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Abstra
tThis thesis studies juggling patterns. Through the use of dire
ted graphs andother formal systems we 
ount the number of 2-ball juggling 
y
les. A new resultappears in 2.2.3, where the number of primitive 2-ball juggling patterns are 
ounted.



Chapter 1Basi
 graph theoryIntrodu
tion. This 
hapter will give the basi
 notation used for the rest of thisthesis.1.1 NotationA graph is a ordered triple G = (V;E;�) where V and E are sets and � is a fun
tionfrom E into the 
olle
tion of unordered, not ne
essarily distin
t pairs of elements ofV . Elements of V are 
alled verti
es of G and elements of E are 
alled edges of G.If e 2 E and �(e) = fv; v0g, we say that e is an edge joining verti
es v and v0. Ifv = v0, then e is 
alled a loop. We normally identify elements of E with their imagesunder �.Example: LetG = (V;E;�) where V = fa; b; 
; dg; E = ffa; bg; fb; 
g; f
; dg; fd; agg:
b c

daA digraph is an ordered triple D = (V;E;�) where V and E are sets and � isa fun
tion from E into the 
olle
tion of ordered, not ne
essarily distin
t, pairs ofelements of V .



2 CHAPTER 1. BASIC GRAPH THEORYExample: Let V = fa; b; 
g, E = f(b; a); (a; b); (a; 
)g, and D = (V;E), then Dlooks like:
a b

c

1.2 Walks Paths and Cy
lesA walk W in a dire
ted graph is a �nite, ordered list of edges (e1; e2; :::; ek) wherethe endpoint of ei is the initial point of ei+1 for all i, where the endpoint of ei isde�ned as the se
ond element of the edge ei and the initial point is the �rst elementof the edge ei.A path is a walk su
h that ea
h vertex in the walk is only visited on
e, i.e. ea
hvertex in the walk is distin
t. A 
y
le is a walk with the property that the �rst andthe last verti
es are the same. A primitive 
y
le is a 
y
le with all but the �rst andthe last verti
es distin
t. The length, `(W ), of a walk W on a graph is the numberof edges used in that walk.De�nition: If there is a walk 
onne
ting vertex u to vertex v, then the distan
ebetween u and v is d(u; v) = minW `(W ), taking the minimum over all walks Wfrom u to v. We will de�ne d(u; u) = 0. Note d(u; v) 6= d(v; u) in general.Theorem 1.2.1. The Triangle Inequality: Let u,v,w be verti
es of a graph G.Let there exist walks from u to v, u to w, and w to v. Thend(u; v) � d(u; w) + d(w; v):Proof. Let Q;P;R be walks of minimal length from u to v, u to w, and w to v,respe
tively. We 
an 
on
atenate the walks P and R, whi
h yields a walk from u tov, by way of w. This walk, 
all it PR, is not ne
essarily the shortest walk from u



1.2. WALKS PATHS AND CYCLES 3to v. Therefore,d(u; v) = `(Q) � `(PR) = `(P ) + `(R) = d(u; w) + d(w; v):
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Chapter 2Juggling Digraphs
Introdu
tion. One appli
ation of digraphs is modeling juggling patterns. It ispossible to en
ode some of the important information of a juggling pattern in adigraph. The main question I will answer is: how many 2-ball patterns are thereof a given length? Analyzing adja
en
y matri
es of the 2-ball juggling digraph, were
over the known result that there are 3n � 2n patterns having period dividing n.By analyzing the digraph in a di�erent way, we get a new result: a formula for thenumber of primitive 2-ball patterns 
f. De�nition 2.1.2.2.1 The juggling digraph of 2-ballsThe system to des
ribe 2-ball juggling patterns is relatively simple. Let ea
h jugglingstate be an element of F12 = fx1x2x3 : : : jxi 2 f0; 1gg su
h that the number of 1s inthe string is 2. Ea
h 0 in a juggling state signi�es the amount of time it will takethe 1 to the right of that 0 to land. Out of 
onvenien
e we will, for example, writethe string 00010010000 : : : as 0001001, omitting the trailing 0s. Given this string,we know that one ball will land in 4 se
onds, and the other in 7 se
onds.It is possible to 
reate a digraph that uses these juggling states as its verti
es.The verti
es are in the latti
eN2�0 = f(i; j) 2 N�N j i; j � 0g. There is a bije
tion



6 CHAPTER 2. JUGGLING DIGRAPHSbetween the juggling states and ordered pairs (i; j) in the latti
e where i denotesthe number of 0s between the �rst 1 and the se
ond 1, and j denotes the numberof 0s to the left of the �rst 1. For example the juggling state b = 00001000001
orresponds to the vertex (5; 4), and the vertex (3; 7) 
orresponds to the jugglingstate 000000010001.Given this en
oding there are two di�erent sorts of juggling states that need tobe de�ned. A juggling state b is said to be in the ground state if the leading digit isa 1, and in an elevated state if the leading digit is a 0. The edges in the digraph 
anbe des
ribed as follows: if the balls are in an elevated state (a; b), i.e. where b 6= 0,the only state that 
an be moved to is (a; b � 1). If the balls are at ground state,i.e. the state (a; 0), the ball 
an be thrown to any state of the form (x; a) for any xor to any state (x; a� 1�x) for any 0 � x � a� 1. The juggling state 00001000001
an only move to 0001000001, where as the juggling state 1001 
an move to 101,011, 0011, or 001n1 where n is a string of 0s.An intuitive way to think about the edges is to look at the following diagram.The verti
es on the dashed line are all the possible verti
es that 
ould be rea
hedfrom the state (5; 0).

The only edge from an elevated state (a; b) is to the state (a; b � 1), appearingdire
tly below (a; b) in the digraph.De�nition 2.1.1. A 2-ball juggling pattern is a 
y
le in the 2-ball juggling digraph.



2.1. THE JUGGLING DIGRAPH OF 2-BALLS 7De�nition 2.1.2. A juggling pattern is primitive if it 
ontains no sub-
y
les.2.1.1 Distan
esFor ea
h state (x; y) 2 N2 in the digraph, the distan
e diagram B(x; y) = (aij) isthe in�nite array where aij = d((x; y); (i; j)) for all i; j 2 N. For example:
B(4; 3) =

0BBBBBBBBBBB�
... ... ... ... ... ... ... :::9 9 9 9 9 9 9 � � �9 9 9 9 9 9 9 � � �4 4 4 4 4 4 4 � � �4 5 5 5 0 5 5 � � �5 4 6 6 1 6 6 � � �6 5 4 7 2 7 7 � � �7 6 5 4 3 8 8 � � �

1CCCCCCCCCCCA B(3; 0) = 0BBBBBBBBB�
... ... ... ... ... :::5 5 5 5 5 � � �5 5 5 5 5 � � �1 1 1 1 1 � � �1 2 2 2 2 � � �2 1 3 3 3 � � �3 2 1 0 4 � � �

1CCCCCCCCCAIn general the distan
e diagram B(k; 0) looks like:0BBBBBBBBBBBBBBB�
... ... ... ... ... ... ... :::k + 1 � � � k + 1 k + 1 k + 1 k + 1 k + 1 k + 1 � � �k + 1 k + 1 k + 1 k + 1 k + 1 k + 1 k + 1 � � �1 1 1 1 1 1 1 � � �1 2 2 2 2 2 2 � � �2 3 3 3 3 3 3 � � �... ... ... ... ... ... ... � � �k � 2 1 k � 1 k � 1 k � 1 k � 1 k � 1 � � �k � 1 2 1 k k k k � � �k � � � 3 2 1 0 k + 1 k + 1 � � �

1CCCCCCCCCCCCCCCAFrom these examples we 
an see the following:d((i; 0); (j; 0)) = � i + 1 if i < j;i� j if i � jTheorem 2.1.3. Let v be a 
y
le, and let (i; j) be a state o

urring in v. Then iand j are stri
tly less then the length of the 
y
le.



8 CHAPTER 2. JUGGLING DIGRAPHSProof. Let v = v1v2 � � � v`(v) where ea
h vi is a juggling state, d(vi; vi+1) = 1, and`(v) is the length of v. Let (i; 0) be the left-most (smallest �rst 
oordinate) groundstate o

urring in v, and (i0; 0) be the right-most. By the triangle inequality:`(v) = `(v)Xj=1 d(vj; vj+1) � d((i; 0); (i0; 0)) + d((i0; 0); (i; 0)) = (i + 1) + (i0 � i) = 1 + i0Therefore (i0; 0), the vertex farthest to the right, has �rst 
oordinate stri
tly lessthen `(v). Thus the �rst 
oordinate of any state in v is stri
tly less than `(v).Further, as just stated, if (i; j) is an elevated state appearing in v, then (i; j)!(i; j � 1)! � � � ! (i; 0) appears in v. Thus j + 1 � `(v): The result follows.Remark 2.1.4. We now know that when sear
hing for all 
y
les of length ` we needonly to look at a `� ` latti
e of points.2.1.2 DataTo �nd all the primitive juggling 
y
les of a given length, we wrote a program whi
hdid a standard depth-�rst sear
h. 1 We found the following data:
y
le length 1 2 3 4 5 6 7 8 9# of primitive 
y
les 1 2 5 10 23 48 105 216 467Another useful way to look at these data is to see the number of 
y
les that usea given number of 
olumns in the juggling digraph. The following table displaysexa
tly that.1See the �rst appendix for 
ode



2.1. THE JUGGLING DIGRAPH OF 2-BALLS 9
y
le length Number of 
y
les using X 
olumns1 2 3 4 5 6 7 8 9  X1 12 1 13 1 3 14 1 4 4 15 1 6 10 5 16 1 7 18 15 6 17 1 9 29 37 21 7 18 1 10 40 70 58 28 8 19 1 12 58 128 136 86 36 9 1The next set of data shows the number of 
y
les passing through ea
h point ofthe digraph. More formally, the (i; j) entry of ea
h `� ` matrix shows the numberof primitive 
y
les of length ` 
ontaining the juggling state (i; j).
1 0 11 2 0 0 12 0 23 3 4 0 0 0 12 0 0 24 2 0 46 5 6 8 0 0 0 0 12 0 0 0 24 4 0 0 49 7 6 0 814 13 13 12 160 0 0 0 0 12 0 0 0 0 24 4 0 0 0 410 10 4 0 0 820 15 11 12 0 1630 28 25 26 24 32

0 0 0 0 0 0 12 0 0 0 0 0 24 4 0 0 0 0 410 10 8 0 0 0 822 20 14 12 0 0 1644 33 29 28 24 0 3266 62 57 59 52 48 640 0 0 0 0 0 0 12 0 0 0 0 0 0 24 4 0 0 0 0 0 410 10 8 0 0 0 0 824 20 20 8 0 0 0 1648 43 33 22 24 0 0 3294 68 63 49 56 48 0 64138 128 120 111 118 104 96 128



10 CHAPTER 2. JUGGLING DIGRAPHS0 0 0 0 0 0 0 0 12 0 0 0 0 0 0 0 24 4 0 0 0 0 0 0 410 10 8 0 0 0 0 0 824 20 20 16 0 0 0 0 1652 46 46 28 24 0 0 0 32106 100 71 61 56 48 0 0 64204 154 141 129 116 112 96 0 128300 282 266 251 249 236 208 192 2562.2 The dot gameThere is yet another way to think about 2-ball juggling 
y
les. Given any juggling
y
le, that 
y
le 
an be written as a string of integers and dots, where the numbers
orrespond to 
olumns of our digraph, and the dots tell how the balls move. Moreformally: any juggling 
y
le 
an be written as a1b1a2b2 : : : anbn where ai 2 N andbi 2 f�;� g. We will 
all � an up-dot, and � a down-dot. The number ai in this newnotation stands for the ground state (ai; 0) in the digraph. The next vertex in the
y
le will o

ur in the 
olumn 
ontaining (ai+1; 0). Note that there are two ways towalk| we'll often say throw| from (ai; 0) dire
tly to a vertex of the form (ai+1; x);namely there is a throw to (ai+1; ai�ai+1� 1) and a throw to (ai+1; ai). The formerwe denote with a down-dot, ai�ai+1, and the latter with an up-dot, a�i ai+1. Notethat when bi is a down-dot, then ai > ai+1. This also means that if ai = 0 then biis an up-dot. The following pi
tures give a better des
ription of this system:



2.2. THE DOT GAME 113�2 looks like:
1

2

3

4

5Where the dots with the white 
enters show the walk through the digraph and thenumbers are the order of the walk.6�2 looks like:
1

2

3

4

5So the 
y
le 0�6�4�2� would look like:
2

3

4

5

6

7

8

9

10

11

1Note. The 
y
le represented by the string a1b1 : : : anbn is primitive if and only ifea
h ai is distin
t.



12 CHAPTER 2. JUGGLING DIGRAPHS2.2.1 LengthGiven a 
y
le in the dot notation, there is a simple algorithm to �nd its length.Namely, if ai is followed by an up-dot, then that 
olumn adds ai + 1 to the total
y
le length. If ai is followed by a down-dot, then it adds ai�ai+1 to the total 
y
lelength. So `(0�6�4�2�) = (0 + 1) + (6� 4) + (4 + 1) + (2 + 1) = 11.2.2.2 SubstitutionsHaving represented a juggling 
y
le as a �nite string, we 
an 
reate more juggling
y
les via the following three string substitutions:This rule adds nothing to the 
y
le's length:(1.0) a� $ a�b� for any b < aThese rules add one to the 
y
le's length:(1.1) �a� ! �(a+ 1)�(1.2) a�0� ! a�0�Example: Starting from 0�6�2�, rule 1.0 produ
es the 
y
les 0�6�4�2� and 0�6�2�2�without 
hanging length; the latter 
y
le is not primitive.Theorem 2.2.1. Starting with the 
y
le 0�, these three rules produ
e all juggling
y
les. If we only substitute distin
t 
olumns then these three rules produ
e allprimitive juggling 
y
les.Proof. We will prove this statement by indu
tion over the 
y
le length `.Base 
ase: ` = 1. There is one 
y
le with 
y
le length one, that is 0�.Indu
tion: Let 
 = a1b1 : : : anbn be a 
y
le of length ` > 1. Sin
e 
 is a �nite 
y
le,there will be a smallest number among the ai, i.e. a left-most 
olumn. This 
olumnmust be followed by an up-dot. Therefore there is at least one up-dot in 
. Notethat if the smallest 
olumn is not distin
t this still holds.



2.2. THE DOT GAME 13By repetitively applying rule 1.0, we may assume that all dots are up. We maythen apply rule 1.1 in reverse, yielding a new 
y
le 
0 of length `� 1. By indu
tion,
0 is derived from 0� from the three rules, and 
 follows from 
0 by rule 1.1. If 
 isprimitive, 
0 
an be 
hosen to be primitive too ex
ept, possibly, in the 
ase where0� is in 
. A typi
al problem 
ase would be 
 = 0�1�2�. However, in that 
ase, wemay apply rule 1.2 in reverse to yield a new primitive 
y
le 
0 of length ` � 1, andthe result follows similarly by indu
tion.2.2.3 CountingIt is possible to �nd all 
y
les of a given length ` that have only up-dots whenexpressed in dot notation, and then by repetitively applying rule 1.0 we produ
e all
y
les of length `. Consider the following pi
ture representation of 10�5�2�. Thesquares 
ontaining an X denotes 
olumns that are followed by an up-dot. Thesquares 
ontaining O denote the possible 
olumns that 
an be added to the 
y
leby rule 1.0.

X

X

X

O

O

O

O

O

O

O

O

O

O

O

O

O

O

1 2 3 4 5 6 7 8 9 10 11

10

9

8

7

6

5

4

3

2

1

0



14 CHAPTER 2. JUGGLING DIGRAPHSHen
e, adding 8 and 4 in 
olumn numbered 11 in the diagram and 3 in 
olumn 6represents the pattern 10�8�4�5�3�2�. So adding rows numbered 8 and 4 in 
olumn11 adds 
olumns 8 and 4 to our juggling pattern, written in dot-notation. Notethat the addition of new 
olumns by rule 1.0 does not 
hange the 
y
le length. Bynumbering the 
olumns 1{11 instead of 0{10, we 
an �nd the length by just addingthe 
olumn numbers:`(10�5�2�) = 11 + 6 + 3 = 20 = `(10�8�4�5�3�2�):We now want to 
ount the number of primitive patterns that 
an be formed from10�5�2� by applying rule 1.0. First 
onsider the possible added 
olumns after 10�that are numbered greater than 5: there are 2(10�5�1) possible 
ombinations. Now
onsider the possible 
olumns added numbered below 5 and above 2: there are3(5�2�1) possible 
ombinations. This is be
ause, the added rows would need to be in
olumns 6 or 11. For ea
h added row we have three 
hoi
es: either 
hoose 
olumn6, 
hoose 
olumn 11 or 
hoose neither. Now 
onsider the possible rows added below2; there are 42. The following pi
ture might be useful:
X

X

X

O

O

O

O

O

O

O

O

O

O

O

O

O

O

1 2 3 4 5 6 7 8 9 10 11

10

9

8

7

6

5

4

3

2

1

0

X

X

X

O

O

O

O

O

O

O

O

O

O

O

O

O

O

1 2 3 4 5 6 7 8 9 10 11

9

8

7

6

5

4

3

2

1

0

10

X

X

X

O

O

O

O

O

O

O

O

O

O

O

O

O

O

1 2 3 4 5 6 7 8 9 10 11

10

9

8

7

6

5

4

3

2

1

0

Possible rows after 10 Possible rows after 5 Possible rows after 2So there are (2(10�5�1))(3(5�2�1))(42) primitive 
y
les using exa
tly 
olumns 3; 6; and 11if the order of the 
olumns is not 
ounted. To 
ount order we simply multiply by 2!.



2.3. ADJACENCY MATRIX ANALYSIS 15In general, let � be a stri
t partition of the 
y
le length, `. So � = f�1; : : : �ngwhere �1 > �2 > � � ��n and Pni=1 �i = `. Also, let k� = n be the number of partsin the partition. We �nd that the number of primitive 2-ball juggling patterns oflength ` is X�`` (k� � 1)! k�Yi=1(i+ 1)�i��i+1�1where the sum is over all stri
t partitions � of ` and �k�+1 is de�ned to be 0. Sin
ewe are talking about 
y
les, the fa
tor (k� � 1)! a

ounts for re-ordering the k�
hosen 
olumns, else we would multiply by k�!. More information about primitivejuggling patters 
an be found in [3℄.2.3 Adja
en
y Matrix AnalysisConsider a digraph with verti
es labeled 1; : : : ; k. The adja
en
y matrix A = (aij)is the k � k matrix, whereaij = � 1 if there is an edge from i to j0 if there is not an edge from i to jNote an adja
en
y matrix is dependent on the way in whi
h the verti
es are labeled.The ij entry of An is the number of walks, of length n, from i to j. Thus we
an �nd the number of 
y
les, not ne
essarily primitive, by inspe
ting the diagonalentries of the adja
en
y matrix. The number of 
y
les of length n is the tra
e of An.Example: Consider the following digraph:
3

4

2

1



16 CHAPTER 2. JUGGLING DIGRAPHSIts adja
en
y matrix is A = 2664 1 1 1 00 0 0 10 1 0 10 0 1 0 3775 :The tra
e of A is 1, and it is easy to see that there is only one 
y
le of length one,passing through the vertex 1. Now 
onsiderA3 = 2664 1 2 3 30 1 0 10 1 1 10 0 1 1 3775The tra
e of A3 is 4; therefore there are 4 
y
les of length 3. From the matrix, wesee there is a
tually one 
y
le of length 3 starting at ea
h vertex.If v is a ve
tor in a k-dimensional ve
tor spa
e, then the i-th 
omponent of Avis the sum of all possible edges leaving i. We will use the following notation:(Av)i = Xi!j vj (2.1)In the previous example we have:Av = 2664 1 1 1 00 0 0 10 1 0 10 0 1 0 37752664 v1v2v3v4 3775 = (v1 + v2 + v3; v4; v2 + v4; v3)The ve
tor v is an eigenve
tor with eigenvalue � ifXi!j vj = �vi for all i:We will now analyze the 2-ball juggling digraph using this tool. Consider thesub-digraph, Dn = f(a; b) 2 N2 j 0 � a; b � n � 1g. Note that we showed inse
tion 2.1.1 that every 
y
le in the 2-ball digraph of length at most n will a
tually



2.3. ADJACENCY MATRIX ANALYSIS 17o

ur in Dn. We label the points of Dn left to right, top to bottom, to form itsadja
en
y matrix, An. The �rst few examples are:
A1 = [1℄ A2 = 2664 0 0 1 00 0 0 10 0 1 11 1 1 0 3775 A3 =

26666666666664
0 0 0 1 0 0 0 0 00 0 0 0 1 0 0 0 00 0 0 0 0 1 0 0 00 0 0 0 0 0 1 0 00 0 0 0 0 0 0 1 00 0 0 0 0 0 0 0 10 0 0 0 0 0 1 1 10 0 0 1 1 1 1 0 01 1 1 1 0 0 0 1 0

37777777777775Our goal in this se
tion is to �nd the number of (not ne
essarily primitive) 2-balljuggling patterns of length n by 
al
ulating the tra
e of Ann. The tra
e will be thesum of the n-th powers of the eigenvalues of A, 
ounting multipli
ities. First, wewill 
al
ulate the 
hara
teristi
 polynomial of An.Theorem 2.3.1. The 
hara
teristi
 polynomial of An isfn(x) = (�1)nxn2�n(xn �Pn�1i=0 2ixn�i�1):Proof. Consider ea
h ve
tor v 2 Cn2 as a labeling of the verti
es of Dn, from leftto right, top to bottom. Using 2.1, an eigenve
tor for An with eigenvalue � has theform: a0� a1� � � � an�2� an�1��a0� �a1� � � � �an�2� �an�1�... ... ... ...�n�2a0� �n�2a1� � � � �n�2an�2� �n�2an�1��n�1a0� �n�1a1� � � � �n�1an�2� �n�1an�1� (?)where a0; : : : ; an�1 are arbitrary. The labeling is not 
ompli
ated sin
e ea
h ele-vated state had only one edge leaving it, namely the state dire
tly below. Applying



18 CHAPTER 2. JUGGLING DIGRAPHSformula 2.1 to the ground states produ
es the following ne
essary and suÆ
ient
onditions on (?) so that it is an eigenve
tor with eigenvalue �:�(�n�1a0) = �n�1a0 + �n�1a1 + �n�1a2 + : : :+ �n�1an�1 (2.2)�(�n�1a1) = �n�1a0 + �n�2a0 + �n�2a1 + �n�2a2 + : : :+ �n�2an�1�(�n�1a2) = �n�1a1 + �n�2a0 + �n�3a0 + �n�3a1 + �n�3a2 + : : :+ �n�3an�1...�(�n�1an�2) = �n�1an�3 + �n�2an�4 + : : :+ �2a1 + �a0 + �a1 + �a2 + : : :+ �an�1�(�n�1an�1) = �n�1an�2 + �n�2an�3 + : : :+ �a1 + a0 + a1 + a2 + : : :+ an�1This yields n equations and n + 1 unknowns. Multiplying the i-th equation by� and subtra
ting the (i� 1)-th equation, we get:�n+1ai = 2�nai�1 for i = 1; : : : ; n� 1:Suppose � 6= 0. If a0 = 0, it follows that the eigenve
tor is the zero ve
tor.Otherwise, we may assume a0 = 1. It then follows that ai = (2=�)i for i =0; : : : ; n� 1.Substituting into 2.2 we get:�n(2=�)0 = �n�1(2=�)0 + �n�1(2=�)1 + �n�1(2=�)2 + : : :+ �n�1(2=�)n�1or �n � �n�1 � 2�n�2 � 22�n�3 � : : :� 2n�1 = 0:Thus xn� xn�1� 2xn�2� 22xn�3� : : :� 2n�1 divides the 
hara
teristi
 polynomial,fn(x).To �nish, we need to know the multipli
ity of 0 as an eigenvalue for An. Considerthe size of the Jordan blo
ks of An. A good method for divining these sizes 
an be



2.3. ADJACENCY MATRIX ANALYSIS 19found in [4, p. 124℄. Let � be an eigenvalue of An. The de�
ien
y indi
es are de�nedto be Æk = dim ker(An � �I)k:Now let �k be the number of k � k Jordan blo
ks for �. Then�1 = 2Æ1 � Æ2�k = 2Æk � Æk+1 � Æk�1 for 1 < k < n2�n2 = Æn2 � Æn2�1:Suppose � = 0 and let us now 
onsider the 
ase when n = 4. If we 
onsiderlabeled graphs, as done earlier in this proof, we get the following 
hain of generalizedeigenspa
es: 0 0 0 00 0 0 00 0 0 00 0 0 0 An � a0 a1 a2 a30 0 0 00 0 0 00 0 0 0 An �fP ai = 0gÆ1 = n� 1�1 = 0
b0 b1 b2 b3a0 a1 a2 a30 0 0 00 0 0 0 An � 
0 
1 
2 
3b0 b1 b2 b3a0 a1 a2 a30 0 0 0 An �� P ai = 0a0 +P bi = 0 � 8<: P ai = 0a0 +P bi = 0a1 + b0 +P 
i = 0 9=;Æ2 = 2n� 2�2 = 0 Æ3 = 3n� 3�3 = 0



20 CHAPTER 2. JUGGLING DIGRAPHSd0 d1 d2 d3
0 
1 
2 
3b0 b1 b2 b3a0 a1 a2 a38>><>>: P ai = 0a0 +P bi = 0a1 + b0 +P 
i = 0a2 + b1 + 
0 +P di = 0 9>>=>>;Æ4 = 4n� 4�4 = n� 1 = 3
An �

e0 e1 e2 e3d0 d1 d2 d3
0 
1 
2 
3b0 b1 b2 b38>><>>: P bi = 0b0 +P 
i = 0b1 + 
0 +P di = 0b2 + 
1 +P ei = 0 9>>=>>;Æ5 = 4n� 4�5 = 0To explain the last set of equations note that 2.1 requiresX bi = a0b0 +X 
i = a1b1 + 
0 +X di = a2b2 + 
1 +X ei = a3Coupled with the equations X ai = 0a0 +X bi = 0a1 + b0 +X 
i = 0a2 + b1 + 
0 +X di = 0we are for
ed to take a0 = a1 = a2 = a3 = 0. This gives ne
essary and suÆ
ient
onditions on the last labeled diagram to be in the kernel of A54. Sin
e Æ4 = Æ5, i.e.kerA44 = kerA54, we know that Æ4 = Æk for all k � 4. Therefore �n = 0 for all k � 5.Therefore there are three 4� 4 Jordan blo
ks with eigenvalue 0.This same argument 
an be extended to the general 
ase, to show there are n�1Jordan blo
ks with eigenvalue 0 ea
h of size n � n. Therefore 0 has a multipli
ity



2.3. ADJACENCY MATRIX ANALYSIS 21of n2 � n; so, xn2�njfn(x). By 
omparing degrees we have shown up to sign thatfn = (x)n2�n(xn � Pn�1i=0 2ixn�i�1). We also know that the leading term of the
hara
teristi
 polynomial has sign (�1)n by looking at the determinant of An � xI.Hen
e, fn = (�1)n(x)n2�n(xn �Pn�1i=0 2ixn�i�1):Sin
e the 
oeÆ
ients of the 
hara
teristi
 polynomial are symmetri
 fun
tions inthe eigenvalues of An, we 
an use Newton's identities to �nd the tra
e of Ann.Let ei be the i-th elementary symmetri
 fun
tion of n variables x1; � � � ; xn, andpk =Pni=1 xki . For example, if we let n = 3, thene0 = 1e1 = x1 + x2 + x3e2 = x1x2 + x1x3 + x2x3e3 = x1x2x3: p1 = x1 + x2 + x3p2 = x21 + x22 + x23p3 = x31 + x32 + x33We will denote e0 = 1. Then Newton's identities say:k�1Xj=0(�1)jpk�jej + (�1)kkek = 0;for k = 0; : : : ; n:Example 2.3.2. Let n = 2. The 
hara
teristi
 polynomial of A2 is x2(x2 � x� 2).By letting �i be the roots to the polynomial we 
an rewritex2 � x� 2 = nYi=1(x� �i) = x2 + e1x + e2) e0 = 1; e1 = �1; e2 = �2where here e0; e1; e2 denote the elementary symmetri
 fun
tions in the roots of thepolynomial.By Newton's identities we know thatp2e0 � p1e1 + 2e2 = 0 ) p2 = p1e1 � 2e2e0 ) p2 = 5



22 CHAPTER 2. JUGGLING DIGRAPHSThere are 5 
y
les of length 2, and they are (0; 0)! (0; 0)! (0; 0), (0; 0)! (1; 0)!(0; 0), (1; 0)! (0; 0)! (1; 0), (1; 0)! (1; 1)! (1; 0), (1; 1)! (1; 0)! (1; 1). This
ounts some 
y
les more then on
e.Let us now 
onsider the generi
 
ase.Theorem 2.3.3. The number of 2-ball juggling patterns with period dividing n is3n � 2n.Proof. The proof goes by indu
tion over n. Let gn(x) = Q�(x � �) where theprodu
t is taken over the non-zero eigenvalues of the adja
en
y matrix, An, for the2-ball juggling digraph. By 2.3.1, gn(x) = xn �Pn�1i=0 2ixn�i�1. Let ei denote thei-th elementary symmetri
 fun
tion in the roots of gn. So ei = (�1)i�12i�1. Weneed to �nd the tra
e of An, whi
h is just the power sum, pn, in the roots of gn.In the base 
ase, n = 1, Newton's identity tells usp1e0 + e1 = 0) p1 = e1 = 1 = 31 � 21:Now assume pn�1 = 3n�1 � 2n�1: Consider Newton's identity for n:n�1Xj=0(�1)jpn�jej + (�1)nnen = 0
pn = n�1Xj=1(�1)j�1pn�jej � (�1)nnen= n�1Xj=1 [(�1)j�1(3n�j � 2n�j)(�1)j�12j�1℄� (�1)nn(�1)n�12n�1= n�1Xj=1 [3n�j2j�1 � 2n�1℄ + n2n�1



2.3. ADJACENCY MATRIX ANALYSIS 23= 3n2 "n�1Xj=1 �23�j#� n�1Xj=1 2n�1 + n2n�1= 3n2 �23 �1� (23)n�11� 23 ��� (n� 1)2n�1 + n2n�1= 3n � 3 � 2n�1 + 2n�1= 3n � 2n:
We have re
overed, using di�erent methods, a spe
ial 
ase of the main theoremin [2℄:Theorem 2.3.4. [2℄ The number of period-n juggling patterns with fewer then bballs is bn.Therefore there are (b+1)n�bn patterns of period n with b balls, 
ounting rotationsdistin
tly. As indi
ated in [2℄ we 
an 
ount the number of juggling patterns for 2-balls with period exa
tly n, not 
ounting rotations, by using M�obius inversion. LetM(d) be the number of juggling patterns for two balls with period exa
tly d, not
ounting rotations. Then 3n � 2n =Xdjn dM(d)and by the M�obius inversion formula,M(n) = 1nXdjn ��nd� (3d � 2d);where � is the M�obius fun
tion:�(n) = 8<: 1 if n = 1(�1)k if n is the produ
t of k distin
t primes0 if n is divisible by the square of some prime.
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Appendix ADepth-First Sear
hThis program was written in [5℄.--input a starting vertex and period length--outputs all 
y
les 
ontaining the starting vertexDefine FindStartingAt(Vertex,Period)Results:=[℄;Marks:=NewList(Period,NewList(Period,0));C:=Coordinates(Vertex)+[1,1℄;Marks[C[1℄,C[2℄℄:=1;Results :=[℄;Path:=[Vertex℄;Sear
h(Period,Path,Marks,Results);Return Results;End;--test ea
h daughter to see if, when added, will yield a new 
y
le,--given a fixed starting vertexDefine Sear
h(Period,Var Path,Var Marks,Var Results)L := Len(Path);CurrentNode := Path[L℄;D := Daughters(CurrentNode,Period);Forea
h X In D DoIf Marked(X,Marks) ThenIf (Len(Path)<=Period) And (Path[1℄=X) Then -- we have a 
y
le!Append(Results,Path);End;Elsif Len(Path)<Period Then



26 APPENDIX A. DEPTH-FIRST SEARCHMark(X,Marks);Append(Path,X);Sear
h(Period,Path,Marks,Results);End;End; --Forea
h-- remove last node from path, unmark it, and returnPath := First(Path,Len(Path)-1);UnMark(CurrentNode,Marks);End;--finds all edges leaving a vertexDefine Daughters(L,Period)If L[1℄ = 0 ThenReturn [Tail(L)℄;ElseResult := [℄;X := Tail(L);For I:=1 To Len(X) DoIf X[I℄=1 Then NextOne:=I; Break; End;End;For I := 1 To NextOne-1 DoY:=X;Y[I℄:=1;Append(Result,Y);End;For I:= 1 To Period DoY:=X;Y:=Con
at(Y,NewList(I,0));Y[Len(Y)℄:=1;Append(Result,Y);End;End;Return Result;End; -- Daughters-- 
oordinates of a vertexDefine Coordinates(L)I := 0;While L[I+1℄<>1 DoI := I+1;



27End;J := 0;While L[I+2+J℄<>1 DoJ := J+1;End;Return [I,J℄;End; -- Coordinates-- find the vertex given the 
oordinates X=[X[1℄,X[2℄℄Define CoordsToVerts(X)Return Con
at(NewList(X[2℄,0),[1℄,NewList(X[1℄,0),[1℄);End; -- CoordsToVerts-- get rid of mark on CurrentNodeDefine UnMark(CurrentNode,Var Marks)C:=Coordinates(CurrentNode)+[1,1℄;Marks[C[1℄,C[2℄℄:=0;End; -- UnMark--sees if the vertex is used in the 
y
le alreadyDefine Marked(X,Marks)C:=Coordinates(X)+[1,1℄;If Marks[C[1℄,C[2℄℄=0 ThenReturn False;ElseReturn True;End;End; -- Marked--marks the vertex, as so it is only used on
eDefine Mark(X,Var Marks)C:=Coordinates(X)+[1,1℄;Marks[C[1℄,C[2℄℄:=1;End; -- Mark--print 
y
lesDefine PPrint(L)Forea
h X In L DoPrintLn(X);End;



28 APPENDIX A. DEPTH-FIRST SEARCHEnd; -- PPrint--finds all 
y
les of a given length N, from all possible starting--vertexes without repeats.Define Test(N)D:=Daughters([1,1℄,N);TestedSoFar:=[℄;Results:=[℄;Forea
h X In D DoL:=FindStartingAt(X,N);Forea
h Y In L DoAdd:=True;Forea
h Z In TestedSoFar DoIf Z IsIn Y Then Add:=False; Break; End;End;If Add Then Append(Results,Y); End;End;Append(TestedSoFar,X);End;Return SortedBy(Results,Fun
tion('ByLength'));End; -- TestByLength(X,Y):=Len(X)<Len(Y);--The following 
ommands are used for the dot notation.-- number of 
olumns in a 
y
leDefine NoOfColumns(C)T:=0;Forea
h X In C DoIf X[1℄=1 Then T:=T+1; End;End;Return T;End; -- NoOfColumns--Input: a set of 
y
les S and a vertex V--Output: number of 
y
les from S passing through VDefine NoPassingThru(S,V)Return Len([C|C In S And V IsIn C℄);End;



29-- L: set of 
y
les, all of the same lengthDefine NoThruEa
hVertex(L)I:=Len(L[1℄);T:=[[NoPassingThru(L,CoordsToVerts([I,J℄))|I In 0..(I-1)℄|J In Reversed(0..(I-1))℄;Return T;End;--
onverts vertex notation to dot notationDefine NewCy
leNotation(C)Result:='';For I :=1 To Len(C) DoX:=C[I℄;If X[1℄=1 Then -- this is a 
olumn base, re
ord numberY:= Comp(Coordinates(X),2);Result:=Result+Sprint(Y);-- now 
he
k if the next throw is to the topIf I=Len(C) Then J:=1 Else J:=I+1 End; -- get next indexZ:=Comp(Coordinates(C[J℄),1);If Z=Y Then Result:=Result+'^'; Else Result:=Result+'_'; End;End;End;Return Result;End;
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