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AbstratThis thesis studies juggling patterns. Through the use of direted graphs andother formal systems we ount the number of 2-ball juggling yles. A new resultappears in 2.2.3, where the number of primitive 2-ball juggling patterns are ounted.



Chapter 1Basi graph theoryIntrodution. This hapter will give the basi notation used for the rest of thisthesis.1.1 NotationA graph is a ordered triple G = (V;E;�) where V and E are sets and � is a funtionfrom E into the olletion of unordered, not neessarily distint pairs of elements ofV . Elements of V are alled verties of G and elements of E are alled edges of G.If e 2 E and �(e) = fv; v0g, we say that e is an edge joining verties v and v0. Ifv = v0, then e is alled a loop. We normally identify elements of E with their imagesunder �.Example: LetG = (V;E;�) where V = fa; b; ; dg; E = ffa; bg; fb; g; f; dg; fd; agg:
b c

daA digraph is an ordered triple D = (V;E;�) where V and E are sets and � isa funtion from E into the olletion of ordered, not neessarily distint, pairs ofelements of V .



2 CHAPTER 1. BASIC GRAPH THEORYExample: Let V = fa; b; g, E = f(b; a); (a; b); (a; )g, and D = (V;E), then Dlooks like:
a b

c

1.2 Walks Paths and CylesA walk W in a direted graph is a �nite, ordered list of edges (e1; e2; :::; ek) wherethe endpoint of ei is the initial point of ei+1 for all i, where the endpoint of ei isde�ned as the seond element of the edge ei and the initial point is the �rst elementof the edge ei.A path is a walk suh that eah vertex in the walk is only visited one, i.e. eahvertex in the walk is distint. A yle is a walk with the property that the �rst andthe last verties are the same. A primitive yle is a yle with all but the �rst andthe last verties distint. The length, `(W ), of a walk W on a graph is the numberof edges used in that walk.De�nition: If there is a walk onneting vertex u to vertex v, then the distanebetween u and v is d(u; v) = minW `(W ), taking the minimum over all walks Wfrom u to v. We will de�ne d(u; u) = 0. Note d(u; v) 6= d(v; u) in general.Theorem 1.2.1. The Triangle Inequality: Let u,v,w be verties of a graph G.Let there exist walks from u to v, u to w, and w to v. Thend(u; v) � d(u; w) + d(w; v):Proof. Let Q;P;R be walks of minimal length from u to v, u to w, and w to v,respetively. We an onatenate the walks P and R, whih yields a walk from u tov, by way of w. This walk, all it PR, is not neessarily the shortest walk from u



1.2. WALKS PATHS AND CYCLES 3to v. Therefore,d(u; v) = `(Q) � `(PR) = `(P ) + `(R) = d(u; w) + d(w; v):



4 CHAPTER 1. BASIC GRAPH THEORY



Chapter 2Juggling Digraphs
Introdution. One appliation of digraphs is modeling juggling patterns. It ispossible to enode some of the important information of a juggling pattern in adigraph. The main question I will answer is: how many 2-ball patterns are thereof a given length? Analyzing adjaeny matries of the 2-ball juggling digraph, wereover the known result that there are 3n � 2n patterns having period dividing n.By analyzing the digraph in a di�erent way, we get a new result: a formula for thenumber of primitive 2-ball patterns f. De�nition 2.1.2.2.1 The juggling digraph of 2-ballsThe system to desribe 2-ball juggling patterns is relatively simple. Let eah jugglingstate be an element of F12 = fx1x2x3 : : : jxi 2 f0; 1gg suh that the number of 1s inthe string is 2. Eah 0 in a juggling state signi�es the amount of time it will takethe 1 to the right of that 0 to land. Out of onveniene we will, for example, writethe string 00010010000 : : : as 0001001, omitting the trailing 0s. Given this string,we know that one ball will land in 4 seonds, and the other in 7 seonds.It is possible to reate a digraph that uses these juggling states as its verties.The verties are in the lattieN2�0 = f(i; j) 2 N�N j i; j � 0g. There is a bijetion



6 CHAPTER 2. JUGGLING DIGRAPHSbetween the juggling states and ordered pairs (i; j) in the lattie where i denotesthe number of 0s between the �rst 1 and the seond 1, and j denotes the numberof 0s to the left of the �rst 1. For example the juggling state b = 00001000001orresponds to the vertex (5; 4), and the vertex (3; 7) orresponds to the jugglingstate 000000010001.Given this enoding there are two di�erent sorts of juggling states that need tobe de�ned. A juggling state b is said to be in the ground state if the leading digit isa 1, and in an elevated state if the leading digit is a 0. The edges in the digraph anbe desribed as follows: if the balls are in an elevated state (a; b), i.e. where b 6= 0,the only state that an be moved to is (a; b � 1). If the balls are at ground state,i.e. the state (a; 0), the ball an be thrown to any state of the form (x; a) for any xor to any state (x; a� 1�x) for any 0 � x � a� 1. The juggling state 00001000001an only move to 0001000001, where as the juggling state 1001 an move to 101,011, 0011, or 001n1 where n is a string of 0s.An intuitive way to think about the edges is to look at the following diagram.The verties on the dashed line are all the possible verties that ould be reahedfrom the state (5; 0).

The only edge from an elevated state (a; b) is to the state (a; b � 1), appearingdiretly below (a; b) in the digraph.De�nition 2.1.1. A 2-ball juggling pattern is a yle in the 2-ball juggling digraph.



2.1. THE JUGGLING DIGRAPH OF 2-BALLS 7De�nition 2.1.2. A juggling pattern is primitive if it ontains no sub-yles.2.1.1 DistanesFor eah state (x; y) 2 N2 in the digraph, the distane diagram B(x; y) = (aij) isthe in�nite array where aij = d((x; y); (i; j)) for all i; j 2 N. For example:
B(4; 3) =

0BBBBBBBBBBB�
... ... ... ... ... ... ... :::9 9 9 9 9 9 9 � � �9 9 9 9 9 9 9 � � �4 4 4 4 4 4 4 � � �4 5 5 5 0 5 5 � � �5 4 6 6 1 6 6 � � �6 5 4 7 2 7 7 � � �7 6 5 4 3 8 8 � � �

1CCCCCCCCCCCA B(3; 0) = 0BBBBBBBBB�
... ... ... ... ... :::5 5 5 5 5 � � �5 5 5 5 5 � � �1 1 1 1 1 � � �1 2 2 2 2 � � �2 1 3 3 3 � � �3 2 1 0 4 � � �

1CCCCCCCCCAIn general the distane diagram B(k; 0) looks like:0BBBBBBBBBBBBBBB�
... ... ... ... ... ... ... :::k + 1 � � � k + 1 k + 1 k + 1 k + 1 k + 1 k + 1 � � �k + 1 k + 1 k + 1 k + 1 k + 1 k + 1 k + 1 � � �1 1 1 1 1 1 1 � � �1 2 2 2 2 2 2 � � �2 3 3 3 3 3 3 � � �... ... ... ... ... ... ... � � �k � 2 1 k � 1 k � 1 k � 1 k � 1 k � 1 � � �k � 1 2 1 k k k k � � �k � � � 3 2 1 0 k + 1 k + 1 � � �

1CCCCCCCCCCCCCCCAFrom these examples we an see the following:d((i; 0); (j; 0)) = � i + 1 if i < j;i� j if i � jTheorem 2.1.3. Let v be a yle, and let (i; j) be a state ourring in v. Then iand j are stritly less then the length of the yle.



8 CHAPTER 2. JUGGLING DIGRAPHSProof. Let v = v1v2 � � � v`(v) where eah vi is a juggling state, d(vi; vi+1) = 1, and`(v) is the length of v. Let (i; 0) be the left-most (smallest �rst oordinate) groundstate ourring in v, and (i0; 0) be the right-most. By the triangle inequality:`(v) = `(v)Xj=1 d(vj; vj+1) � d((i; 0); (i0; 0)) + d((i0; 0); (i; 0)) = (i + 1) + (i0 � i) = 1 + i0Therefore (i0; 0), the vertex farthest to the right, has �rst oordinate stritly lessthen `(v). Thus the �rst oordinate of any state in v is stritly less than `(v).Further, as just stated, if (i; j) is an elevated state appearing in v, then (i; j)!(i; j � 1)! � � � ! (i; 0) appears in v. Thus j + 1 � `(v): The result follows.Remark 2.1.4. We now know that when searhing for all yles of length ` we needonly to look at a `� ` lattie of points.2.1.2 DataTo �nd all the primitive juggling yles of a given length, we wrote a program whihdid a standard depth-�rst searh. 1 We found the following data:yle length 1 2 3 4 5 6 7 8 9# of primitive yles 1 2 5 10 23 48 105 216 467Another useful way to look at these data is to see the number of yles that usea given number of olumns in the juggling digraph. The following table displaysexatly that.1See the �rst appendix for ode



2.1. THE JUGGLING DIGRAPH OF 2-BALLS 9yle length Number of yles using X olumns1 2 3 4 5 6 7 8 9  X1 12 1 13 1 3 14 1 4 4 15 1 6 10 5 16 1 7 18 15 6 17 1 9 29 37 21 7 18 1 10 40 70 58 28 8 19 1 12 58 128 136 86 36 9 1The next set of data shows the number of yles passing through eah point ofthe digraph. More formally, the (i; j) entry of eah `� ` matrix shows the numberof primitive yles of length ` ontaining the juggling state (i; j).
1 0 11 2 0 0 12 0 23 3 4 0 0 0 12 0 0 24 2 0 46 5 6 8 0 0 0 0 12 0 0 0 24 4 0 0 49 7 6 0 814 13 13 12 160 0 0 0 0 12 0 0 0 0 24 4 0 0 0 410 10 4 0 0 820 15 11 12 0 1630 28 25 26 24 32

0 0 0 0 0 0 12 0 0 0 0 0 24 4 0 0 0 0 410 10 8 0 0 0 822 20 14 12 0 0 1644 33 29 28 24 0 3266 62 57 59 52 48 640 0 0 0 0 0 0 12 0 0 0 0 0 0 24 4 0 0 0 0 0 410 10 8 0 0 0 0 824 20 20 8 0 0 0 1648 43 33 22 24 0 0 3294 68 63 49 56 48 0 64138 128 120 111 118 104 96 128



10 CHAPTER 2. JUGGLING DIGRAPHS0 0 0 0 0 0 0 0 12 0 0 0 0 0 0 0 24 4 0 0 0 0 0 0 410 10 8 0 0 0 0 0 824 20 20 16 0 0 0 0 1652 46 46 28 24 0 0 0 32106 100 71 61 56 48 0 0 64204 154 141 129 116 112 96 0 128300 282 266 251 249 236 208 192 2562.2 The dot gameThere is yet another way to think about 2-ball juggling yles. Given any jugglingyle, that yle an be written as a string of integers and dots, where the numbersorrespond to olumns of our digraph, and the dots tell how the balls move. Moreformally: any juggling yle an be written as a1b1a2b2 : : : anbn where ai 2 N andbi 2 f�;� g. We will all � an up-dot, and � a down-dot. The number ai in this newnotation stands for the ground state (ai; 0) in the digraph. The next vertex in theyle will our in the olumn ontaining (ai+1; 0). Note that there are two ways towalk| we'll often say throw| from (ai; 0) diretly to a vertex of the form (ai+1; x);namely there is a throw to (ai+1; ai�ai+1� 1) and a throw to (ai+1; ai). The formerwe denote with a down-dot, ai�ai+1, and the latter with an up-dot, a�i ai+1. Notethat when bi is a down-dot, then ai > ai+1. This also means that if ai = 0 then biis an up-dot. The following pitures give a better desription of this system:



2.2. THE DOT GAME 113�2 looks like:
1

2

3

4

5Where the dots with the white enters show the walk through the digraph and thenumbers are the order of the walk.6�2 looks like:
1

2

3

4

5So the yle 0�6�4�2� would look like:
2

3

4

5

6

7

8

9

10

11

1Note. The yle represented by the string a1b1 : : : anbn is primitive if and only ifeah ai is distint.



12 CHAPTER 2. JUGGLING DIGRAPHS2.2.1 LengthGiven a yle in the dot notation, there is a simple algorithm to �nd its length.Namely, if ai is followed by an up-dot, then that olumn adds ai + 1 to the totalyle length. If ai is followed by a down-dot, then it adds ai�ai+1 to the total ylelength. So `(0�6�4�2�) = (0 + 1) + (6� 4) + (4 + 1) + (2 + 1) = 11.2.2.2 SubstitutionsHaving represented a juggling yle as a �nite string, we an reate more jugglingyles via the following three string substitutions:This rule adds nothing to the yle's length:(1.0) a� $ a�b� for any b < aThese rules add one to the yle's length:(1.1) �a� ! �(a+ 1)�(1.2) a�0� ! a�0�Example: Starting from 0�6�2�, rule 1.0 produes the yles 0�6�4�2� and 0�6�2�2�without hanging length; the latter yle is not primitive.Theorem 2.2.1. Starting with the yle 0�, these three rules produe all jugglingyles. If we only substitute distint olumns then these three rules produe allprimitive juggling yles.Proof. We will prove this statement by indution over the yle length `.Base ase: ` = 1. There is one yle with yle length one, that is 0�.Indution: Let  = a1b1 : : : anbn be a yle of length ` > 1. Sine  is a �nite yle,there will be a smallest number among the ai, i.e. a left-most olumn. This olumnmust be followed by an up-dot. Therefore there is at least one up-dot in . Notethat if the smallest olumn is not distint this still holds.



2.2. THE DOT GAME 13By repetitively applying rule 1.0, we may assume that all dots are up. We maythen apply rule 1.1 in reverse, yielding a new yle 0 of length `� 1. By indution,0 is derived from 0� from the three rules, and  follows from 0 by rule 1.1. If  isprimitive, 0 an be hosen to be primitive too exept, possibly, in the ase where0� is in . A typial problem ase would be  = 0�1�2�. However, in that ase, wemay apply rule 1.2 in reverse to yield a new primitive yle 0 of length ` � 1, andthe result follows similarly by indution.2.2.3 CountingIt is possible to �nd all yles of a given length ` that have only up-dots whenexpressed in dot notation, and then by repetitively applying rule 1.0 we produe allyles of length `. Consider the following piture representation of 10�5�2�. Thesquares ontaining an X denotes olumns that are followed by an up-dot. Thesquares ontaining O denote the possible olumns that an be added to the yleby rule 1.0.

X

X

X

O

O

O

O

O

O

O

O

O

O

O

O

O

O

1 2 3 4 5 6 7 8 9 10 11

10

9

8

7

6

5

4

3

2

1

0



14 CHAPTER 2. JUGGLING DIGRAPHSHene, adding 8 and 4 in olumn numbered 11 in the diagram and 3 in olumn 6represents the pattern 10�8�4�5�3�2�. So adding rows numbered 8 and 4 in olumn11 adds olumns 8 and 4 to our juggling pattern, written in dot-notation. Notethat the addition of new olumns by rule 1.0 does not hange the yle length. Bynumbering the olumns 1{11 instead of 0{10, we an �nd the length by just addingthe olumn numbers:`(10�5�2�) = 11 + 6 + 3 = 20 = `(10�8�4�5�3�2�):We now want to ount the number of primitive patterns that an be formed from10�5�2� by applying rule 1.0. First onsider the possible added olumns after 10�that are numbered greater than 5: there are 2(10�5�1) possible ombinations. Nowonsider the possible olumns added numbered below 5 and above 2: there are3(5�2�1) possible ombinations. This is beause, the added rows would need to be inolumns 6 or 11. For eah added row we have three hoies: either hoose olumn6, hoose olumn 11 or hoose neither. Now onsider the possible rows added below2; there are 42. The following piture might be useful:
X

X

X

O

O

O

O

O

O

O

O

O

O

O

O

O

O

1 2 3 4 5 6 7 8 9 10 11

10

9

8

7

6

5

4

3

2

1

0

X

X

X

O

O

O

O

O

O

O

O

O

O

O

O

O

O

1 2 3 4 5 6 7 8 9 10 11

9

8
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5

4

3
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1

0

10

X

X

X

O

O

O

O

O

O

O

O

O

O

O

O

O

O

1 2 3 4 5 6 7 8 9 10 11
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3
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0

Possible rows after 10 Possible rows after 5 Possible rows after 2So there are (2(10�5�1))(3(5�2�1))(42) primitive yles using exatly olumns 3; 6; and 11if the order of the olumns is not ounted. To ount order we simply multiply by 2!.



2.3. ADJACENCY MATRIX ANALYSIS 15In general, let � be a strit partition of the yle length, `. So � = f�1; : : : �ngwhere �1 > �2 > � � ��n and Pni=1 �i = `. Also, let k� = n be the number of partsin the partition. We �nd that the number of primitive 2-ball juggling patterns oflength ` is X�`` (k� � 1)! k�Yi=1(i+ 1)�i��i+1�1where the sum is over all strit partitions � of ` and �k�+1 is de�ned to be 0. Sinewe are talking about yles, the fator (k� � 1)! aounts for re-ordering the k�hosen olumns, else we would multiply by k�!. More information about primitivejuggling patters an be found in [3℄.2.3 Adjaeny Matrix AnalysisConsider a digraph with verties labeled 1; : : : ; k. The adjaeny matrix A = (aij)is the k � k matrix, whereaij = � 1 if there is an edge from i to j0 if there is not an edge from i to jNote an adjaeny matrix is dependent on the way in whih the verties are labeled.The ij entry of An is the number of walks, of length n, from i to j. Thus wean �nd the number of yles, not neessarily primitive, by inspeting the diagonalentries of the adjaeny matrix. The number of yles of length n is the trae of An.Example: Consider the following digraph:
3

4

2

1



16 CHAPTER 2. JUGGLING DIGRAPHSIts adjaeny matrix is A = 2664 1 1 1 00 0 0 10 1 0 10 0 1 0 3775 :The trae of A is 1, and it is easy to see that there is only one yle of length one,passing through the vertex 1. Now onsiderA3 = 2664 1 2 3 30 1 0 10 1 1 10 0 1 1 3775The trae of A3 is 4; therefore there are 4 yles of length 3. From the matrix, wesee there is atually one yle of length 3 starting at eah vertex.If v is a vetor in a k-dimensional vetor spae, then the i-th omponent of Avis the sum of all possible edges leaving i. We will use the following notation:(Av)i = Xi!j vj (2.1)In the previous example we have:Av = 2664 1 1 1 00 0 0 10 1 0 10 0 1 0 37752664 v1v2v3v4 3775 = (v1 + v2 + v3; v4; v2 + v4; v3)The vetor v is an eigenvetor with eigenvalue � ifXi!j vj = �vi for all i:We will now analyze the 2-ball juggling digraph using this tool. Consider thesub-digraph, Dn = f(a; b) 2 N2 j 0 � a; b � n � 1g. Note that we showed insetion 2.1.1 that every yle in the 2-ball digraph of length at most n will atually



2.3. ADJACENCY MATRIX ANALYSIS 17our in Dn. We label the points of Dn left to right, top to bottom, to form itsadjaeny matrix, An. The �rst few examples are:
A1 = [1℄ A2 = 2664 0 0 1 00 0 0 10 0 1 11 1 1 0 3775 A3 =

26666666666664
0 0 0 1 0 0 0 0 00 0 0 0 1 0 0 0 00 0 0 0 0 1 0 0 00 0 0 0 0 0 1 0 00 0 0 0 0 0 0 1 00 0 0 0 0 0 0 0 10 0 0 0 0 0 1 1 10 0 0 1 1 1 1 0 01 1 1 1 0 0 0 1 0

37777777777775Our goal in this setion is to �nd the number of (not neessarily primitive) 2-balljuggling patterns of length n by alulating the trae of Ann. The trae will be thesum of the n-th powers of the eigenvalues of A, ounting multipliities. First, wewill alulate the harateristi polynomial of An.Theorem 2.3.1. The harateristi polynomial of An isfn(x) = (�1)nxn2�n(xn �Pn�1i=0 2ixn�i�1):Proof. Consider eah vetor v 2 Cn2 as a labeling of the verties of Dn, from leftto right, top to bottom. Using 2.1, an eigenvetor for An with eigenvalue � has theform: a0� a1� � � � an�2� an�1��a0� �a1� � � � �an�2� �an�1�... ... ... ...�n�2a0� �n�2a1� � � � �n�2an�2� �n�2an�1��n�1a0� �n�1a1� � � � �n�1an�2� �n�1an�1� (?)where a0; : : : ; an�1 are arbitrary. The labeling is not ompliated sine eah ele-vated state had only one edge leaving it, namely the state diretly below. Applying



18 CHAPTER 2. JUGGLING DIGRAPHSformula 2.1 to the ground states produes the following neessary and suÆientonditions on (?) so that it is an eigenvetor with eigenvalue �:�(�n�1a0) = �n�1a0 + �n�1a1 + �n�1a2 + : : :+ �n�1an�1 (2.2)�(�n�1a1) = �n�1a0 + �n�2a0 + �n�2a1 + �n�2a2 + : : :+ �n�2an�1�(�n�1a2) = �n�1a1 + �n�2a0 + �n�3a0 + �n�3a1 + �n�3a2 + : : :+ �n�3an�1...�(�n�1an�2) = �n�1an�3 + �n�2an�4 + : : :+ �2a1 + �a0 + �a1 + �a2 + : : :+ �an�1�(�n�1an�1) = �n�1an�2 + �n�2an�3 + : : :+ �a1 + a0 + a1 + a2 + : : :+ an�1This yields n equations and n + 1 unknowns. Multiplying the i-th equation by� and subtrating the (i� 1)-th equation, we get:�n+1ai = 2�nai�1 for i = 1; : : : ; n� 1:Suppose � 6= 0. If a0 = 0, it follows that the eigenvetor is the zero vetor.Otherwise, we may assume a0 = 1. It then follows that ai = (2=�)i for i =0; : : : ; n� 1.Substituting into 2.2 we get:�n(2=�)0 = �n�1(2=�)0 + �n�1(2=�)1 + �n�1(2=�)2 + : : :+ �n�1(2=�)n�1or �n � �n�1 � 2�n�2 � 22�n�3 � : : :� 2n�1 = 0:Thus xn� xn�1� 2xn�2� 22xn�3� : : :� 2n�1 divides the harateristi polynomial,fn(x).To �nish, we need to know the multipliity of 0 as an eigenvalue for An. Considerthe size of the Jordan bloks of An. A good method for divining these sizes an be



2.3. ADJACENCY MATRIX ANALYSIS 19found in [4, p. 124℄. Let � be an eigenvalue of An. The de�ieny indies are de�nedto be Æk = dim ker(An � �I)k:Now let �k be the number of k � k Jordan bloks for �. Then�1 = 2Æ1 � Æ2�k = 2Æk � Æk+1 � Æk�1 for 1 < k < n2�n2 = Æn2 � Æn2�1:Suppose � = 0 and let us now onsider the ase when n = 4. If we onsiderlabeled graphs, as done earlier in this proof, we get the following hain of generalizedeigenspaes: 0 0 0 00 0 0 00 0 0 00 0 0 0 An � a0 a1 a2 a30 0 0 00 0 0 00 0 0 0 An �fP ai = 0gÆ1 = n� 1�1 = 0
b0 b1 b2 b3a0 a1 a2 a30 0 0 00 0 0 0 An � 0 1 2 3b0 b1 b2 b3a0 a1 a2 a30 0 0 0 An �� P ai = 0a0 +P bi = 0 � 8<: P ai = 0a0 +P bi = 0a1 + b0 +P i = 0 9=;Æ2 = 2n� 2�2 = 0 Æ3 = 3n� 3�3 = 0



20 CHAPTER 2. JUGGLING DIGRAPHSd0 d1 d2 d30 1 2 3b0 b1 b2 b3a0 a1 a2 a38>><>>: P ai = 0a0 +P bi = 0a1 + b0 +P i = 0a2 + b1 + 0 +P di = 0 9>>=>>;Æ4 = 4n� 4�4 = n� 1 = 3
An �

e0 e1 e2 e3d0 d1 d2 d30 1 2 3b0 b1 b2 b38>><>>: P bi = 0b0 +P i = 0b1 + 0 +P di = 0b2 + 1 +P ei = 0 9>>=>>;Æ5 = 4n� 4�5 = 0To explain the last set of equations note that 2.1 requiresX bi = a0b0 +X i = a1b1 + 0 +X di = a2b2 + 1 +X ei = a3Coupled with the equations X ai = 0a0 +X bi = 0a1 + b0 +X i = 0a2 + b1 + 0 +X di = 0we are fored to take a0 = a1 = a2 = a3 = 0. This gives neessary and suÆientonditions on the last labeled diagram to be in the kernel of A54. Sine Æ4 = Æ5, i.e.kerA44 = kerA54, we know that Æ4 = Æk for all k � 4. Therefore �n = 0 for all k � 5.Therefore there are three 4� 4 Jordan bloks with eigenvalue 0.This same argument an be extended to the general ase, to show there are n�1Jordan bloks with eigenvalue 0 eah of size n � n. Therefore 0 has a multipliity



2.3. ADJACENCY MATRIX ANALYSIS 21of n2 � n; so, xn2�njfn(x). By omparing degrees we have shown up to sign thatfn = (x)n2�n(xn � Pn�1i=0 2ixn�i�1). We also know that the leading term of theharateristi polynomial has sign (�1)n by looking at the determinant of An � xI.Hene, fn = (�1)n(x)n2�n(xn �Pn�1i=0 2ixn�i�1):Sine the oeÆients of the harateristi polynomial are symmetri funtions inthe eigenvalues of An, we an use Newton's identities to �nd the trae of Ann.Let ei be the i-th elementary symmetri funtion of n variables x1; � � � ; xn, andpk =Pni=1 xki . For example, if we let n = 3, thene0 = 1e1 = x1 + x2 + x3e2 = x1x2 + x1x3 + x2x3e3 = x1x2x3: p1 = x1 + x2 + x3p2 = x21 + x22 + x23p3 = x31 + x32 + x33We will denote e0 = 1. Then Newton's identities say:k�1Xj=0(�1)jpk�jej + (�1)kkek = 0;for k = 0; : : : ; n:Example 2.3.2. Let n = 2. The harateristi polynomial of A2 is x2(x2 � x� 2).By letting �i be the roots to the polynomial we an rewritex2 � x� 2 = nYi=1(x� �i) = x2 + e1x + e2) e0 = 1; e1 = �1; e2 = �2where here e0; e1; e2 denote the elementary symmetri funtions in the roots of thepolynomial.By Newton's identities we know thatp2e0 � p1e1 + 2e2 = 0 ) p2 = p1e1 � 2e2e0 ) p2 = 5



22 CHAPTER 2. JUGGLING DIGRAPHSThere are 5 yles of length 2, and they are (0; 0)! (0; 0)! (0; 0), (0; 0)! (1; 0)!(0; 0), (1; 0)! (0; 0)! (1; 0), (1; 0)! (1; 1)! (1; 0), (1; 1)! (1; 0)! (1; 1). Thisounts some yles more then one.Let us now onsider the generi ase.Theorem 2.3.3. The number of 2-ball juggling patterns with period dividing n is3n � 2n.Proof. The proof goes by indution over n. Let gn(x) = Q�(x � �) where theprodut is taken over the non-zero eigenvalues of the adjaeny matrix, An, for the2-ball juggling digraph. By 2.3.1, gn(x) = xn �Pn�1i=0 2ixn�i�1. Let ei denote thei-th elementary symmetri funtion in the roots of gn. So ei = (�1)i�12i�1. Weneed to �nd the trae of An, whih is just the power sum, pn, in the roots of gn.In the base ase, n = 1, Newton's identity tells usp1e0 + e1 = 0) p1 = e1 = 1 = 31 � 21:Now assume pn�1 = 3n�1 � 2n�1: Consider Newton's identity for n:n�1Xj=0(�1)jpn�jej + (�1)nnen = 0
pn = n�1Xj=1(�1)j�1pn�jej � (�1)nnen= n�1Xj=1 [(�1)j�1(3n�j � 2n�j)(�1)j�12j�1℄� (�1)nn(�1)n�12n�1= n�1Xj=1 [3n�j2j�1 � 2n�1℄ + n2n�1



2.3. ADJACENCY MATRIX ANALYSIS 23= 3n2 "n�1Xj=1 �23�j#� n�1Xj=1 2n�1 + n2n�1= 3n2 �23 �1� (23)n�11� 23 ��� (n� 1)2n�1 + n2n�1= 3n � 3 � 2n�1 + 2n�1= 3n � 2n:
We have reovered, using di�erent methods, a speial ase of the main theoremin [2℄:Theorem 2.3.4. [2℄ The number of period-n juggling patterns with fewer then bballs is bn.Therefore there are (b+1)n�bn patterns of period n with b balls, ounting rotationsdistintly. As indiated in [2℄ we an ount the number of juggling patterns for 2-balls with period exatly n, not ounting rotations, by using M�obius inversion. LetM(d) be the number of juggling patterns for two balls with period exatly d, notounting rotations. Then 3n � 2n =Xdjn dM(d)and by the M�obius inversion formula,M(n) = 1nXdjn ��nd� (3d � 2d);where � is the M�obius funtion:�(n) = 8<: 1 if n = 1(�1)k if n is the produt of k distint primes0 if n is divisible by the square of some prime.



24 CHAPTER 2. JUGGLING DIGRAPHS



Appendix ADepth-First SearhThis program was written in [5℄.--input a starting vertex and period length--outputs all yles ontaining the starting vertexDefine FindStartingAt(Vertex,Period)Results:=[℄;Marks:=NewList(Period,NewList(Period,0));C:=Coordinates(Vertex)+[1,1℄;Marks[C[1℄,C[2℄℄:=1;Results :=[℄;Path:=[Vertex℄;Searh(Period,Path,Marks,Results);Return Results;End;--test eah daughter to see if, when added, will yield a new yle,--given a fixed starting vertexDefine Searh(Period,Var Path,Var Marks,Var Results)L := Len(Path);CurrentNode := Path[L℄;D := Daughters(CurrentNode,Period);Foreah X In D DoIf Marked(X,Marks) ThenIf (Len(Path)<=Period) And (Path[1℄=X) Then -- we have a yle!Append(Results,Path);End;Elsif Len(Path)<Period Then



26 APPENDIX A. DEPTH-FIRST SEARCHMark(X,Marks);Append(Path,X);Searh(Period,Path,Marks,Results);End;End; --Foreah-- remove last node from path, unmark it, and returnPath := First(Path,Len(Path)-1);UnMark(CurrentNode,Marks);End;--finds all edges leaving a vertexDefine Daughters(L,Period)If L[1℄ = 0 ThenReturn [Tail(L)℄;ElseResult := [℄;X := Tail(L);For I:=1 To Len(X) DoIf X[I℄=1 Then NextOne:=I; Break; End;End;For I := 1 To NextOne-1 DoY:=X;Y[I℄:=1;Append(Result,Y);End;For I:= 1 To Period DoY:=X;Y:=Conat(Y,NewList(I,0));Y[Len(Y)℄:=1;Append(Result,Y);End;End;Return Result;End; -- Daughters-- oordinates of a vertexDefine Coordinates(L)I := 0;While L[I+1℄<>1 DoI := I+1;



27End;J := 0;While L[I+2+J℄<>1 DoJ := J+1;End;Return [I,J℄;End; -- Coordinates-- find the vertex given the oordinates X=[X[1℄,X[2℄℄Define CoordsToVerts(X)Return Conat(NewList(X[2℄,0),[1℄,NewList(X[1℄,0),[1℄);End; -- CoordsToVerts-- get rid of mark on CurrentNodeDefine UnMark(CurrentNode,Var Marks)C:=Coordinates(CurrentNode)+[1,1℄;Marks[C[1℄,C[2℄℄:=0;End; -- UnMark--sees if the vertex is used in the yle alreadyDefine Marked(X,Marks)C:=Coordinates(X)+[1,1℄;If Marks[C[1℄,C[2℄℄=0 ThenReturn False;ElseReturn True;End;End; -- Marked--marks the vertex, as so it is only used oneDefine Mark(X,Var Marks)C:=Coordinates(X)+[1,1℄;Marks[C[1℄,C[2℄℄:=1;End; -- Mark--print ylesDefine PPrint(L)Foreah X In L DoPrintLn(X);End;



28 APPENDIX A. DEPTH-FIRST SEARCHEnd; -- PPrint--finds all yles of a given length N, from all possible starting--vertexes without repeats.Define Test(N)D:=Daughters([1,1℄,N);TestedSoFar:=[℄;Results:=[℄;Foreah X In D DoL:=FindStartingAt(X,N);Foreah Y In L DoAdd:=True;Foreah Z In TestedSoFar DoIf Z IsIn Y Then Add:=False; Break; End;End;If Add Then Append(Results,Y); End;End;Append(TestedSoFar,X);End;Return SortedBy(Results,Funtion('ByLength'));End; -- TestByLength(X,Y):=Len(X)<Len(Y);--The following ommands are used for the dot notation.-- number of olumns in a yleDefine NoOfColumns(C)T:=0;Foreah X In C DoIf X[1℄=1 Then T:=T+1; End;End;Return T;End; -- NoOfColumns--Input: a set of yles S and a vertex V--Output: number of yles from S passing through VDefine NoPassingThru(S,V)Return Len([C|C In S And V IsIn C℄);End;



29-- L: set of yles, all of the same lengthDefine NoThruEahVertex(L)I:=Len(L[1℄);T:=[[NoPassingThru(L,CoordsToVerts([I,J℄))|I In 0..(I-1)℄|J In Reversed(0..(I-1))℄;Return T;End;--onverts vertex notation to dot notationDefine NewCyleNotation(C)Result:='';For I :=1 To Len(C) DoX:=C[I℄;If X[1℄=1 Then -- this is a olumn base, reord numberY:= Comp(Coordinates(X),2);Result:=Result+Sprint(Y);-- now hek if the next throw is to the topIf I=Len(C) Then J:=1 Else J:=I+1 End; -- get next indexZ:=Comp(Coordinates(C[J℄),1);If Z=Y Then Result:=Result+'^'; Else Result:=Result+'_'; End;End;End;Return Result;End;
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