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Abstract

This thesis studies juggling patterns. Through the use of directed graphs and
other formal systems we count the number of 2-ball juggling cycles. A new result

appears in 2.2.3, where the number of primitive 2-ball juggling patterns are counted.



Chapter 1

Basic graph theory

Introduction. This chapter will give the basic notation used for the rest of this

thesis.

1.1 Notation

A graphis a ordered triple G = (V, E, ®) where V and E are sets and ® is a function
from E into the collection of unordered, not necessarily distinct pairs of elements of
V. Elements of V' are called vertices of G' and elements of E are called edges of G.
If e € E and ®(e) = {v,v'}, we say that e is an edge joining vertices v and v'. If
v = ', then e is called a loop. We normally identify elements of E with their images
under .

Example: Let G = (V, E, ®) where V = {a, b, ¢,d}, E = {{a, b}, {b, ¢}, {c,d},{d,a}}:

b c

a d

A digraph is an ordered triple D = (V, E,®) where V' and E are sets and ® is
a function from FE into the collection of ordered, not necessarily distinct, pairs of

elements of V.
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Example: Let V = {a,b,c}, E = {(b,a),(a,b), (a,c)}, and D = (V, E), then D

1.2 Walks Paths and Cycles

A walk W in a directed graph is a finite, ordered list of edges (e, es, ..., ) where
the endpoint of e; is the initial point of e;y; for all 72, where the endpoint of e; is
defined as the second element of the edge e; and the initial point is the first element
of the edge e;.

A path is a walk such that each vertex in the walk is only visited once, i.e. each
vertex in the walk is distinct. A cycle is a walk with the property that the first and
the last vertices are the same. A primitive cycle is a cycle with all but the first and
the last vertices distinct. The length, (W), of a walk W on a graph is the number
of edges used in that walk.

Definition: If there is a walk connecting vertex u to vertex v, then the distance
between u and v is d(u,v) = miny ¢(W), taking the minimum over all walks W

from u to v. We will define d(u,u) = 0. Note d(u,v) # d(v,u) in general.

Theorem 1.2.1. The Triangle Inequality: Let u,v,w be vertices of a graph G.

Let there exist walks from u to v, u to w, and w to v. Then
d(u,v) < d(u,w) + d(w, v).

Proof. Let @, P, R be walks of minimal length from w to v, u to w, and w to v,
respectively. We can concatenate the walks P and R, which yields a walk from u to

v, by way of w. This walk, call it PR, is not necessarily the shortest walk from u
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to v. Therefore,

d(u,v) =0(Q) < U(PR) ={¢(P)+{(R) = d(u,w) + d(w, v).
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Chapter 2

Juggling Digraphs

Introduction. One application of digraphs is modeling juggling patterns. It is
possible to encode some of the important information of a juggling pattern in a
digraph. The main question I will answer is: how many 2-ball patterns are there
of a given length? Analyzing adjacency matrices of the 2-ball juggling digraph, we
recover the known result that there are 3" — 2" patterns having period dividing n.
By analyzing the digraph in a different way, we get a new result: a formula for the

number of primitive 2-ball patterns cf. Definition 2.1.2.

2.1 The juggling digraph of 2-balls

The system to describe 2-ball juggling patterns is relatively simple. Let each juggling
state be an element of F3° = {x xox5 ... |z; € {0,1}} such that the number of 1s in
the string is 2. Each 0 in a juggling state signifies the amount of time it will take
the 1 to the right of that 0 to land. Out of convenience we will, for example, write
the string 00010010000 ... as 0001001, omitting the trailing 0s. Given this string,
we know that one ball will land in 4 seconds, and the other in 7 seconds.

It is possible to create a digraph that uses these juggling states as its vertices.

The vertices are in the lattice N%, = {(4,j) € NxN | i,5 > 0}. There is a bijection
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between the juggling states and ordered pairs (4,7) in the lattice where ¢ denotes
the number of Os between the first 1 and the second 1, and j denotes the number
of Os to the left of the first 1. For example the juggling state b = 00001000001
corresponds to the vertex (5,4), and the vertex (3,7) corresponds to the juggling
state 000000010001.

Given this encoding there are two different sorts of juggling states that need to
be defined. A juggling state b is said to be in the ground state if the leading digit is
a 1, and in an elevated state if the leading digit is a 0. The edges in the digraph can
be described as follows: if the balls are in an elevated state (a, b), i.e. where b # 0,
the only state that can be moved to is (a,b — 1). If the balls are at ground state,
i.e. the state (a,0), the ball can be thrown to any state of the form (x,a) for any x
or to any state (z,a —1 —x) for any 0 < x < a — 1. The juggling state 00001000001
can only move to 0001000001, where as the juggling state 1001 can move to 101,
011, 0011, or 001nl1 where n is a string of Os.

An intuitive way to think about the edges is to look at the following diagram.
The vertices on the dashed line are all the possible vertices that could be reached

from the state (5,0).

° ° ° ° ° ° ° °
——o%— - — 00— — — 00— — & — -0

3
I
I\ e e e e e e e

The only edge from an elevated state (a,b) is to the state (a,b — 1), appearing
directly below (a,b) in the digraph.

Definition 2.1.1. A 2-ball juggling pattern s a cycle in the 2-ball juggling digraph.
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Definition 2.1.2. A juggling pattern is primitive if it contains no sub-cycles.

2.1.1 Distances

For each state (x,y) € N? in the digraph, the distance diagram B(z,y) = (a;;) is
the infinite array where a;; = d((x,y), (¢, 7)) for all ¢, j € N. For example:

999 9 9 9 9 555 5 5
999 9 9 9 9
4 4 4 4 4 4 4 9 9 909
B(4,3) = BB,0)=|11111
4 5 5 5 0 5 5
1 2 2 2 2
546 61 6 6
21 3 3 3
6 5> 4 7 2 77 3910 4
7 6 5 4 3 8 8
In general the distance diagram B(k,0) looks like:
k+1 --- k+1 k+1 kE+1 k+1 k+1 k+1
k+1 k+1 k+1 k+1 E+1 kE+1 k41
1 1 1 1 1 1 1
1 2 2 2 2 2 2
2 3 3 3 3 3 3
k—2 1 k—1 k-1 k-1 k-1 k-1
k—1 2 1 k k k k
k 3 2 1 0 kE+1 kE+1

From these examples we can see the following:

d((i,O),(j,())):{ i+1 ifi<j,

1—7 ifi>y
Theorem 2.1.3. Let v be a cycle, and let (i,j) be a state occurring in v. Then i

and j are strictly less then the length of the cycle.
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Proof. Let v = vjv, - - - vy(yy Where each v; is a juggling state, d(v;,viy1) = 1, and
((v) is the length of v. Let (4,0) be the left-most (smallest first coordinate) ground
state occurring in v, and (i, 0) be the right-most. By the triangle inequality:

£(v)
d(vj,v541) > d((i,0), (i, 0)) + d((7,0), (5,0) = (i + 1) + (' — i) =1 + ¢

Therefore (i',0), the vertex farthest to the right, has first coordinate strictly less
then ¢(v). Thus the first coordinate of any state in v is strictly less than ¢(v).

Further, as just stated, if (i, j) is an elevated state appearing in v, then (i, ) —

(i, — 1) = --- — (4,0) appears in v. Thus j + 1 < ¢(v). The result follows. O

Remark 2.1.4. We now know that when searching for all cycles of length ¢ we need

only to look at a ¢ x ¢ lattice of points.

2.1.2 Data

To find all the primitive juggling cycles of a given length, we wrote a program which

did a standard depth-first search. ! We found the following data:

cycle length ‘1‘2‘3‘4‘5‘6‘7‘8‘9
# of primitive cycles | 1|2 | 5] 10 | 23 | 48 [ 105 | 216 | 467

Another useful way to look at these data is to see the number of cycles that use
a given number of columns in the juggling digraph. The following table displays
exactly that.

ISee the first appendix for code
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cycle length | Number of cycles using X columns

2 (3 14 |5 |6 |7 |8]9 «X
1
4 |1
1015 |1

18115 |6 1
29137 |21 |7 |1
0[40 |70 |58 |28|8 |1
2158|128 1136 |86 (36|91

— e = = e e e e |

© 00 1O Ut = Wi
— = O~ W

The next set of data shows the number of cycles passing through each point of
the digraph. More formally, the (i, j) entry of each ¢ x ¢ matrix shows the number
of primitive cycles of length ¢ containing the juggling state (7, 7).

0 0 0 0 1
0001 2 0 0 0 2
0 01 2 00 2 4 4 0 0 4
01 2 0 2 4 2 0 4 9 7 6 0 8
1 1 2 3 3 4 6 5 6 8 14 13 13 12 16
o 0 0 0 0 0 1
0o 0 0 0 0 1 2 0 0 0 O 0 2
2 0 0 0 0 2 4 4 0 0 0 0 4
4 4 0 0 0 4 10 10 8 0 0O O 8
10 10 4 0 0 8 22 .20 14 12 0 0 16
20 15 11 12 0 16 44 33 29 28 24 0 32
30 28 25 26 24 32 66 62 57 59 52 48 64
0 0 0 0 0 0 0 1
2 0 0 0 0 0 0 2
4 4 0 0 0 0 0 4
10 10 8 0 0 0 0 8
24 20 20 8 0 0 0 16
48 43 33 22 24 0 O 32

94 68 63 49 56 48 0 064
138 128 120 111 118 104 96 128
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0 0 0 0 0 0 0 0 1
2 0 0 0 0 0 0 0 2
4 4 0 0 0 0 0 0 4
10 10 8 0 0 0 0 0 8
24 20 20 16 O 0 0 0 16
52 46 46 28 24 0 0 0 32
106 100 71 61 56 48 O 0 64

204 154 141 129 116 112 96 0 128
300 282 266 251 249 236 208 192 256

2.2 The dot game

There is yet another way to think about 2-ball juggling cycles. Given any juggling
cycle, that cycle can be written as a string of integers and dots, where the numbers
correspond to columns of our digraph, and the dots tell how the balls move. More
formally: any juggling cycle can be written as a;bjasbs . ..a,b, where a; € N and
b; € {*,« }. We will call * an up-dot, and , a down-dot. The number a; in this new
notation stands for the ground state (a;,0) in the digraph. The next vertex in the
cycle will occur in the column containing (a;11,0). Note that there are two ways to
walk— we’ll often say throw— from (a;, 0) directly to a vertex of the form (a; 41, z);
namely there is a throw to (@41, a; — a;11 — 1) and a throw to (a;;1, ;). The former
we denote with a down-dot, a;,a;+1, and the latter with an up-dot, aja;+;. Note
that when b; is a down-dot, then a; > a;4;. This also means that if a; = 0 then b;

is an up-dot. The following pictures give a better description of this system:
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3°2 looks like:

0—--0——-0-2—0—--0——-0--—0—--0
1
1
‘\ ° 03 o o o ° °
N
° \‘\ 04 o o o ° °

° 0\\\65—91 ° o ° °

Where the dots with the white centers show the walk through the digraph and the
numbers are the order of the walk.

6.2 looks like:

° 02(;) ° ° ° ° °

__.__@50 e e e °

Note. The cycle represented by the string aib; ... a,b, is primitive if and only if

each a; is distinct.
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2.2.1 Length

Given a cycle in the dot notation, there is a simple algorithm to find its length.
Namely, if a; is followed by an up-dot, then that column adds a; + 1 to the total
cycle length. If a; is followed by a down-dot, then it adds a; — a;11 to the total cycle
length. So £(0°6,4°2°) = (0+1)+ (6 —4)+(4+1)+ (24 1) =11.

2.2.2 Substitutions

Having represented a juggling cycle as a finite string, we can create more juggling
cycles via the following three string substitutions:

This rule adds nothing to the cycle’s length:

(1.0) a® <> a.b® for any b < a

These rules add one to the cycle’s length:

(1.1) *a®* = *(a+1)°

(1.2) as0* — a®0°

Example: Starting from 0°6°2°, rule 1.0 produces the cycles 0°6,4°2°® and 0°6,2°2°

without changing length; the latter cycle is not primitive.

Theorem 2.2.1. Starting with the cycle 0°, these three rules produce all juggling
cycles. If we only substitute distinct columns then these three rules produce all

primitive juggling cycles.

Proof. We will prove this statement by induction over the cycle length ¢.

Base case: ¢ = 1. There is one cycle with cycle length one, that is 0°.
Induction: Let ¢ = a1b; . ..a,b, be a cycle of length ¢ > 1. Since c is a finite cycle,
there will be a smallest number among the «a;, i.e. a left-most column. This column
must be followed by an up-dot. Therefore there is at least one up-dot in ¢. Note

that if the smallest column is not distinct this still holds.
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By repetitively applying rule 1.0, we may assume that all dots are up. We may
then apply rule 1.1 in reverse, yielding a new cycle ¢’ of length ¢ — 1. By induction,
¢’ is derived from 0° from the three rules, and ¢ follows from ¢ by rule 1.1. If ¢ is
primitive, ¢’ can be chosen to be primitive too except, possibly, in the case where
0® is in ¢. A typical problem case would be ¢ = 0°1°2°®. However, in that case, we
may apply rule 1.2 in reverse to yield a new primitive cycle ¢’ of length ¢ — 1, and

the result follows similarly by induction. O

2.2.3 Counting

It is possible to find all cycles of a given length ¢ that have only up-dots when
expressed in dot notation, and then by repetitively applying rule 1.0 we produce all
cycles of length ¢. Consider the following picture representation of 10°5°2°. The
squares containing an X denotes columns that are followed by an up-dot. The
squares containing O denote the possible columns that can be added to the cycle

by rule 1.0.

X 110

Oo|9

O|8

Oo|7

O|6

X 5

O O|4

O O|3

X 2
O O O|1
O O 0|0

1 2 3 4 5 6 7 8 9 1011
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Hence, adding 8 and 4 in column numbered 11 in the diagram and 3 in column 6
represents the pattern 10,8,4°5,3°2°%. So adding rows numbered 8 and 4 in column
11 adds columns 8 and 4 to our juggling pattern, written in dot-notation. Note
that the addition of new columns by rule 1.0 does not change the cycle length. By
numbering the columns 1-11 instead of 0-10, we can find the length by just adding

the column numbers:
£(10°5°2°) =11+ 6 + 3 = 20 = £(10,8,4%5,3°2°).

We now want to count the number of primitive patterns that can be formed from
10°5°2° by applying rule 1.0. First consider the possible added columns after 10°

that are numbered greater than 5: there are 2010-5-1)

possible combinations. Now
consider the possible columns added numbered below 5 and above 2: there are
36-2-1 possible combinations. This is because, the added rows would need to be in
columns 6 or 11. For each added row we have three choices: either choose column
6, choose column 11 or choose neither. Now consider the possible rows added below

2; there are 42. The following picture might be useful:

x| 10 [x |10 [x |10

9 o9 E

8 ols ols

7 ol7 o|7

6 ole ole

X 5 X 5 X 5

o ola 4 o ola

o ols 3 0 E

X 2 X 2 X 2

o o o1 o o o|1 1

o o olo o o oo | 0
123456789 1011 123456789 1011 12345678 9 1011

Possible rows after 10 Possible rows after 5 Possible rows after 2

So there are (20107>=1)(3(-2-1))(42) primitive cycles using exactly columns 3,6, and 11

if the order of the columns is not counted. To count order we simply multiply by 2!.
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In general, let A be a strict partition of the cycle length, . So A = {Ay,... A\, }
where \; > Ay > --- )\, and Z?:l A; = L. Also, let ky, = n be the number of parts
in the partition. We find that the number of primitive 2-ball juggling patterns of

length ¢ is
kx
> (ka = D[+ 1)
AR i=1

where the sum is over all strict partitions A of £ and A, 41 is defined to be 0. Since
we are talking about cycles, the factor (ky — 1)! accounts for re-ordering the k)
chosen columns, else we would multiply by k,!. More information about primitive

juggling patters can be found in [3].

2.3 Adjacency Matrix Analysis

Consider a digraph with vertices labeled 1,...,k. The adjacency matriz A = (ai;)
is the k x k matrix, where
G — 1 if there is an edge from i to j
“ 771 0 if there is not an edge from 7 to j

Note an adjacency matrix is dependent on the way in which the vertices are labeled.

The 75 entry of A™ is the number of walks, of length n, from ¢ to 5. Thus we
can find the number of cycles, not necessarily primitive, by inspecting the diagonal
entries of the adjacency matrix. The number of cycles of length n is the trace of A™.

Example: Consider the following digraph:
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Its adjacency matrix is

1110
0001
A_0101
0 010

The trace of A is 1, and it is easy to see that there is only one cycle of length one,

passing through the vertex 1. Now consider

1233
, o101
A=lo111

0011

The trace of A® is 4; therefore there are 4 cycles of length 3. From the matrix, we
see there is actually one cycle of length 3 starting at each vertex.
If v is a vector in a k-dimensional vector space, then the ¢-th component of Av
is the sum of all possible edges leaving . We will use the following notation:
(Av); = > v (2.1)
]

In the previous example we have:

1110][n
0 001 v

Av= 010 1 vj = (v + vy + v3, Vg, Vg + Vg, V3)
0010 Vg

The vector v is an eigenvector with eigenvalue A if
D vj=Av; foralli.
i—j
We will now analyze the 2-ball juggling digraph using this tool. Consider the
sub-digraph, D,, = {(a,b) € N? | 0 < a,b < n — 1}. Note that we showed in
section 2.1.1 that every cycle in the 2-ball digraph of length at most n will actually
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occur in D,,. We label the points of D, left to right, top to bottom, to form its

adjacency matrix, A,. The first few examples are:

000100000
000010000

000001000

88(1)(1) 000000T100

Ay =[] Ay= A;=[0000000T10
00 1 000000001

Lo 00000O0T111
000111100

(1111000710 ]|

Our goal in this section is to find the number of (not necessarily primitive) 2-ball
juggling patterns of length n by calculating the trace of A.. The trace will be the
sum of the n-th powers of the eigenvalues of A, counting multiplicities. First, we

will calculate the characteristic polynomial of A,,.

Theorem 2.3.1. The characteristic polynomial of A,, is

2

Ful) = (1) (an = S 2,

Proof. Consider each vector v € C* as a labeling of the vertices of D,,, from left

to right, top to bottom. Using 2.1, an eigenvector for A, with eigenvalue A\ has the

form:
ap® a,® --- QAp—2@ ap—1®
Aage Aaj® .- NG, _9® A1 ®
: : : )
)\n—2a0. )\n—2a1. . )\n_2an—2. )\n_Za'n—l.
)\nflao. )\nflal. . )\nflan_2. )\nila'n—l.
where aqg,...,a, 1 are arbitrary. The labeling is not complicated since each ele-

vated state had only one edge leaving it, namely the state directly below. Applying
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formula 2.1 to the ground states produces the following necessary and sufficient

conditions on (x) so that it is an eigenvector with eigenvalue A:

AN ag) = N ag+ A" ar XN s+ 4+ A an (2.2)

AN ay) = A" lag + A" 2ag + A" 2ay + A Pag .+ A P,

)\()\n_ICLZ) = M7lap + A" 2ag + A" Pag + A Pay + A Pay .+ A e,
AN ta, 0) = N la, 3+ A" a4, g+ .+ Aag + Aap + Aay + Aag + ..+ Aa,
AN ta, 1) = Nla, o+ N 2a, 3+ .o+ AartaptarFay ..t a,

This yields n equations and n + 1 unknowns. Multiplying the i-th equation by
A and subtracting the (i — 1)-th equation, we get:

Nt la, =2\, for i=1,...,n—1.

Suppose A # 0. If ap = 0, it follows that the eigenvector is the zero vector.
Otherwise, we may assume ag = 1. It then follows that a; = (2/)\)" for i =
0,...,n—1.

Substituting into 2.2 we get:

A2/ = A2/ N0+ AR/ AR/ A2

or
D N i L L )
Thus 2" — 2™ 1 — 22" 2 — 22273 — . — 2" ! divides the characteristic polynomial,

To finish, we need to know the multiplicity of 0 as an eigenvalue for A,,. Consider

the size of the Jordan blocks of A,,. A good method for divining these sizes can be
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found in [4, p. 124]. Let A be an eigenvalue of A,,. The deficiency indices are defined

to be
6, = dim ker(A, — \I)¥.

Now let v, be the number of £ x k£ Jordan blocks for A. Then

Vv = 261 - 62
Ve = 26k — 6k+1 — 6k71 for 1 < k < n?
Upz = Op2 — O0p2_1.

Suppose A = 0 and let us now consider the case when n = 4. If we consider

labeled graphs, as done earlier in this proof, we get the following chain of generalized

eigenspaces:
0000 ap ap a4z ag
0000 4 00 0 0 a4
0000 0 0 0 0
0000 0 0 0 O
{2 a; =0}
51 = n—1
Vv = 0
bo b1 b2 b3 Chp Ci Co2 C3
apg ap a9 das Ap bo b1 b2 b3 Ap
00 0 0 ap ar ay a o
0 0 0 O 0 0 0 O

Zai:() Zal:o
{a0+sz:0} a0+zbi:0
a1+b0+Zci:0
09 2n — 2 03 = 3n—3
V9 = 0 vy = 0
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d[) dl d2 d3 €y €1 €9 €3
Chy Cp Co2 C3 do dl d2 d3
bo b1 bg b3 Chp Ci Co2 C3
ap a; ag as bo b1 b2 b3
Y a; =0 Ay, > b;=0
ao'l‘Zbi:O A bo'l‘ZCi:O
ar+bo+> ¢ =0 bi+co+) di=0
a2+b1+60+2di:0 b2+01+26i:0
54:471,—4 55:471,—4
vy=n—1=3 vs =0

To explain the last set of equations note that 2.1 requires

sz = Q
b()‘i‘ZCi = a

b1+60+2di = a9
b2+61+26i = das

Coupled with the equations

o o o O

a+bi+teo+ Y di =

we are forced to take ay = a; = as = a3 = 0. This gives necessary and sufficient
conditions on the last labeled diagram to be in the kernel of Aj. Since d; = ds, i.e.
ker A} = ker A3, we know that d; = & for all k& > 4. Therefore v, = 0 for all k > 5.
Therefore there are three 4 x 4 Jordan blocks with eigenvalue 0.

This same argument can be extended to the general case, to show there are n—1

Jordan blocks with eigenvalue 0 each of size n x n. Therefore 0 has a multiplicity
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of n? — n; so, x”2_”|fn(x). By comparing degrees we have shown up to sign that
fo = (@)™ (@™ — 20 2™ 1). We also know that the leading term of the
characteristic polynomial has sign (—1)" by looking at the determinant of A, — xI.

Hence, f, = (~1)"(e)"' ™" (" — Sig 2. .

Since the coefficients of the characteristic polynomial are symmetric functions in
the eigenvalues of A,,, we can use Newton’s identities to find the trace of AJ.
Let e; be the i-th elementary symmetric function of n variables zy,--- , z,, and

pr = >, oF. For example, if we let n = 3, then

¢ =1 p T1+ T+
1 = 1 2 3
€1 = X1+ T2+ a3 .2 2 2
- p2 = x|+ x5+ 23
€y = T1T9 +l‘1.’173 +l‘2.’173 . 3 3 3
p3 = T]+ x5+ T3
€3 — XT1T2T3.

We will denote ey = 1. Then Newton’s identities say:

o

-1
(—l)jpk_jej + (—l)kkek = 0,

<.
Il
o

for k=0,...,n.

Example 2.3.2. Let n = 2. The characteristic polynomial of A, is z*(z* — z — 2).
By letting A; be the roots to the polynomial we can rewrite

xZ—x—2:H(x—)\i):x2+elx—I—eg
im1

=e =1 e =—1, eg =-2

where here e, e1, e; denote the elementary symmetric functions in the roots of the
polynomial.

By Newton’s identities we know that

pie1 — 2ey
poeg —pre1 +2e0 =0 = py= o
0
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There are 5 cycles of length 2, and they are (0,0) — (0,0) — (0,0), (0,0) — (1,0) —
(0,0), (1,0) = (0,0) = (1,0), (1,0) = (1,1) — (1,0), (1,1) = (1,0) — (1,1). This

counts some cycles more then once.
Let us now consider the generic case.

Theorem 2.3.3. The number of 2-ball juggling patterns with period dividing n s
3 —2m

Proof. The proof goes by induction over n. Let g,(x) = [[,(# — A) where the
product is taken over the non-zero eigenvalues of the adjacency matrix, A, for the
2-ball juggling digraph. By 2.3.1, g, () = 2" — Y. 202"~ Let ¢; denote the
i-th elementary symmetric function in the roots of g,. So ¢; = (—1)"" 121, We
need to find the trace of A,, which is just the power sum, p,, in the roots of g,.

In the base case, n = 1, Newton’s identity tells us

peg+er=0=>p =e =1=3"—2%

Now assume p,_; = 3"t — 21, Consider Newton’s identity for n:

n—1

) pu_jej + (=1)"ne, = 0
=0

.

n—1

Dn = Z(_l)j_lpn—jej_ (=1)"ney

S .
_ =

[(—1)774 (3 — 2m) (=172 — (1) (1)t

I
(]

3 .
—_ =

— 2[371,732]71 o 27171] + n2nfl
j=1
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O

We have recovered, using different methods, a special case of the main theorem

in [2]:

Theorem 2.3.4. [2/ The number of period-n juggling patterns with fewer then b
balls is b™.

Therefore there are (b+1)™ —b" patterns of period n with b balls, counting rotations
distinctly. As indicated in [2] we can count the number of juggling patterns for 2-
balls with period exactly n, not counting rotations, by using Mobius inversion. Let
M (d) be the number of juggling patterns for two balls with period exactly d, not
counting rotations. Then
—2" =Y "dM(d
djn

and by the Mobius inversion formula,

where p is the Mobius function:

1 ifn=1
p(n) =< (=1)F if n is the product of k distinct primes
0 if n is divisible by the square of some prime.
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Appendix A

Depth-First Search

This program was written in [5].

--input a starting vertex and period length
--outputs all cycles containing the starting vertex
Define FindStartingAt (Vertex,Period)
Results:=[];
Marks:=NewList (Period,NewList (Period,0));
C:=Coordinates(Vertex)+[1,1];
Marks[C[1],C[2]]:=1;
Results :=[];
Path:=[Vertex];
Search(Period,Path,Marks,Results);
Return Results;
End;

--test each daughter to see if, when added, will yield a new cycle,
--given a fixed starting vertex
Define Search(Period,Var Path,Var Marks,Var Results)
L := Len(Path);
CurrentNode := Path[L];
D := Daughters(CurrentNode,Period) ;
Foreach X In D Do
If Marked(X,Marks) Then
If (Len(Path)<=Period) And (Path[1]=X) Then -- we have a cycle!
Append (Results,Path);
End;
Elsif Len(Path)<Period Then
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Mark (X,Marks) ;
Append (Path,X) ;
Search(Period,Path,Marks,Results);
End;

End; --Foreach

-- remove last node from path, unmark it, and return

Path := First(Path,Len(Path)-1);

UnMark (CurrentNode,Marks) ;

End;

--finds all edges leaving a vertex
Define Daughters(L,Period)
If L[1] = O Then
Return [Tail(L)];

Else
Result := [];
X := Tail(L);

For I:=1 To Len(X) Do
If X[I]=1 Then NextOne:=I; Break; End;
End;
For T := 1 To NextOne-1 Do
Y:=X;
Y[I]:=1;
Append (Result,Y);
End;
For I:= 1 To Period Do
Y:=X;
Y:=Concat (Y,NewList(I,0));
Y[Len(Y)]:=1;
Append (Result,Y);
End;
End;
Return Result;
End; -- Daughters

-— coordinates of a vertex
Define Coordinates(L)
I :=0;
While L[I+1]<>1 Do
I := I+1;
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End;
J = 0;
While L[I+2+J]<>1 Do
J = J+1;
End;
Return [I,J];
End; —-- Coordinates

-- find the vertex given the coordinates X=[X[1],X[2]]
Define CoordsToVerts(X)

Return Concat (NewList (X[2],0),[1],NewList(X[1],0),[1]);
End; —-- CoordsToVerts

-- get rid of mark on CurrentNode

Define UnMark(CurrentNode,Var Marks)
C:=Coordinates(CurrentNode)+[1,1];
Marks[C[1],C[2]]:=0;

End; -- UnMark

--sees if the vertex is used in the cycle already
Define Marked(X,Marks)
C:=Coordinates(X)+[1,1];
If Marks[C[1],C[2]1]1=0 Then
Return False;

Else
Return True;
End;
End; -- Marked

--marks the vertex, as so it is only used once

Define Mark(X,Var Marks)
C:=Coordinates(X)+[1,1];
Marks[C[1],C[2]]:=1;

End; -- Mark

--print cycles
Define PPrint (L)
Foreach X In L Do
PrintLn(X);
End;
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End; -- PPrint

-—finds all cycles of a given length N, from all possible starting
--vertexes without repeats.
Define Test(N)
D:=Daughters([1,1],N);
TestedSoFar:=[];
Results:=[];
Foreach X In D Do
L:=FindStartingAt (X,N);
Foreach Y In L Do
Add:=True;
Foreach Z In TestedSoFar Do
If Z IsIn Y Then Add:=False; Break; End;

End;
If Add Then Append(Results,Y); End;
End;
Append (TestedSoFar,X) ;
End;
Return SortedBy(Results,Function(’ByLength’));
End; —-- Test

ByLength(X,Y) :=Len(X)<Len(Y);
--The following commands are used for the dot notation.

—-- number of columns in a cycle
Define NoOfColumns(C)
T:=0;
Foreach X In C Do
If X[1]=1 Then T:=T+1; End;

End;
Return T;
End; —- NoOfColumns

-—Input: a set of cycles S and a vertex V
—--Output: number of cycles from S passing through V
Define NoPassingThru(S,V)
Return Len([C|C In S And V IsIn C]);
End;
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-- L: set of cycles, all of the same length

Define NoThruEachVertex (L)
I:=Len(L[1]);

T:=[[NoPassingThru(L,CoordsToVerts([I,J]1))|I In 0..(I-1)]1|J In Reversed(0..(I-1))];
Return T;

End;

--converts vertex notation to dot notation
Define NewCycleNotation(C)

Result:=’";
For I :=1 To Len(C) Do
X:=C[I];
If X[1]=1 Then —- this is a column base, record number

Y:= Comp(Coordinates(X),2);
Result:=Result+Sprint(Y);
-- now check if the next throw is to the top

If I=Len(C) Then J:=1 Else J:=I+1 End; -- get next index

Z:=Comp (Coordinates(C[J]),1);

If Z=Y Then Result:=Result+’~’; Else Result:=Result+’_’; End;
End;

End;
Return Result;
End;
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