elts[i] in up: # i is a set of edges; cross_edges[i] is a

set of vertices

if q1==v: # Appropriate orientation for edges in upset

is from v to Ha.

Ho.add_edge((q1,q2))

if q1 not in N and G.degree(q1) == Ho.degree(q1):

if Ho.in_degree(q1) == 0:

keep = False

else:

Ho.add_edge((q2,q1))

if q2 not in N and G.degree(q2) == Ho.degree(q2):

if Ho.in_degree(q2) == 0:

keep = False

else:

if q1==v: # Appropriate orientation for edges not in upset

is from Ha to v.

Ho.add_edge((q2,q1))

if q2 not in N and G.degree(q2) == Ho.degree(q2):

if Ho.in_degree(q2) == 0:

keep = False

else:

Ho.add_edge((q1,q2))

if q1 not in N and G.degree(q1) == Ho.degree(q1):

if Ho.in_degree(q1) == 0:

keep = False

if keep == True:

result.append(Ho)

return result

def _startsets(G):

r"""

For a graph G, find a set of disjoint edges (edge_list) and all

remaining vertices V when these edges are removed from G.

INPUT:

G -- Graph

OUTPUT:

[edge_list,V] -- pair: set of edges, list of integers

Examples::

sage: G = graphs.CycleGraph(5)

sage: s = startsets(G)

sage: s[0]

[set([0, 1]), set([2, 3])]

sage: s[1]

[4]

34 Appendix A. The Code (in Sage programming language)

"""

H = copy(G)

E = [set(e) for e in H.edges(false)]

edge_list = []

while not E == []:

edge_list.append(E[0])

q1 = list(E[0])[0]

q2 = list(E[0])[1]

H.delete_vertices([q1,q2])

E = [set(e) for e in H.edges(false)]

V = H.vertices()

return [edge_list,V]

def acyclic_orientations_with_source(G,s):

r"""

Find all acyclic orientations on G with a given unique source s.

INPUT:

G -- graph

s -- vertex of G

OUTPUT:

set of DiGraphs

EXAMPLES::

sage: g = graphs.CycleGraph(4)

sage: g.add_edge((1,3))

sage: s = 0

sage: result = acyclic_orientation_with_source(g,s)

sage: for i in range(len(result)):

result[i].show(layout=’circular’,figsize=2)

"""

N = G.neighbors(s)

Remove the source vertex.

G_s = copy(G)

G_s.delete_vertex(s)

Find perfect matching edges and remaining, unmatched vertices.

Start = _startsets(G_s)

Edisj = Start[0]

Vo = Start[1]

Ha = DiGraph()

aos = [Ha]

Compute all acyclic orientations on perfect matching edges (on G w/o s).

Ao = _compute_ao(G_s,Edisj,aos,N)

Add in the lone vertices with appropriate orientations

for v in Vo:

35

Ao2 = []

while Ao != []:

aovs = _ao_vertex(G,v,Ao[0],N)

for a in aovs:

Ao2.append(a)

Ao.remove(Ao[0])

Ao = copy(Ao2)

result = Ao

Now add back in the source vertex.

for i in range(len(result)):

for u in source_neighbors:

result[i].add_edge((s,u))

return result

def find_max_superstables(G,s):

r"""

Return the coefficients of all maximal superstable configurations.

INPUT:

G - Graph

s - source

OUTPUT:

list of list of integers -- each list is the coefficients of a max

superstable

EXAMPLES::

sage: g = graphs.CycleGraph(4)

sage: g.add_edge((1,3))

sage: s = 0

sage: find_max_superstables(g,s)

[[-1, 0, 0, 2], [-1, 0, 1, 1], [-1, 1, 1, 0], [-1, 2, 0, 0]]

"""

select_aos = acyclic_orientations_with_source(G,s)

result = []

for Ha in select_aos:

config = []

for v in Ha.vertices():

cv = Ha.in_degree(v) - 1

config.append(cv)

result.append(config)

return result

def _down(M):

r"""

Create a list of all integer lists that are component-wise less than

36 Appendix A. The Code (in Sage programming language)

some element in the list M.

NOTE: all integer lists need to be same length.

INPUT:

M -- list of lists of integers

OUTPUT:

list of list of integers.

EXAMPLES::

sage: m = [[-1, 0, 2], [0, 1, 1]]

sage: down(m)

[[-1, 0, 2], [0, 1, 1], [0, 0, 1], [0, 1, 0], [0, 0, 0], [-1, 0, 1],

[-1, 0, 0]]

"""

result = copy(M)

active = copy(M)

if M == []:

return None

else:

n = len(M[0])

while active != []:

v = active.pop()

for i in range(n):

if v[i] > 0:

w = copy(v)

w[i] -= 1

if not w in result:

result.append(w)

active.append(w)

return result

def find_superstables(G,s):

r"""

Return the coefficients of all superstable configurations.

INPUT:

G - Graph

s - source

OUTPUT:

list of list of integers

EXAMPLES::

37

sage: g = graphs.CycleGraph(4)

sage: g.add_edge((1,3))

sage: s = 0

sage: find_superstables(g,s)

[[-1, 0, 0, 2], [-1, 0, 1, 1], [-1, 1, 1, 0], [-1, 2, 0, 0],

[-1, 1, 0, 0], [-1, 0, 0, 0], [-1, 0, 1, 0], [-1, 0, 0, 1]]

"""

mss = find_max_superstables(G,s)

result = _down(mss)

return result

References

[1] Matthew Baker and Farbod Shokrieh. Chip-firing games, potential theory on
graphs, and spanning trees. J. Combin. Theory Ser. A, 120(1):164–182, 2013.

[2] Brian Benson, Deeparnab Chakrabarty, and Prasad Tetali. G-parking functions,
acyclic orientations and spanning trees. Discrete Math., 310(8):1340–1353, 2010.

[3] Deepak Dhar. Theoretical studies of self-organized criticality. Phys. A, 369(1):29–
70, 2006.

[4] Alexander E. Holroyd, Lionel Levine, Karola Mészáros, Yuval Peres, James Propp,
and David B. Wilson. Chip-firing and rotor-routing on directed graphs. In In and
out of equilibrium. 2, volume 60 of Progr. Probab., pages 331–364. Birkhäuser,
Basel, 2008.

[5] Matthew B. Squire. Generating the Acyclic Orientations of a Graph. J. Algo-
rithms, 26(2):275–290, 1998.

[6] W. A. Stein et al. Sage Mathematics Software (Version 6.1.1). The Sage Devel-
opment Team, 2014. http://www.sagemath.org.

