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Abstract

In this thesis we explore critical groups of simplicial complexes. We review the re-
lationship between critical groups and homology groups. Our main results extend
the definition of harmonic morphisms on graphs to harmonic morphisms on simpli-
cial complexes. We show that these mappings induce group homomorphisms on the
associated critical groups. In chapter three we explore critical groups from the per-
spective of algebraic geometry and develop a pullback that induces a mapping of
critical groups.





Introduction

Figure 1 is a picture of a simplicial complex, augmented with some arrows and num-
bers along the edges. Imagine that these arrows (and their corresponding weights)
correspond to amounts of flow along the edges in the direction indicated. The net
flow across some vertex, can be calculated by summing the amount of flow coming
in and subtracting the amount coming out. For example, there is a single unit flow
going into the vertex labeled a and a single unit of flow leaving for a net flow of zero.
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Figure 1: Simplicial complex with flow along edges

Now consider (a) in Figure 2, formed by reducing the flow along the edge from
a to b, increasing the flow along the edge from a to c (here this makes the flow zero
since before the flow was from vertex c to vertex a), and increasing the flow along the
edge from c to b. Note that the flow configuration has changed but the net flow across
any vertex is unchanged. Thus, in effect, a unit of flow has been diverted across the
triangle that contains a, b and c.

If the unit of flow that was added along the edge from c to b is then diverted
again, this time across the triangle containing b, c and d, the configuration shown in
Figure 2 (b) is obtained. It is simple to check that this change also has had no effect
on the net flow at each vertex.
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Figure 2: Flow configuration after diverting across faces

This leaves us with a fairly simple game—we have some flow configuration and we
can maintain the net flow across vertices by diverting across triangles. The goal of
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this thesis is to explore the remarkably rich structure that comes from studying this
model in arbitrary dimensions.

Chapter one formally introduces the concepts outlined above. We start by de-
scribing abstract simplicial complexes and their associated homology groups. We
then describe the game above in the case of one-dimensional simplicial complexes
(graphs) and use this to motivate our algebraic description of critical groups. The
chapter concludes by describing the relationship between homology groups and criti-
cal groups.

At this point we will have associated an algebraic object, the critical group to our
simplicial complex. From here we can ask when mappings from one simplicial complex
to another also gives us mappings between their respective critical groups. In chapter
two, we describe a type of morphism between simplicial complex that induces a group
homomorphism. We also introduce two categorical product for simplicial complexes,
the first for general simplicial morphisms and the second for dimension preserving
simplicial morphisms.

In the final chapter, we attempted to view critical groups as groups of algebraic
cycles modulo rational equivalence. The chapter starts by introducing some algebraic
geometry. The second portion of the chapter tries to mimic the constructions from
the first section for critical groups. The chapter concludes by describing where the
analogy breaks down.

The bulk of this text assumes only a working knowledge of linear algebra and
some abstract algebra.



Chapter 1

Critical Groups

1.1 Simplicial Complexes

Our first task is to formally introduce simplicial complexes and their associated ho-
mology groups. This section contains a brief overview of these concepts. A more
complete treatment can be found in [5].

1.1.1 Simplicial Homology

Definition 1.1.1. Let Σ be a finite, nonempty collection of subsets of some universal
set S. The set Σ is called an abstract simplicial complex if for each set X ∈ Σ, every
subset Y ⊂ X is also in Σ.

The elements of Σ are called faces. The faces of Σ that are maximal, meaning not
contained in some other face, are called facets. If σ ∈ Σ we denote dim(σ) = |σ|. If
dim(σ) = i+ 1, then we say σ is an i-dimensional face of Σ . We will denote the set
of all i-dimensional faces of Σ by Fi(Σ) := {σ ∈ Σ : dim(σ) = i}. By convention the
empty set, ∅, is the unique face of dimension -1. We will denote the number of i-faces
by |Fi(Σ)|. The dimension of a simplicial complex Σ, denoted dim(Σ), is equal to the
dimension of its highest dimensional face. If each facet of Σ has dimension d then we
say that Σ is a pure d-dimensional simplicial complex.

In general, we take S = [n] = {1, . . . , n} as our universal set. Our notion of an
abstract simplicial complex has a geometric interpretation. Informally, a simplex is
a n-dimensional triangle. A simplicial complex Σ is simplices of arbitrary dimension
glued together in such a way that any face of a simplex is also a face in Σ and
the intersection of any two simplices in Σ is a face of both of those simplices. For
our purposes, the abstract simplicial complex (referred to from now on simply as a
simplicial complex), will suffice.

A few remarks on notation: Since a simplicial complex is closed under taking
subsets, we will usually describe a simplicial complex by listing its facets. We will
also sometimes refer to the faces of dimension zero, F0(Σ), as vertices and faces of
dimension one, F1(Σ), as edges. Frequently we will be interested in substructures
of our simplicial complex having at most dimension i, we will refer to this as the
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i-skeleton of Σ. For instance we can form a graph by taking the one-skeleton of any
simplicial complex.

Example 1.1.2. Let S = [4], and let Σ be a simplicial complex with facets

Σ = {{123}, {124}, {134}, {234}}.

Then Σ can be pictured as in Figure 1.1. Note that in this picture the 2-dimensional
faces (triangles) are filled in but the tetrahedron itself is not.

1

2

3

4

Figure 1.1: Simplicial Complex

For the rest of the section, fix R to be a commutative ring with identity 1.

Definition 1.1.3. For any finite set X, define the free R-module on X by

RX =

{∑
x∈X

axx : ax ∈ R

}
.

Definition 1.1.4. Let Σ be a simplicial complex. An orientation on Σ is a partial
ordering of the vertices such that for any simplex the vertices are totally ordered.

For our universal set S = [n] there is a standard orientation which we will impose
on all simplicial complexes for the remainder of the thesis.

Example 1.1.5. Let Σ be the simplicial complex in Figure 1.1. Then the edge going
from vertex 1 to vertex 2 is

Definition 1.1.6. Let ∂i : RFi(Σ)→ RFi−1(Σ) be defined by

∂i(σ) :=
∑
j∈σ

sign(j, σ)(σ \ {j})

where sign(j, σ) = (−1)i−1 if j is the ith element of σ when the elements of σ are in
an increasing order and where σ \ j := σ \ {j}. Define ∂∗i : RFi(Σ) → RFi+1(Σ) to
be the dual of ∂i.

The following proposition is standard and straightforward to prove:

Proposition 1.1.7. For any σ ∈ RFi−1(Σ)

(∂i−1 ◦ ∂i)(σ) = 0.
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The previous proposition allows us to form a sequence.

Definition 1.1.8. Let Σ be a simplicial complex and let dim(Σ) = n. Then the
augmented chain complex for Σ is the sequence

0→ RFn−1(Σ)
∂n−1−−−→ · · · → RFi(Σ)

∂i−→ RFi−1(Σ)→ · · · ∂0−→ RF−1(Σ)→ 0.

Definition 1.1.9. Let R be a ring. The ith-reduced homology group of Σ with
coefficients in the ring R is defined to be

H i(Σ;R) :=
ker ∂i

im ∂i+1

Sometimes we will simply write H i(Σ) when it is clear what ring we are working over.
The ith-Betti number of Σ is defined to be

βi(Σ) := dimQH i(Σ;Q).

We will usually fix R to be Z or Q. We will conclude this section by showing an
example of computing the homology for a simplicial complex.

Example 1.1.10. Let Σ be the simplicial complex in Figure 1.1. The augmented
chain complex for Σ is

0 −−→
∂3

QF2(Σ)



1 1 0 0
−1 0 1 0
0 −1 −1 0
1 0 0 1
0 1 −1 −1
0 0 1 1


−−−−−−−−−−−−−−−−−−→

∂2

QF1(Σ)


1 1 1 0 0 0
−1 0 0 1 1 0
0 −1 0 −1 0 1
0 0 −1 0 −1 −1


−−−−−−−−−−−−−−−−−−−−−−−−−−−→

∂1

QF0(Σ)

(
1 1 1 1

)
−−−−−−−−−−−−→

∂0

Q→

0.

Then we can compute that

H0(Σ;Q) = 0 H1(Σ;Q) = 0 H2(Σ;Q) = Q H i>2(Σ;Q) = 0.

What happens if the tetrahedron is filled in? Then Σ is the simplicial complex with
a single facet {1, 2, 3, 4}. Recomputing homologies shows that

H i(Σ;Q) = 0 for all i ≥ 0.

Remark 1.1.11. There are a variety of ways to think about simplicial homology.
One notion is that the homology H i(Σ) counts the number of (i + 1)-dimensional
holes in Σ. The previous example demonstrates this nicely by showing that the ho-
mology is zero when the tetrahedron is filled in and Z when it is not.

The elements of ker ∂i are called i-cycles and the elements of im ∂i+1 are called i-
boundaries. By Proposition 1.1.6, each i-boundary is an i-cycle. We say the simplicial
complex is exact at RFi(Σ) if every i-cycle is an i-boundary, i.e, if im ∂i+1 = ker ∂i.
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1.1.2 Simplicial Spanning Trees

We will develop one last piece of machinery, the simplicial spanning tree, before
defining critical groups. These spanning trees will play a role in how we describe the
critical group and how we can relate them to homology groups.

Definition 1.1.12. Let Σ be a pure d-dimensional simplicial complex. And let Υ ⊂ Σ
be a subcomplex such that the d− 1-skeleton of Υ is that same as the d− 1 skeleton
of Σ. Then Υ is an d-simplicial spanning tree of Σ if

1. Hd(Υ;Z) = 0,

2. Hd−1(Υ;Q) = 0, and

3. |Fd(Υ)| = |Fd(Σ)| − βd(Σ) + βd−1(Σ).

In general an i-dimensional spanning tree of Σ is a spanning tree of the i-dimensional
skeleton of Σ.

If our simplicial complex is a graph (d = 1), we recover the usual definition of a
spanning tree for a graph. Since H1(Υ;Z) = 0 the spanning tree must be acyclic,
H0(Υ;Q) = 0 implies that Υ is connected and

|F1(Υ)| = |F1(Σ)| − βd(Σ) + β0(Σ)

= |E| − (|E| − |V |+ 1)

= |V | − 1,

means that Υ contains one more vertex than edge.

Example 1.1.13. Let Σ be the simplicial complex in Figure 1.1. We can form a
2-simplicial spanning tree by choosing any three facets. It follows that there are four
distinct spanning trees. We could also construct 16 different 1-simplicial spanning
trees.

Definition 1.1.14. Let Σ be a simplicial complex and let Υ be an i-simplicial span-
ning tree. Define the Laplacian L : ZFi → ZFi by

Li := ∂i+1∂
∗
i+1.

Let Θ be the set of i-faces in Fi(Σ) but not in Fi(Υ). Define the reduced Laplacian
L̃ : ZΘ→ ZΘ by removing the rows and columns corresponding to i-faces in Υ from
the full Laplacian. Sometime we will also denote Θ by F̃i(Σ).

1.2 Critical Groups

With a handle on homology, we can now introduce our other main object of interest,
the critical group. We will motivate our study of critical groups by looking at the
abelian sandpile model which is is similar to the game played in the introduction. The
definitions and theorems in this section come from [6] and a more complete account
of the abelian sandpile model can be found there.
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1.2.1 Sandpile Groups

To introduce the concept of critical groups of simplicial complexes we will look at
what is known as the Abelian Sandpile Model. Before proceeding let us clarify some
notation. Let G = (V,E) be an undirected graph with vertex set V and edge set
E. We allow multiple edges between the same pair of vertices and define the weight
function

wt(v, w) := the number of edges between v and w.

For v ∈ V we define

deg(v) :=
∑
w∈V

wt(v, w).

Definition 1.2.1. A sandpile graph is a pair (G,s) where G is a connected graph and
s ∈ V . We refer to s as the sink. We denote V \ s by Ṽ .

At the start of the game, each vertex, except the sink, has some nonnegative
number grains of sand placed on it.

Definition 1.2.2. A configuration on a graph is an element in ZV . A configuration
on a sandpile graph G is an element c ∈ ZṼ . For a configuration c =

∑
v∈Ṽ cvv, a

vertex v ∈ Ṽ is stable if cv < dv = deg(v), otherwise it is unstable. A configuration is
stable if for all v ∈ Ṽ , the vertex v is stable.

Each turn a non-sink vertex fires by sending a chip to each of its neighbors. That
is, when vertex i fires, it loses a number of grains of sand equal to it degree, and each
of its neighbors gain a single grain of sand. We can describe firing a vertex formally
using a familiar object.

Definition 1.2.3. Let G be a sandpile graph. The Laplacian of G is the mapping
L : ZV → ZV given by

L(v) := deg(v)v −
∑
u∈V

wt(v, u)u.

The reduced Laplacian of G is the mapping L : ZṼ → ZṼ is given by

L̃(v) := deg(v)v −
∑
u∈Ṽ

wt(v, u)u.

Example 1.2.4. Using definition 1.2.3 we calculate that the reduced Laplacian of
the sandpile graph in Figure 1.1 is

L̃ =

 3 −1 −1
−1 3 −1
−1 −1 3

.

Let us calculate the reduced Laplacian using the method from section 1.1.1. As noted
earlier, a graph is a one dimensional simplicial complex. We can form the augmented
chain complex for an arbitrary graph by
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0→ ZE ∂1−→ ZV ∂0−→ Z→ 0.

Using the boundary mappings we calculated earlier we get that

∂1 ◦ ∂∗1 =


3 −1 −1 −1
−1 3 −1 −1
−1 −1 3 −1
−1 −1 −1 3

.

Removing the row and column associated with the sink vertex returns the reduced
Laplacian which is the same matrix that we calculated previously.

In fact, we can show in general that the two definitions we have given for the
Laplacian are the same

(∂1 ◦ ∂∗1)(v) =
∑

e∈V (G)
v∈e

∂1(e)

= deg(v)v −
∑

(u,v)=e∈E

wt(v, u)u

= L(v).

It follows that firing a vertex is the same as subtracting the associated column of the
Laplacian from the current configuration vector.

Intuitively, we would like to avoid having a negative quantity of sand, so we will
add restrictions about when a vertex is allowed to fire.

Definition 1.2.5. Let c be a configuration on the sandpile graph (G, s). Let v1, . . . , vk
be a sequence of nonsink vertices. We denote the configuration after firing each vertex
by c(v1, . . . , vk). A firing sequence is valid if v1 is unstable and vi 6= s is unstable
after firing vertices v1, . . . , vi−1) for i = 2, . . . , k.

It is natural to wonder if every configuration will eventually stabilize if enough
unstable vertices are fired. Furthermore, if a configuration does eventually stabalize,
is the configuration reached the same no matter what order the vertices are fired in?
The answer to both questions is yes.

Theorem 1.2.6. ([6]) Every configuration c on G has a unique stabilization. We
denote the stabilization of c by (c)◦.

Definition 1.2.7. We define a binary operation called stable addition and denoted
⊕ by

a⊕ b = (a+ b)◦.

Definition 1.2.8. Let r ∈ NṼ be stable. We say that r is critical if for each t ∈ NṼ
there exists s ∈ NṼ such that

(s+ t)◦ = r.
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This leads us to the main result of the section.

Theorem 1.2.9. The critical elements of G form a group under ⊕, denoted S(G),
called the sandpile group.

To illustrate the concepts from this section we give an explicit example of a sand-
pile group.

1

32

s

Figure 1.2: Sandpile Graph

Example 1.2.10. Let G be the graph in Figure 1.2.10. The critical configurations
are

(2,2,1) (2,2,0) (1,2,0) (2,0,1)
(0,2,1) (2,1,0) (1,2,1) (2,1,1).

Let us calculate a few stable additions

((2, 2, 0)⊕ (2, 2, 0))◦ = (2, 2, 0)
((1, 2, 0)⊕ (2, 2, 0))◦ = (1, 2, 0).

Tedious legwork would demonstrate that these configurations do form a group under
stable addition. More work shows that S(G) ∼= Z8.

Before moving on, it is worth looking at the results of this section from an algebraic
perspective. Suppose that G has n vertices not including the sink. It is clear that
(∂0 ◦ L̃)(v) = 0 so we can write a new chain complex

ZV L→ ZV ∂0−→ Z→ 0.

It easy to check that rank (L) = n = rank ker ∂0. It follows that ker(∂0)/im L is a
finite abelian group.

Definition 1.2.11. Let Σ be a simplicial complex. Then the zero-order critical group
of Σ is

K0(Σ) := ker ∂0/im L.

Our last order of business is to establish a relation between the sandpile group
and the zero order critical group.

Theorem 1.2.12. Let c =
∑

v∈Ṽ cvv ∈ NṼ and define c̃ = c − (
∑

v∈Ṽ cv)s ∈ ZV .
There are isomorphisms of abelian groups
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S(G) → ZṼ /im L̃ → K0(G)

c 7→ c+ L̃ 7→ c̃+ L̃.

Thus, each element of ZṼ is equivalent to a unique element modulo the image of
the reduced Laplacian. The second isomorphism shows that up to isomorphism, the
sandpile group does not depend on the choice of the sink vertex.

1.2.2 Higher Order Critical Groups

The notion of critical groups for simplicial complexes was developed in [3]. We sum-
marize some of their theorems and definitions here.

The setting for this section will be a simplicial complex Σ with augmented chain
complex and boundary maps described as above. We can now construct a chain
complex in analogy to the one created in section 1.2.1 using the Laplacian

ZFi
Li→ ZFi

∂i−→ ZFi−1.

Definition 1.2.13. The ith critical group, denoted Ki(Σ), is given by

Ki(Σ) :=
ker ∂i
im Li

=
ker ∂i

im ∂i+1∂∗i+1

.

We can now state the main result of the chapter.

Theorem 1.2.14. ([3]) Let Σ be a simplicial complex and let Υ be an i-simplicial
spanning tree. Let Θ = Fi(Σ) \ Fi(Υ). Then if H i−1(Υ;Z) = 0,

Ki(Σ) = ZΘ/im L̃.

Note that here we require H i−1(Υ;Z) = 0, not just that H i−1(Υ;Q) = 0 as
required for an i-simplicial spanning tree.

To clarify the previous result we offer the following example.

Example 1.2.15. Let Σ be the simplicial complex in Figure 1.1. A 1-simplicial
spanning tree can be formed using the faces f123, f124, f134. We calculate that the
reduced Laplacian is

L̃i =


23 24 34

23 2 −1 1
24 −1 2 −1
34 1 −1 −2

.

Then K1(Σ) = ZF1(Σ)/im L̃1 = Z4. A similar method gives that K0(Σ) = Z4 × Z4.
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1.2.3 Critical Groups as a Model of Discrete Flow

Recall that we defined a configuration vector on a sandpile graph to be c ∈ ZṼ and a
configuration on the entire graph to be c ∈ ZV . For an arbitrary simplicial complex
we define a configuration of i-faces as c ∈ ZFi(Σ). Each element of the critical group
Ki(Σ) can be represented by a configuration vector modulo the equivalence relation
given by the Laplacian.

Let us examine the one-skeleton of a simplicial complex Σ. There is a natural
notion of interpreting a configuration vector on the 1-faces of Σ as flow along the
edges. A positive value would indicate flow in the direction that the edge is oriented
and a negative value would indicate flow in the opposite direction of the orientation.
In general we can think of a configuration vector c describing i-flow with the under-
standing that a positive value means in the direction of the orientation and a negative
value indicates flow in the direction opposite the orientation.

The boundary map ∂i naturally converts a configuration vector (or in our new
terminology an i-flow) into an (i − 1)-flow. In the case of graphs, firing a vertex
meant that no grains of sand were created or lost. With i = 2, firing leaves the net
flow into a vertex unchanged. If c is in ker ∂i then the sum of the (i−1)-flows resulting
from applying the boundary map ∂i must cancel.

Configurations c and c′ in critical groups are equivalent if there exists some linear
combination of columns from the Laplacian that we can add to c to form c′. The
analogous concept that we developed for sandpile graphs was that two configurations
were equivalent if there existed a firing sequence that moved us from one configuration
to the other. We can develop a similar notion of firing an i-face.

In the case of i = 1, firing an edge (subtracting the corresponding column vector
to the configuration vector) means that we divert a unit of flow around each 2-face
that the edges sits on. In general firing an i-face means diverting a unit of flow around
each i+ 1-face that the i-face sits on. The next example gives a visual demonstration
of this.

Example 1.2.16. Let Σ be the simplicial complex pictured in Figure 1.2 (a) with
the faces {123}, {234} included. The Laplacian for Σ is given by

L1 =



12 13 23 24 34

12 1 −1 1 0 0
13 −1 1 −1 0 0
23 1 −1 2 −1 1
24 0 0 −1 1 −1
34 0 0 1 −1 1

.
Suppose that we are in the configuration pictured in (b) and fired edge (23). With
our notion of conservative flow, this is the same as diverting a unit of flow around
the face (123) and the face (234). The result of this firing is pictured in (c). Firing
edge (12) in the configuration pictured in (b) results in the configuration pictured in
(d). Note that each of these firings is the same as subtracting a column of L1 from
the current configuration.
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Figure 1.3: Conservative 1-flows and firings

As noted above we have diverted one unit of flow around each of the 2-faces
that e12. This firing is precisely the same as subtracting the 12 column of the Lapla-
cian from the configuration.

Let us again return to the the abelian sandpile model. For sandpile graphs, having
chosen a sink, we were able to identify critical elements that formed a set of coset
representatives for the critical group. Our notion of a critical configuration was
predicated on the notion of stability. We defined a configuration stable if ci < deg(vi)
for each vertex in G. This worked because firing a vertex could only ever increase or
leave unchanged the amount of sand on other vertices.

In higher dimension however, as we saw in the previous example, firing an i-face
can actually cause the flow along some other i-faces to decrease. It would perhaps
seem natural to then define stability in such a way that we would say an i-face is
stable if firing it would force the flow along any i-face into being negative.

Example 1.2.17. Let Σ be the simplicial complex from Figure 1.1. Let us examine
the 2−skeleton of Σ. A simplicial spanning tree is given by {f14, f24, f34} so it suffices
to look at configurations on the edges . Suppose we are given the configuration (2, 2, 1)
then we have the following

(2, 2, 1)
e12−→ (0, 3, 0)

e13−→ (1, 1, 1)

(2, 2, 1)
e13−→ (3, 0, 2)

e23−→ (2, 1, 0).

Now, under our definition of stability, both configurations (1, 1, 1) and (2, 1, 0) are
stable because no edge can be fired without forcing the flow along another edge to
be negative. It follows that this definition of stability fails to force configurations to
stabilize uniquely.

It remains an open question of how to naturally define stability in a way that
gives a canonical set of representatives analogous to the critical configurations found
for sandpile groups.

1.2.4 Relation to Homology Groups

From the previous definitions, it is clear that homology groups and critical groups
have similar forms—the homology group is formed by modding out by a few more
things than the critical group. It is natural to wonder if there is an easy way to relate
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these objects. In order to sufficiently answer this question we need to introduce a
little bit more machinery. These results come from [2] and a more complete exposition
along with proofs can be found there. We will use the concept of simplicial cuts and
flows to relate critical groups and homology groups.

Definition 1.2.18. Let Σ be a d-dimensional simplicial complex with associated
boundary maps ∂i. A cut of Σ is the set of nonzero faces for an element of im ∂∗d . A
flow is an element of ker ∂d.

Remark 1.2.19. We have unfortunately now overloaded the term flow. In the pre-
vious section we used the term flow to literally mean flow across an i-face and in this
section we mean the definition given above. Both of these names are consistent with
current literature so this overloading is unavoidable. When the word flow appears its
meaning should be clear from context.

Example 1.2.20. Let G be the graph in Figure 1.4. By Definition 1.2.18 , we can
get a cut for each vertex v by looking at each of the edges in ∂∗1(v). For instance, a
cut about 0 is the edge set {01, 12}.

4

5

6

7

8

9

2

3

1

0

Figure 1.4: Graph for Example 1.2.20

A flow for a graph is simply a cycle since the boundary of a cycle will be zero. For
G, the edge sets {01, 13, 35, 54, 42, 20} and {01, 13, 35, 57, 78, 89, 96, 64, 42, 20} give
flows. We can check this by applying the boundary map:

∂1(12+24+46+65+53+31) = v1−v2 +v2−v4 +v4−v6 +v6−v5 +v5−v3 +v3−v1 = 0.

Example 1.2.21. Let Σ be the simplicial complex in Figure 1.5. We can get a cut
by looking at ∂∗2(σ) for σ ∈ F1(Σ). For instance ∂2(13) takes nonzero values for the
faces {123, 134, 135} which gives a cut.
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1

2
3

4

5

Figure 1.5: Simplicial Complex for Example 1.2.21

The sets of faces {123, 124, 134, 234} and {124, 125, 134, 135, 234, 235} form flows.
Applying ∂ to the first flow (oriented in a cycle) gives us zero:

∂(123−124+134−234) = 12−13+23−12+14−24+13−14+34−23+24−34 = 0.

Definition 1.2.22. Let Σ be a pure d-dimensional simplicial complex with associated
boundary maps ∂i. Then we define the cut lattice of Σ by

C(Σ) = imZ ∂
∗
d ,

and the flow lattice of Σ by

F(Σ) = kerZ ∂d.

Definition 1.2.23. The cutflow group is Zn/(C ⊕ F).

Definition 1.2.24. Let A be a group. Then the torsion summand is the subgroup
of A consisting of element of finite order. We denote this subgroup by

T(A).

Theorem 1.2.25. Let Σ be a pure d-dimensional simplicial complex. Then the fol-
lowing is a short exact sequence

0→ Zn/(C ⊕ F)→ Kd−1(Σ)→ T(Hd−1(Σ,Z))→ 0.

Proof. Observe that im ∂d∂
∗
d ⊆ im ∂d ⊆ ker ∂d−1. Thus, we can form the short exact

sequence

0→ im ∂d/im ∂d∂
∗
d → ker ∂d−1/im ∂d∂

∗
d → ker ∂d−1/im ∂d → 0.

The final part of the proof is to show that the cutflow group is isomorphic to
im ∂d/im ∂d∂

∗
d . Applying ∂d gives

∂d(Zn/(C ⊕ F) = im ∂d/im ∂d∂
∗
d

since ∂d(Zn) gives im ∂d and ∂d(im ∂∗d⊕ker ∂d) = im ∂d∂
∗
d . Furthermore, ∂d is injective

because Zn/(C ⊕F) ⊆ Zn/ker ∂d and ∂d is surjective on Zn/ker ∂d. Thus ∂d gives an
isomorphism. This gives the desired short exact sequence.
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Corollary 1.2.26. Let Σ be a pure d-dimensional simplicial complex. Then the fol-
lowing is a short exact sequence

0→ Zn/(C ⊕ F)→ Ki−1(Σ)→ T(H i−1(Σ,Z))→ 0.

for 1 ≤ i ≤ d.

Proof. The i-skeleton of a pure d-dimensional simplicial complex is a pure i-dimensional
simplicial complex. By Theorem 1.2.25 the result follows immediately.





Chapter 2

Morphisms and Products

In this chapter we define a class of mappings that induce homomorphisms on the asso-
ciated critical groups. We also define two categorical products on abstract simplicial
complexes (one for dimensional preserving mappings and one for general mappings)—
a tool we will use in chapter three.

2.1 Mappings of Critical Groups

2.1.1 Harmonic Morphisms of Graphs

Baker and Norine introduce a class of graph homomorphisms called harmonic
morphisms in [1]. In this section, we will present their definitions and prove that
harmonic morphisms induce a group homomorphism between critical groups. In the
subsequent section we will generalize these results for simplicial complexes.

Definition 2.1.1. Let G be a graph. We will denote the edge set of G by E(G) and
the vertex set by V (G). We say that x, y ∈ V are adjacent if (x, y) ∈ E(G) and
denote this by x ∼ y.

Definition 2.1.2. Let G and G′ be graphs. Let φ : G → G′. Then φ is called a
harmonic morphism if the following conditions are satisfied:

(1) If x ∼ y in V (G), then either φ(x) ∼ φ(y) or φ(x) = φ(y).

(2) For all x ∈ V (G), x′ ∈ V (G′) such that x′ = φ(x) the quantity

|{e ∈ E(G) : x ∈ e and φ(e) = e′ }|

is the same for all e′ ∈ E(G′) such that x′ ∈ e′.

This definition is actually less complicated then a first read might suggest. Con-
dition (2) states that for for each vertex φ(x) = x′ ∈ V (G′), the number of vertices
that are adjacent to x and mapped to x′′ is the same for any x′′ adjacent to x′. The
following examples are offered to help clarify Definition 2.1.2.
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G G′ G′′

1

23

4

1

2

3

1

23

Figure 2.1: Graphs used for Example 2.1.3 and Example 2.1.4.

Example 2.1.3. Take G and G′ from Figure 2.1. Let φ : G → G′ by φ(1) = 1,
φ(3) = φ(2) = 2 and φ(4) = 3. It is easy to check that both conditions (1) and (2)
are satisfied by this mapping, thus φ is a harmonic morphism.

Example 2.1.4. Take G and G′′ from Figure 2.1. Let φ : G → G′′ by φ(1) = 1,
φ(2) = 2, φ(3) = 3 and φ(4) = 1. Observe that there are two vertices {1, 4} ∈ G1

that are mapped to 1 ∈ G2 but only one vertex {3} ∈ G1 that is mapped to 3 ∈ G2.
Thus φ fails condition (2). Thus, φ is not a harmonic morphism.

Remark 2.1.5. If φ is a harmonic morphism and e = (x, y) ∈ E(G) then we say that
φ(e) = φ(x) if φ(x) = φ(y) and that φ(e) = e′ = (φ(x), φ(y)) ∈ E(G′) if φ(x) 6= φ(y).

Before proving the main result of this subsection it is necessary to provide a
number of useful facts about harmonic morphisms.

Definition 2.1.6. Let G and G′ be simple graphs. Let φ : G → G′ be a harmonic
morphism. Let x ∈ V (G). Define the vertical multiplicity of x as

vφ(x) := |{e ∈ E(G) : x ∈ e, φ(e) = φ(x)}|

and the horizontal multiplicity of x as

mφ(x) := |{e ∈ E(G) : x ∈ e, φ(e) = e′ ∈ E(G′)}|.

Condition (2) of Definition 2.1.2 guarantees that mφ(x) is the same no matter
which e′ ∈ E(G′) is picked. The next lemma gives a relation between the degree of a
vertex x and its horizontal and vertical multiplicity.

Lemma 2.1.7. Let G and G′ be simple graphs. Let φ : G1 → G2 be a harmonic
morphism.

deg(x) = deg(φ(x))mφ(x) + vφ(x).

Proof. The quantity deg(x) counts the number of vertices adjacent to x in G. The
quantity vφ(x) counts the number of vertices y ∼ x ∈ V (G) such that φ(x) = φ(y) and
deg(φ(x))mφ(x) counts the number of vertices y ∼ x ∈ V (G) such that φ(x) 6= φ(y).
The result then follows from condition (1) of Definition 2.1.2.
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Definition 2.1.8. Let φ : G→ G′ be a harmonic morphism. Define the pushforward
mapping

φ∗ : ZV (G)→ ZV (G′)

c 7→
∑
v∈V (g)

cvφ(x).

Theorem 2.1.9. Let G and G′ be graphs. Let φ : G→ G′ be a harmonic morphism.
Then φ∗ induces a mapping from K(G) to K(G′).

Proof. It suffices to show that φ∗ maps a firing rule for G to an integer combination
of firing rules in G′.

φ∗

deg(x)x −
∑

(x,y)∈E(G)

y


= deg(x)φ(x)−

∑
(x,y)∈E(G)

φ(y)

= (deg(φ(x))mφ(x) + vφ(x))φ(x)− vφ(x)φ(x)−
∑

(φ(x),y′)∈E(G′)

mφ(x)y′

= mφ(x)

deg(φ(x))φ(x)−
∑

(φ(x),y′)∈E(G′)

y′

 .

Which is an integer multiple of the firing rule for φ∗(x) in G2.

1
23

4

5 6

3

2

5 6

1 4

Figure 2.2: Simplicial Complex used for Example

A logical question is whether harmonic morphisms are the only type of morphism
that induces a mapping of critical groups. The following example show this is not the
case.

Example 2.1.10. Refer to Figure 2.2. Let G be the graph on the left hand side and
let G′ be the graph on the right hand side. Let φ : G→ G′ be a morphism of graphs
defined by φ(2) = φ(3) and φ(v) = v for all other vertices in G. This mapping fails
condition (2) for harmonic morphisms. On the other hand, we can check that firing
any vertex in G maps to something in the image of the Laplacian of G′. For example,
suppose we fire vertex 2 in G. Then we have that
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φ∗


−1
3
−1
−1
0
0

→

−1
2
−1
0
0

.

The Laplacian for G′ is 
1 −1 0 0 0
−1 4 −1 −1 −1
0 −1 1 0 0
0 −1 0 2 −1
0 −1 0 −1 2

.

Then adding columns two, four, and five shows that the firing rule in G is mapped
to an integer combination of firing rules in G′.

Theorem 2.1.11. Let G be a connected graph such that G = G1 ∪ · · · ∪ Gn and
Gi ∩Gj = v ∈ V (G) for all i 6= j ∈ [n]. Then

K0(G) = K0(G1)× · · · ×K0(Gn)

Proof. Choose v be the sink vertex and let Ai = L̃ be the reduced Laplacian for Gi.
Then the reduced Laplacian for G is given by

L̃ =


A1 0 · · · 0
0 A2 · · · 0
...

...
. . .

...
0 0 · · · An

 .

Then

S(G) = ZṼ /im L̃ = S(G1)× · · · × S(Gn).

By Theorem 1.2.12, S(G) is isomorphic to K0(G) and S(Gi) is isomorphic to K0(Gi)
for each i in [n]. This gives that

K0(G) = K0(G1)× · · · ×K0(Gn).

Corollary 2.1.12. Let H be a graph and let G be as in the previous theorem and let
φ : H → G be a harmonic morphism. Let Ui = φ−1(Gi). Then if φ|Ui

: H → Gi is
harmonic for each i ∈ [n], φ∗ gives a mapping of critical groups.

Thus, in the previous example, even though φ is not technically harmonic, it
still induces mappings of critical groups by being harmonic on the subgraphs formed
around vertex (23).
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2.1.2 Simplicial Morphisms

Our next goal is to find conditions that ensure a morphism of simplicial complexes
induces a mapping on the critical groups.

Definition 2.1.13. Let Σ and Σ′ be simplicial complexes. Let φ : Σ→ Σ′. Then φ is
called a simplicial morphism if φ(σ) ∈ Σ′ for each σ ∈ Σ. We will say that a simplicial
morphism is dimension preserving if for each σ ∈ Σ, we have dim(σ) = dim(φ(σ)).

Definition 2.1.14. We say that σ, σ′ ∈ Fn(Σ) are adjacent if there exists some
τ ∈ Fn+1(Σ) such that σ, σ′ ∈ τ . We denote adjacent faces σ and σ′ by σ ∼ σ.

The next definition is a generalization of the notion of a harmonic morphism.

Definition 2.1.15. Let Σ be a d-dimensional simplicial complex and let Σ′ be a
simplicial complex. Let φ : Σ → Σ′ be a simplicial morphism. If for all σ ∈ Fi−1(Σ)
the quantity

|{ρ ∈ Fi−1(Σ) : ρ ∼ σ and φ(ρ) = ρ′}|

is the same for all ρ′ ∈ Fi−1(Σ′) such that ρ′ ∼ σ′ = φ(σ) then we say φ is i-harmonic.
A simplicial morphism φ that is also i-harmonic will be denoted φi.

Definition 2.1.16. Let Σ be a d-dimensional simplicial complex with associated
boundary maps ∂i. Let τ ∈ Fi+1 and let σ ∈ τ . Then we say that τ induces a positive
orientation on σ if ∂i+1τ has a positive sign for σ and induces a negative orientation
on σ if ∂i+1τ has a negative sign for σ.

Example 2.1.17. Let Σ = {123} be a simplicial complex. Since

∂2{123} = e12 − e13 + e23,

the face {123} induces a positive orientation on the edges e12 and e23 and a negative
orientation on the edge e13.

We will use the convention that if the orientation induced by σ and the orientation
induced by φ(σ) are opposite then we will write φ(σ) = −σ′ ∈ Fn(Σ′). This notion is
consistent with our idea of critical groups as a model of discrete flow.

Definition 2.1.18. Let Σ be a simplicial complex and let σ ∼ σ′ ∈ Fn(Σ). Then we
define

sign(σ, σ′)

=

{
−1 : if σ and σ′ induce opposite orientations on their intersection.

1 : if σ and σ′ induce the same orientations on their intersection.

By convention we say that sign(σ, σ) = 1 and that if σ is not adjacent to σ′ then
sign(σ, σ′) = 0.

Lemma 2.1.19. Let φ : Σ → Σ′ be a harmonic morphism. Let σ, σ′ ∈ Fn(Σ). Then
if (i) dim(σ) = dim(φ(σ)), (ii) dim(σ′) = dim(φ(σ′)), and (iii) σ ∼ σ′,
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sign(σ, σ′) = sign(φ(σ), φ(σ′)).

Proof. Without loss of generality assume that sign(σ, σ′) = 1. The proof is easy to
check by cases

φ(σ) = ρ, φ(σ′) = ρ′ ⇒ sign(ρ, ρ′) = 1 ⇒ sign(φ(σ), φ(σ′)) = 1

φ(σ) = −ρ, φ(σ′) = ρ′ ⇒ sign(ρ, ρ′) = −1 ⇒ sign(φ(σ), φ(σ′)) = 1

φ(σ) = ρ, φ(σ′) = −ρ′ ⇒ sign(ρ, ρ′) = −1 ⇒ sign(φ(σ), φ(σ′)) = 1

φ(σ) = −ρ, φ(σ′) = −ρ′ ⇒ sign(ρ, ρ′) = 1 ⇒ sign(φ(σ), φ(σ′)) = 1.

We next generalize the concept of horizontal and vertical multiplicity defined
above for graphs.

Definition 2.1.20. Let φ : Σ → Σ′ be a simplicial morphism and let σ ∈ Fn−1(Σ).
Define the vertical multiplicity of φ at σ by

vφ(σ) = |{τ ∈ Fn(Σ) : σ ∈ τ and dim(φ(τ)) < dim(τ)}|.

If φ is d-harmonic, then we define the horizontal multiplicity of φ at σ by

mφ(σ) = |{τ ∈ Fn : σ ∈ τ and φ(τ) = ±τ ′}|.

Since φ is d-harmonic, mφ(x) is independent of the choice of τ ′.

2.1.3 Properties of Simplicial Harmonic Morphisms

Our main goal is to show that simplicial harmonic morphisms induce mappings on
critical groups.

Definition 2.1.21. Let σ ∈ Fn(Σ) be a simplex. Then we define the k-degree of σ
for k ≥ n by

degk(σ) = |{τ ∈ Fk+1(σ) : σ ∈ τ}|.

Lemma 2.1.22. Let φ : Σ → Σ′ be a harmonic morphism. Let σ ∈ Fn(Σ) be a
simplex. Then

degn(σ) = degn(φ(σ))mφ(σ) + vφ(σ).

Proof. Let S = {τ ∈ Fn+1 : σ ∈ τ}. Clearly |S| = degn(σ). Then degn(φ(σ))mφ(σ)
is the number of τ ∈ S such that dim(τ) > dim(φ(τ)) and vφ(σ) is the number of
τ ∈ S such that dim(τ) = dim(φ(τ)). The result follows.

Definition 2.1.23. Let φn : Σ→ Σ′ be a simplicial harmonic morphism. Define the
pushforward mapping

φ∗ : ZFn(Σ)→ ZFn(Σ′)

c 7→
∑

σ∈Fn(σ)

cσ φ(σ).
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Theorem 2.1.24. Let φn : Σ → Σ′ be a simplicial morphism. Then φ∗ induces a
mapping from Kn−1(Σ) to Kn−1(Σ′).

Proof. It suffices to show that φ∗ maps a firing rule in Σ to a integer linear combination
of firings in Σ′.

φ∗

(
degn(σ) −

∑
σ∼σ′

sign(σ, σ′)σ′

)
= degnφ(σ)−

∑
σ∼σ′

sign(σ, σ′)σ′

= degn(σ)φ(σ)−
∑
σ∼σ

φ(σ)=φ(σ′)

sign(σ, σ′)φ(σ)−
∑
σ∼σ′

φ(σ)6=φ(σ′)

sign(σ, σ′)φ(σ′)

= degn(σ)φ(σ)− vφ(σ)φ(σ)−
∑
σ∼σ′

φ(σ)6=φ(σ′)

sign(φ(σ), φ(σ′))φ(σ′)

= mφ(σ)

φ(σ)−
∑

φ(σ)∼φ(σ′)

sign(φ(σ), φ(σ′))φ(σ′)

 .

Which is an integer multiple of firing φσ in Σ′ as desired.

2.2 Categorical Product of Simplicial Complexes

We will define two categorical products for simplicial complexes: one for degree pre-
serving simplicial morphisms and one for arbitrary simplicial morphisms.

2.2.1 Categorical Products

Definition 2.2.1. Let C be a category and let X and X ′ be objects in that category.
We say that Y is the product of X and X ′ and denote this by Y = X×X ′ if and only if
it satisfies the universal property: there exist projection mappings πX : X ×X ′ → X
and πX′ : X×X ′ → X ′ such that for every object Z in C, given morphisms f : Z → X
and g : Z → X ′ there exists a unique morphism h such that the diagram in Figure
2.3 commutes.

Example 2.2.2. Let C be the category of sets. Let X and X ′ be sets, and let ×
be the Cartesian product. Then X × X ′ = {(x, x′) : x ∈ X, x′ ∈ X ′}. To see that
this is the categorical product define the projection mappings in the natural way:
πX(x, x′) = x and πX′(x, x

′) = x′. Let Z be a set and define mappings f : Z → X
and g : Z → X ′. In order for the diagram shown in Figure 2.3 to commute, we
must have that h(z ∈ Z) = (f(z), g(z)). It follows that the Cartesian product is the
categorical product for sets.
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Z

X ×X ′

X X ′

πX πX′

f g∃!h

Figure 2.3: Diagram for Categorical Product

2.2.2 Product on Simplicial Complexes - General Simplicial
Morphisms

Definition 2.2.3. Let Σ and Σ′ be simplicial complexes. Then the product Σ × Σ′

is a simplicial complex such that

• F0(Σ× Σ′) is the Cartesian product F0(Σ)× F0(Σ′)

• σ ∈ Fk(Σ× Σ′) if and only if πΣ(σ) ∈ Fk(Σ) and πΣ′(σ) ∈ Fk(Σ′),

where for σ = ((v1, v
′
1), . . . (vn, v

′
n)) ∈ Σ× Σ′,

πΣ : Σ× Σ′ → Σ πΣ′ : Σ× Σ′ → Σ′

σ → (v1, . . . , vn) σ → (v′1, . . . , v
′
n).

Theorem 2.2.4. The product × defined in Definition 2.2.3 is the categorical product
for abstract simplicial complexes with simplicial morphisms.

Proof. It is clear that πΣ and πΣ′ are simplicial morphisms. Thus, it suffices to check
that the mapping h : S → Σ× Σ′ induced by f : S → Σ and g : S → Σ′ is a unique
simplicial morphism. Let v ∈ F0(S), then the only way for the diagram to commute
is to define h(v) = (f(v), g(v)). Interpolating faces based on the mapping of vertices
then gives a unique simplicial morphism.

Theorem 2.2.5. Let Σ,Σ′ be simplicial complexes. Then the projection mappings πΣ

and πΣ′ are harmonic.

Proof. Let σ ∈ Fk(Σ × Σ′) such that π(σ) = σ′ ∈ Fk(Σ). We can express σ′ as the
vertex set (v1, . . . , vk+1). Let T = {τ ∈ Fk+1(Σ×Σ′) : σ ∈ τ} and T ′ = {τ ′ ∈ Fk+1(Σ) :
σ′ ∈ τ ′}. It suffices to show that for any ρ, ρ′ ∈ T ′ the same number of things from
T are mapped to each. Since σ ∈ ρ and σ′ ∈ ρ, we can write ρ = (v1, . . . , vk+1, v)
and ρ′ = (v1, . . . , vk+1, v

′) for some v, v′ ∈ F0(Σ). Let ν ∈ T such that πΣ(ν) = ρ.
Then we can express ν as ((v1, u1), . . . , (vk+1, uk+1), (v, uk+2)) for some u1, . . . , uk+2

in F0(Σ′). Then ν ′ = ((v1, u1), . . . , (vk+1, uk+1), (v′, uk+2)) is also in T . Then since
π(ν ′) = T ′ it follows that the same number of faces in T are mapped to each face
in T ′.
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Corollary 2.2.6. The projection mappings πΣ and πΣ′ induce mappings of critical
groups.

Example 2.2.7. Let Σ be a 2-simplex {1, 2, 3}. Then the one-skeleton of Σ×Σ can
be pictured in Figure 2.4.

.

Figure 2.4: 2-simplex × 2-simplex

2.2.3 Product on Simplicial Complexes - Dimension-Preserving
Morphisms

Definition 2.2.8. Let Σ and Σ′ be simplicial complexes in the category of simplicial
complexes with dimension-preserving morphisms. Then the product Σ × Σ′ is a
simplicial complex such that

• F0(Σ× Σ′) is the Cartesian product F0(Σ)× F0(Σ′)

• σ ∈ Fk(Σ × Σ′) if and only if πΣ(σ) ∈ Fk(Σ) and πΣ′(σ) ∈ Fk(Σ′) and dim(σ)
= dim(πΣ(σ)) = dim(πΣ′(σ)),

where for σ = ((v1, v
′
1), . . . (vn, v

′
n)) ∈ Σ× Σ′,

πΣ : Σ× Σ′ → Σ πΣ′ : Σ× Σ′ → Σ′

σ → (v1, . . . , vn) σ → (v′1, . . . , v
′
n).

Theorem 2.2.9. The product × defined in Definition 2.2.8 is the categorical product
for abstract simplicial complexes with degree preserving morphisms.

Proof. The same proof as in 2.2.4 suffices.

Theorem 2.2.10. Let Σ,Σ′ be simplicial complexes. Then the projection mappings
πΣ and πΣ′ are harmonic.
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S

Σ× Σ′

Σ Σ′

πΣ πΣ′

f g∃!h

Figure 2.5: Diagram for Categorical Product of Simplicial Complexes

Proof. The same proof as in 2.2.5 suffices.

Corollary 2.2.11. The projection mappings πΣ and πΣ′ induce mappings of critical
groups.

Example 2.2.12. Let Σ be a 2-simplex {1, 2, 3}. Then Σ × Σ in the category with
dimension-preserving morphisms is pictured in Figure 2.6.

.

Figure 2.6: 2-simplex × 2-simplex
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Simplicial Complexes as Discrete
Varieties

Let Σ be a d-dimensional simplicial complex. In this section we are going to imag-
ine Σ as analogous to a d-dimensional variety where divisors are formal sums of
codimension-1 faces. In this analogy, i-dimensional algebraic cycles corresponds to
simplicial i-chains. The critical group Ki(Σ) is then closed i-chains modulo conser-
vative flow. Our goal is to show that this is similar to the Chow group of algebraic
cycles modulo rational equivalence.

The main objective would be to ultimately form a graded ring

R(Σ) =
⊕
i

Ki(Σ)

whose multiplication encodes simplicial intersection theory.

3.1 Algebraic Geometry

Here we summarize some of the definitions in results of [4] for the purposes of drawing
parallels to our own constructions on simplicial complexes.

Definition 3.1.1. Let X be a variety. A k-cycle, α, on X is a finite formal sum

α =
∑
i

niVi,

where the Vi are k-dimensional subvarieties of X and the ni ∈ Z. The group of
k-cycles of X is denoted Zk(X).

Definition 3.1.2. Let X be a variety. The field of rational functions on a variety X
is denoted R(X). The nonzero elements form the multiplicative group R(X)∗.

Definition 3.1.3. Let X be a variety and let W be a k + 1 dimensional subvariety.
Let r be a rational function on W then define

[div(r)] =
∑

ordV (r)[V ],
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where we are summing over all codimension one subvarieties V of W .

Definition 3.1.4. A k-cycle, α, is rationally equivalent to zero, if there exists a finite
number of k + 1 dimensional subvarieties Wi of X, and ri ∈ R(Wi)

∗, such that

α =
∑

[div(ri)].

The cycles rationally equivalent to zero form a subgroup of Zk(X) denoted Ratk(X).

Definition 3.1.5. The group of k-cycles modulo rational equivalence on X is the
factor group

AkX = ZkX/Ratk(X).

Definition 3.1.6. Let f : X → Y be a proper morphism. Let V be a subvariety of
X and define f(V ) = W . Since f is proper W is a closed subvariety of Y . There is
an induced imbedding of R(W ) in R(V ) which is a finite field extension if W has the
same dimension as V . Define

deg(V/W ) =

{
[R(V ) : R(W )] if dim(W ) = dim(V )

0 if dim(W ) < dim(V ).

Definition 3.1.7. Let f : X → Y be a proper morphism. Then define the pushfor-
ward homomorphism

f∗[V ] = deg(V/W )[W ].

This extends to a homomorphism

f∗ : ZkX → ZkY .

Proposition 3.1.8. [4] Let f : X → Y be a proper, surjective morphism of varieties
and let r ∈ R(X)∗. Then

f∗[div(r)] =

{
[div(N(r))] if dim(X) = dim(Y )

0 if dim(Y ) < dim(X).

where N(r) is the norm of r.

Theorem 3.1.9. [4] Let f : X → Y be a proper morphism. Let α be a k-cycle on X
such that α is rationally equivalent to zero. Then f∗α is rationally equivalent to zero
on Y .

Proof. The result follows from the previous proposition.

It follows that f also induces a homomorphism

f∗ : AkX → AkY .

Definition 3.1.10. Let f : X → Y be a flat morphism of relative dimension n. Then

f ∗[V ] = [f−1(V )].
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This extends to give us a pullback homomorphism

f ∗ : ZkY → Zk+nX.

Theorem 3.1.11. [4] Let f : X → Y be a flat morphism of relative dimension n,
and α a k-cycle rationally equivalent to zero on Y . Then f ∗α is rationally equivalent
to zero in Zk+nX.

Which means that f induces a homomorphism

f ∗ : AkY → Ak+nX.

3.2 Induced Mappings on Class Groups

For this section, let Σ be a pure d-dimensional simplicial complex.

Definition 3.2.1. We denote by Div(Σ) the free abelian group on Fd−1(Σ). We can
write each element D ∈ Div(Σ) as

∑
σ∈Fd−1

D(σ)(σ) where D(σ) ∈ Z. We refer to

D ∈ Div(Σ) as a divisor on Σ. We denote by Div0(Σ) the subgroup

{D : D ∈ Div(Σ) , ∂D = 0 } .

Definition 3.2.2. Let Ck(Σ,Z) be the group of Z-valued functions on Fk(Σ). For
f ∈ Ck(Σ,Z) we define the divisor of f by the formulas

div(f) =
∑

σ∈Fk(Σ)

∑
τ∈Fk+1(Σ)

σ∈τ

f(σ)−
∑
σ∼σ′
σ′∈τ

sign(σ, σ′)f(σ′)

 (σ).

Divisors of the form div(f) for some f ∈ Ck(Σ,Z) are called principal and the group
of principal divisors is denoted Prin(Σ). Clearly Prin(Σ) is a subgroup of Div0(Σ).

The set of principal divisors is analogous to the Laplacian defined earlier. This
can be seen easily by observing that by setting f(σ) = 1 for some σ ∈ Fk(Σ) and
zero for all other faces, we recover the firing rule for sigma. We now come to another
interpretation of the critical group, this time in the language of algebraic geometry.

The next definition is another framing of the critical group, this time in the
language of algebraic geometry.

Definition 3.2.3. The class group of Σ, denoted Cl(Σ) is the quotient group

Cl(Σ) := Div0(Σ)/Prin(Σ).

Our task is to now define pushforward and pullback mappings that induce map-
pings on the class groups.

Lemma 3.2.4. The quantity |{τ ∈ Fn+1(Σ) : φ(τ) = τ ′}| is independent of the choice
of τ ′ ∈ Fn1(Σ

′).



30 Chapter 3. Simplicial Complexes as Discrete Varieties

Proof. Let σ ∈ Fn(Σ′) and suppose there are simplices τ1, τ2 ∈ Fn+1(Σ′) incident to y.
Since φ is harmonic, for each σ ∈ Fn(Σ) such that φ(σ) = σ′ we have that

|{τ ∈ Fn+1(Σ) : σ ∈ τ, φ(τ) = τ1}| = |{τ ′ ∈ Fn+1(Σ) : σ ∈ τ ′, φ(τ ′) = τ2}|.

Thus,

|{τ ∈ Fn+1(Σ) : φ(τ) = τ1}| =
∑

σ∈φ−1(σ′)

|{τ ∈ Fn+1(Σ) : σ ∈ τ, φ(τ) = τ1}|

=
∑

σ∈φ−1(σ′)

|{τ ′ ∈ Fn+1(Σ) : σ ∈ τ ′, φ(τ ′) = τ2}|

= |{τ ′ ∈ Fn+1(Σ) : φ(τ ′) = τ2}|.

Now suppose that τ1, τ2 are arbitrary simplices in Fn+1(Σ′). Since Σ is n-connected,
the result follows by applying the previous result along consecutive edges along a path
containing both τ1 and τ2.

Definition 3.2.5. Let φ be an n-simplicial harmonic morphism. Then define the
degree of φ by the formula

deg(φ) := |{τ ∈ Fn+1(Σ) : φ(τ) = τ ′}|.

By the previous lemma this is well-defined since it is independent of the choice of τ ′.

Definition 3.2.6. Let φ : Σ → Σ′ be a d-harmonic simplicial morphism. We define
the pushforward homomorphism

φ∗(D) :=
∑

σ∈Fd−1(Σ)

D(σ)(φ(x)).

Similarly, we define the pullback homomorphism

φ∗(D′) :=
∑

σ′∈Fd−1(Σ′)

∑
σ∈Fd−1(Σ)
φ(σ)=σ′

mφ(σ)D′(σ′)(σ).

Lemma 3.2.7. Let φ : Σ → Σ′. Let Σ′ be a pure d-dimensional simplicial complex.
For any simplex σ′ ∈ Fd−1(Σ)′

deg(φ) =
∑

σ∈Fd−1(Σ)
φ(σ)=σ′

mφ(x).

Proof. Choose a simplex τ ′ ∈ Fd(Σ′) with σ′ ∈ τ ′. Then∑
σ∈φ−1(σ′)

mφ(x) =
∑

σ∈φ−1(σ′)

∑
τ∈φ−1(τ)
σ∈τ

1

= |φ−1(τ ′)|
= deg(φ).
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Lemma 3.2.8. Let φ : Σ→ Σ′ be a simplicial harmonic morphism, and let D′ ∈ Div(Σ′).
Then φ∗(φ

∗(D′)) = deg(φ)D′.

Proof.

φ∗(φ
∗(D′)) = φ∗

 ∑
σ′∈Fn(Σ′)

∑
σ∈Fn(Σ)
φ(σ)=σ′

mφ(σ)D′(σ′)(σ)


=

∑
σ′∈Fn(Σ′)

∑
σ∈Fn(Σ)
φ(σ)=σ′

mφ(σ)D′(σ′)φ(σ)

=
∑

σ′∈Fn(Σ′)

D′(σ′)(σ′)
∑

σ∈Fn(Σ)
φ(σ)=σ′

mφ(σ)

= deg(φ)D′.

Definition 3.2.9. Let φ : Σ → Σ′ be a simplicial harmonic morphism and let
f : Fn(Σ)→ Z and f ′ : Fn(Σ′)→ Z be functions. Then define φ∗f : Fn(Σ′)→ Z by

φ∗f(σ′) :=
∑

σ∈Fn(Σ)
φ(σ)=σ′

mφ(σ)f(σ)

and define φ∗g : Fn(Σ)→ Z by

φ∗ := g ◦ φ.

Lemma 3.2.10. Let φ : Σ → Σ′ be a harmonic morphism. If dim(Σ′) < dim (Σ)
then

φ∗(div(f)) = 0.

Proof. Let d = dim(Σ). It suffices to show that for each τ ∈ Fd(Σ) and for each

φ(σ)−
∑
σ∼σ′

sign(σ, σ′)φ(σ′) = 0.

Fix τ = (v1, . . . , vd+1) ∈ Fd(Σ). Let σ1 = (v1, . . . , vk−1, v̂k, vk+1, . . . , vd+1). Then
σ1 ∈ τ . Suppose that there is some vi, vj such that φ(vi) = φ(vj), then by definition
φ(σ1) = 0. If there are no such vi and vj, then there exists precisely one vi such
that vi = vk. Let σ2 = (v1, . . . , vi−1, v̂i, vi+1, . . . , vd+1). Then σ2 ∈ τ , σ1 ∼ σ2 and
φ(σ1) = φ(σ2). It follows from the definition of sign that sign(σ1, σ2) = 1. So then

φ(σ1)−
∑
σ1∼σ′

sign(σ1, σ
′)φ(σ′) = φ(σ1)− sign(σ1, σ2)φ(σ2) = 0.
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Remark 3.2.11. We have already proved the first part of the next theorem but we
offer a second proof that is more consistent with the language used in this section.

Theorem 3.2.12. Let φ : Σ → Σ′ be a harmonic morphism, let f : Fn(Σ) → Z and
let f ′ : Fn(Σ′)→ Z. Then

φ∗(div(f)) = div(φ∗f)

and

φ∗(div(f ′)) = div(φ∗f ′).

Proof. Let’s start by rewriting the definition of div(f)

div(f) =
∑

τ∈Fd(Σ)
σ∈τ

((
f(σ)−

∑
σ′∼σ

sign(σ, σ′)f(σ′)

)(
(σ)−

∑
σ∼σ′

sign(σ, σ′)(σ′)

))
.

Note that here we have used the fact that sign(σ, σ′)sign(σ′, σ′′) = sign(σ, σ′′). Now
we can calculate

φ∗(div(f))

=
∑

τ∈Fd(Σ)
σ∈τ

((
f(σ)−

∑
σ′∼σ

sign(σ, σ′)f(σ′)

)(
φ(σ)−

∑
σ∼σ′

sign(σ, σ′)φ(σ′)

))

=
∑

τ∈φ−1(Fd(Σ′))
σ∈τ

((
f(σ)−

∑
σ′∼σ

sign(σ, σ′)f(σ′)

)(
φ(σ)−

∑
σ∼σ′

sign(σ, σ′)φ(σ′)

))
,

where the final equality is given by applying the previous lemma. Applying the defi-
nition of φ∗(f) gives

div(φ∗f))

=
∑

τ ′∈Fd(Σ′)


 ∑
σ∈Fd−1(σ)
φ(σ)=σ1

mφ(σ)f(σ)−
∑
σ2∼σ1

∑
σ′∈Fd−1(Σ)
φ(σ′)=σ2

sign(σ, σ′) mφ(σ′)f(σ′)


(
σ1 −

∑
σ2∼σ1

sign(σ1, σ2)σ2

) .

It suffices to show that for every τ ′ ∈ Fd(Σ′),
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∑
τ∈φ−1(τ ′)

σ∈τ

(
f(σ)−

∑
σ′∼σ

sign(σ, σ′)f(σ′)

)

=

 ∑
σ∈Fd−1(σ)
φ(σ)=σ1

mφ(σ)f(σ)−
∑
σ2∼σ1

∑
σ′∈Fd−1(Σ)
φ(σ′)=σ2

sign(σ, σ′)mφ(σ′)f(σ′)

,

is the same. Fix τ ′. Then the equality follows from the definition of mφ.
We now prove the second part of the theorem. Let g : Fn−1(Σ′) → Z. Let

D′ := div(f ′). Then for every σ ∈ Σ′.

D′(σ) = deg(σ)g(σ)−
∑
σ′∼σ

g(σ).

Applying φ∗ gives

(φ∗div(g))(σ) = (φ∗D′)(σ)

= mφ(σ)D′(φ(σ))

= mφdeg(x)g(φ(x))−mφ(σ)
∑
σ′∼σ

g(σ).

Now take,

div(φ∗g)(σ) = div(g ◦ φ)(σ)

= mφ(σ)deg(σ)g(φ(σ))−
∑
σ∼σ′

g(φ(σ′)).

By lemma 2.1.22

deg(σ)g(φ(σ)) = mφ(σ)deg(φ(σ))g(φ(σ)) +
∑
σ′∼σ

φ(σ)′=φ(σ)

g(φ(σ′)).

Substituting this gives

mφ(σ)deg(σ)g(φ(σ))−
∑
σ′∼σ

φ(σ)′ 6=φ(σ)

g(φ(σ′)).

By definition of mφ(x) this gives

mφ(σ)deg(σ)g(φ(σ))−mφ(σ)
∑

σ′∼σ∈Fn(Σ′)

g(σ′),

which completes the proof.

Corollary 3.2.13. If φ : Σ→ Σ′ is a simplicial harmonic morphism, then

φ∗(Prin(Σ)) ⊆ Prin(Σ′).

and
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Figure 3.1: Simplicial Complex used for Example 3.3.1

φ∗(Prin(Σ)) ⊆ Prin(Σ′).

It follows that φ∗ induces a group homomorphism

φ∗ : Cl(Σ)→ Cl(Σ′),

and that φ∗ induces a group homomorphism

φ∗ : Cl(Σ′)→ Cl(Σ).

3.3 The Analogy Breaks Down

Things have looked good so far. We have manged to find a pushforward and a pullback
mapping that induce a mapping on class groups. Unfortunately, even attempting to
define intersection products for low dimensional structures is difficult as demonstrated
by the next example.

Example 3.3.1. Let Σ be the simplicial complex pictured in Figure 3.1. Recall that
K1(Σ) is Z4 and that K0(Σ) = Z4 × Z4. Form three cycles: C1 = e12 + e23 − e13,
C2 = e13 + e34 − e14 and C3 = e12 + e24 − e14. Observe that

C1 − C2 = 2e13 − e34 + e14 + e12 + e13,

is equivalent to zero. Then C1 ∼ C2, ie C1 is rationally equivalent to C2. Suppose
that we wish to define an the intersection product ∩. We need the following to hold

C3 ∩ C1 ∼ C3 ∩ C2.

Ideally, our intersection would be defined only on the actual intersection of the cycles
(we want C1 ∩ C3 to be some formal sum of v1 and v2). Let’s suppose that

C3 ∩ C1 = av1 − av2

for some a ∈ Z. Now, there is no b ∈ Z such that ±(bv1 − bv3) is equivalent to
av1−av2. This demonstrates that a nonzero intersection product can’t be defined on
the intersection of vertices in the cycle. We would also ideally be able to form our
ring by taking

Z[X1, . . . Xn]/I,
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Figure 3.2: Simplicial complexes used for Example 3.3.3.

where I is an ideal that encodes the relations on the generators and their products,
and the Xi are generators of K1(Σ). But is K1(Σ) generated by a single element and
K0(Σ) requires two generators, so then the ring K1(Σ)⊕K0(Σ), cannot be described
in the form above.

Furthermore, inclusion mappings are not harmonic.

Example 3.3.2. Let Σ,Σ′ be the simplicial complexes in Figure 3.2 and let i : Σ→ Σ′

be the inclusion mapping. It is easy to check that i∗(1,−2, 1) = (1,−2, 1, 0) is not in
the image of the Laplacian for Σ′.

It is similarly unclear how to define a pullback for inclusion mappings that induces
a mapping of critical groups.
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