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Abstract

In this thesis we look at the polynomial invariants and covariants of finite groups

generated by pseudo-reflections and calculate the ideal for the orbit of a single point.





Introduction

Many books have been written on the subjects of invariant theory and its relation

to pseudo-reflection groups. However, most of them present the material in a very

abstract way and consequently at a level a bit beyond most undergraduates. In my

thesis I have tried to give an account of the invariant theory of pseudo-reflection

groups which is more concrete and down to earth. It is my hope that this thesis can

serve as a more accesible introduction to the subject.

In keeping with this goal, the first chapter provides a basic overview to reflection

and pseudo-reflection groups while the second chapter gives an introduction to their

invariant theory. The main result of the third chapter is a computation of the ideal

and Hilbert function of the orbit of a generic point under a pseudo-reflection group.

From these calculations, a conjecture is made relating the Hilbert function of the

whole group to the Hilbert function of a certain subgroup. The fourth chapter proves

some basic facts about the covariant ring and harmonics of a pseudo-reflection group.





Chapter 1

Reflection and Pseudo-Reflection
Groups

1.1 Reflection Groups

The mathematical definition of a reflection is made in complete accordance with our

nonmathematical notion, as a “flip” through some hyperplane inside Rn.

Definition 1.1.1. A reflection is a linear isomorphism s : Rn → R
n which fixes

pointwise a hyperplane, Hs, and sends any vector orthogonal to Hs to its negative.

Hs is called the hyperplane of s and the orthogonal vector, αs, is called the root

vector (or simply the root) of s. Note that αs is only defined up to a constant.

From this definition, we derive the following formula for the action of s on Rn.

Let x ∈ Rn. Then s(x) = x− 2〈x,α〉
〈α,α〉 α. This subtracts from our original vector twice

its component in the direction of α, thus reflecting it about the line perpendicular

to α. One important property of reflections is that they are orthogonal, or inner

product preserving, transformations i.e. 〈sx, sy〉 = 〈x, y〉. This can be verified from

the formula given above.

One easy way to think about reflections is as n × n real matrices. Since our

space decomposes as Hs ⊕ Rαs, we can choose a basis for Rn by first choosing a

basis x1, . . . , xn−1 for the hyperplane Hs and then completing it to a basis for the

whole space by adding the vector xn = αs. With respect to this basis, s is a diagonal

matrix whose diagonal entries are all one except for the last one which is -1. The

eigenvalue not equal to one, λs, is called the exceptional eigenvalue of s. Thus for

any reflection, s, we have det(s) = λs = −1.
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Definition 1.1.2. A group G ⊂ GL(Rn) is called a reflection group if it is generated

by reflections. (Note that in G each reflection s has order 2.)

Example 1.1.3. In R2 the finite reflection groups are precisely the dihedral groups.

[7, pages 12–14]

When studying reflection groups, we have two main ways to extract information:

by looking at either roots or hyperplanes.

Definition 1.1.4. A root system for a reflection group is a set

∆ = {αs | s ∈ G a reflection,||α|| = 1}.

The root system for a reflection group usually has order greater than the di-

mension of Rn. This means the root vectors αs ∈ ∆ are probably not linearly

independent. What we would like is some analog of a basis for the set ∆.

Definition 1.1.5. A fundamental system for a root system ∆ is a subset Π ⊂ ∆

which satisfies the following properties:

1. The elements of Π are linearly independent.

2. For each α ∈ ∆, α =
∑

β∈Π λiβi where for all i λi ≥ 0 or λi ≤ 0.

Given some root system for a reflection group, the easiest way to find a funda-

mental system is to use our knowledge of the group’s hyperplanes.

Definition 1.1.6. A chamber of a reflection group G is one connected component

of Rn − {Hs | s ∈ G}. The hyperplanes which form the boundary of a chamber are

called its walls.

Using this definition, finding a fundamental system for our group becomes much

easier. Given a reflection group G and a root system ∆, a fundamental system, Π,

for ∆ can be found by choosing any single chamber, C. For each hyperplane, Hs,

there are two vectors in ∆ which are orthogonal to Hs. A root vector αs is in Π if

its hyperplane Hs is a wall of C and αs is on the same side of Hs as C.
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Example 1.1.7. Let G be the symmetry group of a square in R2. The hyperplanes

of this group are given by the lines y = x, y = −x, y = 0 and x = 0. Our root

system ∆ is the set of vectors ±(0, 1), ±(1, 0), ±( 1√
2
, 1√

2
) and ±( 1√

2
, −1√

2
). If we

take as our chosen chamber the set in the first quadrant bounded by the x-axis and

the line y = x, we get as our fundamental system Π the vectors ~β1 = (0, 1) and

~β2 = ( 1√
2
, −1√

2
).

This idea of a fundamental system turns out to be precisely the one we need to

obtain a very simple group presentation for any reflection group G. A theorem of

Coxeter states that every reflection group has a presentation of the following form,

where Π is a fundamental system of G. Let S = {s ∈ G | αs ∈ Π}. For every pair

of elements, si and sj in S, let mij be the order of the product sisj in G. Then

G = 〈s ∈ S | (sisj)mij = 1〉. (Obviously if i = j then mij is 1.) This amazing result

tells us that these simple relations are all that is necessary to completely define our

group G.

Using these group presentations, the finite reflection groups have been completely

classified as four infinite families and six exceptional groups.

The four infinite families of reflection groups are: An (for n ≥ 1), Bn/Cn (for

n ≥ 2), Dn (for n ≥ 4), and I2(n) (for n ≥ 3). The family Bn/Cn splits into two

separate families if we require its root system to form a Z-lattice. (This is used

in Lie theory.) Since in this thesis we will never look at lattices formed by root

systems, we will ignore the distinction and refer to it simply as Bn.

The first type of group is

An = 〈si | (sisj)a = 1〉

where αsi = ei − ei+1 for i ∈ {1, . . . , n− 1} and a = 3 if |i− j| = 1, a = 1 if i = j,

and a = 2 otherwise. An is more commonly known as the symmetric group on n

variables, and it has root system {ei− ej} where ei is the ith standard basis vector.

The second type of group is

Bn =
〈
si, t | (sisj)a = 1, (sit)

b = 1
〉

where si and a are as above, αt = e1 and b = 4 if i = 1 and 2 otherwise. Bn

is the group of permutations and sign changes on n variables. It has root system

{±ei ± ej,±ei}.
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The third group type is

Dn = 〈si, r | (sisj)a = 1, (sir)
c = 1〉

where si and a are as above, αr = e1 + e2 and c = 3 if i = 2 and 2 otherwise. Dn

is the group of permutations and even numbers of sign changes on n variables. Its

root system is {±ei ± ei}.
The final family of groups, I2(n) is just the set of dihedral groups. Here

I2(n) = 〈e, f | (ef)n = 1〉

where αe = e1, αf is the vector of unit length in the first quadrant and the angle

between αe and αf is 2π
n

.

The exceptional groups are usually called E6, E7, E8, F4, H3, and H4. For the

most part, they are hard to visualize, but I will attempt to give some idea of how it

can be done.

F4 is the group of symmetries of the regular solid in R4 which has 24 octahedral

faces.

H3 is the group of symmetries of the icosahedron (or dodecahedron) in R3.

H4 is the symmetry group of the regular solid in R4 having 120 dodecahedral

faces or alternately of the regular solid in R4 with 600 tetrahedral faces.

For the groups E6, E7, and E8 I will simply give fundamental systems.

Starting with the largest group,

E8 =
〈
wi | (w1w3)3 = (w3w4)3 = (w2w4)3 = (w4w5)3 = (w5w6)3 = (w6w7)3 = (w7w8)3 = 1

〉
where αw1 = 1

2
(e1−e2−e3−e4−e5−e6−e7 +e8), αw2 = e1 +e2, and αwi = ei−1−ei−2

for i = 3, . . . , 8. (Any product wiwj not mentioned in the relations is assumed to

have order 2.)

Using the same notation,

E7 =
〈
wi | (w1w3)3 = (w3w4)3 = (w2w4)3 = (w4w5)3 = (w5w6)3 = (w6w7)3 = 1

〉
for i = 2, . . . , 7 with αw1 = 1

2
(e1 − e2 − e3 − e4 − e5 − e6 + e7), and

E6 =
〈
wi | (w1w3)3 = (w3w4)3 = (w2w4)3 = (w4w5)3 = (w5w6)3 = 1

〉
for i = 2, . . . , 6 with αw1 = 1

2
(e1 − e2 − e3 − e4 − e5 + e6).
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1.2 Pseudo-Reflection Groups

So far, all our results have been strictly over the real numbers. However, since we

eventually want to look at polynomial rings related to these groups, we would like

to somehow generalize the notion of a reflection group to the complex numbers.

Definition 1.2.1. A map s : Cn → C
n is called a pseudo-reflection if it is a non-

identity linear isomorphism with finite order which fixes pointwise a hyperplane, Hs.

As for real reflections, it is easy to see that all such s are diagonalizable and that

their eigenvalues are all 1 except for the one corresponding to a vector orthogonal

to Hs. Since s must have finite order, this exceptional eigenvalue must be a root of

unity, ζm = e
2πi
m for some m ∈ Z.

Definition 1.2.2. A group G ⊂ GL(Cn) is a pseudo-reflection group if G is gener-

ated by pseudo-reflections.





Chapter 2

The Invariant Ring

2.1 Invariant Rings

If we take {t1, . . . , tn} to be a basis for Cn, we can dualize to the space of polynomial

functions f : Cn → C which can be represented as C[x1, . . . , xn] where each xi ∈
(Cn)∗ is dual to ti. We can then define the action of a pseudo-reflection, s, on a

polynomial f ∈ C[x1, . . . , xn] by sf(~x) = f(s−1~x). (It is necessary to use s−1 rather

than s in order to preserve associativity.)

Definition 2.1.1. The invariant ring of a group, G ⊂ GL(Cn) is

C[x1, . . . , xn]G = {f ∈ C[x1, . . . , xn] | sf = f ∀s ∈ G}.

Obviously we would like to know something about the structure of this ring. By

a theorem of Hochster and Eagan, for all finite matrix groups G ⊂ GL(Cn) the ring

of invariants, C[~x]G, will be Cohen-Macaulay. This means that there exist sets of

polynomials, θ1, . . . , θn, and η1, . . . , ηm such that the θi’s are algebraically indepen-

dent and C[~x]G =
⊕m

k=1 ηkC[θ1, . . . , θn] as vector spaces over C. This presentation

of the ring is called the Hironaka decomposition and the θ’s and η’s are called the

primary invariants and secondary invariants respectively. [11, pages 37–40]

We would like to know when we can write the ring simply in terms of the θi’s,

or rather when m = 1 and η1 = 1. This means that the ring of invariants would be

a polynomial algebra. The theorem of Shepard, Todd and Chevalley tells us that a

group’s ring of invariants is a polynomial algebra if and only if that group is a finite

pseudo-reflection group.
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It is very important to note that this theorem is true as stated only because we

are working over C and char(C) = 0. This is not the case if the characteristic of the

field over which we are working divides the order of G. In that case, we retain the

theorem that if C[~x]G is a polynomial algebra then G is a finite pseudo-reflection

group. However we no longer have that G a finite pseudo-reflection group implies

that C[~x]G is a polynomial algebra.

Example 2.1.2. To illustrate the idea of invariant rings, here is a list of the three

main families of reflection groups and their fundamental invariants.

Probably the best known example of the Shepard-Todd-Chevalley theorem is

when G = An, the symmetric group on n elements. Letting An act on the set of

polynomials C[~x] by permuting the xi’s, we have C[~x]G = C[σ1, . . . , σn] where σi is

the ith elementary symmetric function.

When G = Bn, the group acts on C[~x] by permuting the xi’s and changing the

signs of an arbitrary number of variables. The ring of invariants for G is

C[~x]G = C[τ1, . . . , τn] where τi = σi(x
2
1, . . . , x

2
n).

When G = Dn, the group acts by permuting the xi’s and changing the signs of an

even number of variables. The ring of invariants for G is C[~x]G = C[τ1, . . . , τn−1, σn].

The set θ1, . . . , θn of primary invariants is closely linked to the group G. The

proof of the Shepard-Todd-Chevalley Theorem [11, pages 44–49] proceeds by first

taking a basis for the ideal generated by the invariants of G. By the Hilbert Basis

Theorem, there exists some finite basis for this ideal. This finite list of polynomials

is shown to be our algebraically independent list of primary invariants, the θi’s.

An important step in this proof, the following theorem describes the relationship

between G and the primary invariants of its invariant ring. We will need this result

in chapters three and four. It is based on the proof [11, pages 47–48]. The proof

requires the following definition.

Definition 2.1.3. The Hilbert series of a graded ring, R = ⊕`R`, is

ΦR(z) =
∑
`≥0

HR(`)z`,

where HR(`) = dim(R`) is the Hilbert function of R. If R is finitely generated as a

module over C[~x], the Hilbert function, HR(`), is equal to a polynomial function for

large values of `. This polynomial is called the Hilbert polynomial.
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Theorem 2.1.4. Let G ⊂ GL(Cn) be a finite pseudo reflection group with invariant

ring C[θ1, . . . , θn]. If we let deg(θi) = di and r equal the number of pseudo-reflections

in G, then |G| =
∏n

i=1 di and r =
∑n

i=1(di − 1).

Proof. This proof will proceed by computing the Laurent series of the Hilbert series

of C[~x]G about the point z = 1 in two different ways and then equating their

coefficients.

By a theorem of Molien, the Hilbert series of the invariant ring C[~x]G of a finite

matrix group G is given by

ΦG(z) =
1

|G|
∑
π∈G

1

det(id− zπ)
.

(Here id represents the n× n identity matrix.)

Looking at the individual terms, we see that

det(id− zπ)−1 = (−1)n det(zπ − id)−1 = (−z)n det(π − 1
z
id)−1

= (−z)n
n∏
i=1

(
λi −

1

z

)−1

=
n∏
i=1

1

1− zλi

where the λi’s are the eigenvalues of π.

This means that the highest-order pole about z = 1 has order n and occurs when

π has all eigenvalues equal to one. Because all of these matrices are over Cn with

finite order, they are diagonalizable and so only π = id has all eigenvalues equal to

one.

By similar reasoning,
∏n

i=1
1

1−zλi has a pole of order n − 1 at z = 1 whenever

λi = 1 for all but a single value of i. This occurs only when π is a pseudo-reflection.

Thus the coefficient of (1 − z)−n+1 is
∑

σ(1 − det(σ))−1 summing over all pseudo-

reflections, σ, in G since det(σ) = λ for the exceptional eigenvalue, λ 6= 1, of σ.

If σ is a pseudo-reflection, σ−1 is also a pseudo-reflection. Thus

2
∑
σ

1

1− det(σ)
=
∑
σ

(
1

1− det(σ)
+

1

1− det(σ−1)

)
=
∑
σ

(
1

1− det(σ)
+

1

1− (det(σ))−1

)
=
∑
σ

1 = r.

This means that about z = 1, the Laurent series is

ΦG(z) =
1

|G|
(1− z)−n +

r

2|G|
(1− z)−n+1 +O((1− z)−n+2).
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Since the θi’s are algebraically independent, a second formulation of the Hilbert

series of C[θ1, . . . , θn] is

ΦG(z) =
∏
i

1

(1− zdi)
.

The term (1− zdi) can be rewritten as (1− z)(1 + z + · · · + zdi−1) so this product

becomes ∏
i

1

(1− z)(1 + · · ·+ zdi−1)
=

1

(1− z)n

∏
i

1

1 + · · ·+ zdi−1
.

Expanding this expression as a Laurent series about the point z = 1, we see the

highest pole is of order n. Multiplying the above expression by (1− z)n and taking

the limit as z goes to 1, we get the corresponding coefficient in the Laurent series:∏
i

1

di
=

1

d1 . . . dn
.

To find the coefficient for the pole of order n− 1 we form a new function

ΦG(z)−
∏n

i=1
1

di(1−z) and find the coefficient of its highest order pole. This coefficient

equals

lim
z→1

(1− z)n−1

[
ΦG(z)−

∏
i

1

di(1− z)

]
= lim

z→1

1

1− z

[∏
i

1

1 + ...+ zdi−1
−
∏
i

1

di

]
= lim

z→1

1

1− z

[∏
i di −

∏
i(1 + · · ·+ zdi−1)∏

i di
∏

i(1 + · · ·+ zdi−1)

]
=

−1

(
∏

i di)
2

lim
z→1

∏
i di −

∏
i(1 + · · ·+ zdi−1)

z − 1
.

The numerator of this function vanishes at z = 1 so, taking its derivative, the

first order term at z = 1 has coefficient

−1

(
∏

i di)
2

lim
z→1
−
∑
j

(
(1 + 2z + · · ·+ (dj − 1)zdj−2)

∏
i6=j

(1 + · · ·+ zdi−1)

)

=
1

(
∏

i di)
2

lim
z→1

∏
i

(1 + · · ·+ zdi−1)
∑
j

1

dj
(1 + 2z + · · ·+ (dj − 1)zdj−2).

Setting z = 1 we see that this is just∏
i di

(
∏

i di)
2

∑
i

di(di − 1)

2di
=

∑
i(di − 1)

2
∏

i di
.
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Thus the Laurent series about the point z = 1 is

ΦG(z) =
1∏
i di

(1− z)−n +

∑
i(di − 1)

2
∏

i di
(1− z)−n+1 +O((1− z)−n+2).

Equating the coefficients of these two Laurent series, we see that |G| =
∏

i di

and r =
∑

i(di − 1).

2.2 The Invariant Ring of G1

The invariant ring of a finite pseudo-reflection group, G, is completely understood

over C since char(C) = 0, so we will turn our attention to one of G’s subgroups.

For the rest of this section, we will have G ⊂ GL(Cn) be a finite pseudo-reflection

group.

Definition 2.2.1. Let G1 = {s ∈ G | det(s) = 1} < G.

Note that this subgroup is normal in G, because if g ∈ G1, h ∈ G then

det(h−1gh) = det(h−1) det(g) det(h) = 1. We can therefore create the factor group

G/G1. The group G/G1 is cyclic. To see this note that each coset of G/G1 is a set

of elements of G which have the same determinant. The determinant of an element

of G is e2πi/m for some m ∈ Z, so we can take the lcm of the m’s involved. There

exists an element, t, of G which has determinant e2πi/lcm(m). Since t’s determinant

generates all the determinants of elements in G, we have G/G1 = 〈t〉.
We are interested in the structure of this group’s invariant ring. We know that

it is Cohen-Macaulay and therefore can be described completely by two sets of

polynomials, the θi’s and the ηk’s. Keeping that in mind, we need the following

definitions before we proceed to the main theorem.

Definition 2.2.2. Let χ : G→ C
∗ be a linear homomorphism. We define a polyno-

mial f ∈ C[~x] to be χ-invariant if ∀s ∈ G, sf = χ(s)f . The set of all such functions

is denoted C[~x]Gχ . We will define χk by χk(s) = det−k(s) for any k ∈ Z.

For each pseudo-reflection s ∈ G, there is a hyperplane fixed by s which we

call Hs. Let LHs be the linear function defining the hyperplane Hs.

Definition 2.2.3. LetH(G) be the set of all hyperplanes fixed by pseudo-reflections

in G. Then we define fχk =
∏

H∈H(G)(LH)k.
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The first thing to note is that fχk is χk-invariant. Moreover, we have the following

lemma.

Lemma 2.2.4. If f ∈ C[~x] is χk-invariant, then fχk divides f .

Proof. It suffices to prove that (LH)k divides f for each H ∈ H(G) since C[~x] is a

unique factorization domain and each LH is irreducible. Let s ∈ G be a pseudo-

reflection with fixed hyperplane H ∈ H(G). Since f ∈ C[~x]Gχ ,

sf = χk(s)f = det(s)−kf = ζ−ks f

where ζs is the exceptional eigenvalue of s.

By changing coordinates if necessary, we may assume that H is defined by xn = 0

and the matrix for s diagonal with ones in all but the last entry which is ζs. In these

coordinates, we can write

sf(~x) = f(s−1~x) = f(x1, . . . , xn−1, ζ
−1
s xn).

By our previous argument we now have

sf(~x) = f(x1, . . . , xn−1, ζ
−1
s xn) = ζ−ks f(x1, . . . , xn).

We must now conclude that xkn divides f(~x). Thus (LH)k divides f .

We are now ready to prove the main theorem of this section.

Theorem 2.2.5. Let G ⊂ GL(C) be a finite pseudo-reflection group with G1 and

fχk defined as above. Then

C[~x]G
1

=
m−1⊕
k=0

fχkC[~x]G,

where m is the order of the cyclic group G/G1 and C[~x]G is the invariant ring of G.

Proof. [10, pages 140–141] This proof will proceed by showing mutual containment.

One containment is fairly obvious. Let f ∈
⊕m−1

k=0 fχkC[~x]G. Then f =
∑m−1

k=0 fχkfk

where each fk ∈ C[~x]G. Given any s ∈ G1,

sf =
m−1∑
k=0

(sfχk)(sfk).
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For each term in this sum,

(sfχk)(sfk) = (χk(s)fχk)fk = (det(s)−kfχk)fk = (fχk)fk

since det(s) = 1 and fk ∈ C[~x]G. Thus sf = f for all s ∈ G1, so f ∈ C[~x]G
1
. This

means that we have
m−1⊕
k=0

fχkC[~x]G ⊂ C[~x]G
1

.

Now let f ∈ C[~x]G
1
. Fix t ∈ G where G/G1 = 〈t〉 and define

gk(~x) =
m−1∑
i=0

det(t)−ikf(ti~x).

Then we can rewrite

f(~x) =
1

m

m−1∑
k=0

gk(~x).

The goal here is to show that gk is χk-invariant for each 0 ≤ k ≤ m − 1 since

this would tell us that fχk divides gk for each k.

We need only examine the behavior of the gk’s under the various powers of t

since every element in G can be written as a power of t times an element with

determinant 1. In other words, for every s ∈ G, we have s = tjg where g ∈ G1 and

0 ≤ j ≤ m− 1, so for each s ∈ G, χk(s) = χk(t
j) and sf = tjf for some j.

Consider the action on gk by tj for some 0 ≤ j ≤ m− 1. Since det(t)−ik = ζ−ikt ,

we have

gk(~x) =
m−1∑
i=0

ζ−ikt f(ti~x),

which means

tjgk =
m−1∑
i=0

ζ−ikt f(ti−j~x).

We reindex letting ` = i− j to get

tjgk =
m−1∑
`=0

ζ
−k(`+j)
t f(t`~x) = ζ−kjt

m−1∑
`=0

ζ−`kt f(t`~x) = χk(t
j)gk.

This means that gk is χk-invariant for every k, so by Lemma 1 we know that

gk = fχk ĝk for some ĝk ∈ C[~x]. Thus for any s ∈ G,

χk(s)fχk ĝk = χk(s)gk = sgk = (sfχk)(sĝk) = χk(s)fχk(sĝk),
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which means that ĝk = sĝk or ĝk ∈ C[~x]G. Therefore, f ∈
⊕m−1

k=0 fχkC[~x]G, so

C[~x]G
1 ⊂

m−1⊕
k=0

fχkC[~x]G.



Chapter 3

Orbit Ideals and Hilbert Functions

3.1 The Orbit Ideal of G

In this section, G ⊂ GL(Cn) will be a finite pseudo-reflection group. Let R = C[~x],

and let θ1, . . . , θn be the primary invariants of G so that C[~x]G = C[θ1, . . . , θn] ⊂ R.

Define di = deg(θi). We will consider Cn embedded in CPn via

(p1, . . . , pn) 7→ (1, p1, . . . , pn).

Definition 3.1.1. Let p ∈ Cn be a single point. The G-orbit of the point p is the

finite set OG(p) = {g(p) | g ∈ G} ⊂ CPn.

We will assume we have chosen p ∈ Cn \ H(G), so that |OG(p)| = |G|.
Let Ip be the ideal generated by the homogeneous polynomials in R[x0] which

vanish on OG(p).

Theorem 3.1.2. Ip = (γ1, . . . , γn), where γi = θi − θi(p)xdi0 .

Proof. We would like to show that the sequence of γi’s is regular, meaning each γi

is not a zero divisor in the ring R[x0]/(γ1, . . . , γi−1). A theorem of Macaulay states

that if a ring A is Cohen-Macaulay, showing a sequence a1, . . . , ar ∈ A is regular is

equivalent to showing dim(A/(a1, . . . , ar)) = dim(A) − r. [9, page 165] We will use

this theorem to prove that the sequence γ1, . . . , γn, x0 is regular by showing that

dim(R[x0]/(Ip, x0)) = 0 = dim(R[x0])− (n+ 1).

We first observe that θ1, . . . , θn is a regular sequence, because any system of

parameters for a Cohen-Macaulay ring forms a regular sequence. [9, page 166] Since
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the θi’s are a system of parameters for C[~x]G which is Cohen-Macaulay, we know

that they are regular.

Now look at R[x0]/(Ip, x0). When we set x0 = 0 in each of the generators

γi = θi− θi(p)xdi0 we get simply θi, so R[x0]/(Ip, x0) ∼= R/(θ1, . . . , θn). Since the θi’s

are regular, dim(R/(θ1, . . . , θn)) = 0 = dim(R[x0]/(Ip, x0)). Therefore the sequence

γ1, . . . , γn, x0 is regular, so the subsequence consisting of only the γi’s is also regular.

This means that dim(R[x0]/Ip) = dim(R[x0])−n = 1. By Macaulay’s Unmixed-

ness theorem, the fact that R[x0] is Cohen-Macaulay and Ip is generated by a regular

sequence implies that all the associated primes of Ip are minimal and their zero sets

are projective points. Therefore Ip has a primary decomposition of the form

Ip =
⋂

q∈Z(Ip)

m(q)eq .

Since Ip clearly has all the points in OG(p) as elements of its zero set, we can

write

Ip =

(⋂
g∈G

m(g(p))eg
)
∩
(⋂

q

m(q)eq
)

where the ideal m(g(p)) is the ideal for the point g(p) and the ideals m(q) are the

ideals for all additional points in the zero set of Ip. By a theorem of Serre,∑
eg +

∑
eq = deg(R[x0]/Ip) [8, page 100]. Here deg(R[x0]/Ip) is defined as

(dim(R[x0]/Ip) − 1)! times the coefficient of the leading term of the Hilbert poly-

nomial. (This will be the term with exponent equal to dim(R[x0]/Ip) − 1.) In our

case we know that dim(R[x0]/Ip)− 1 = 0, so we are looking for the constant term,

which is the leading term, of the Hilbert polynomial.

Since the γi’s form a regular sequence, a standard argument, given below, shows

that this constant term is
∏

i deg(γi) =
∏

i di. From Serre’s theorem and our earlier

result about finite pseudo-reflection groups, we now have

Ip =

(⋂
g∈G

m(g(p))eg
)
∩
(⋂

q

m(q)eq
)

where ∑
eg +

∑
eq = deg(R[x0]/Ip) =

∏
i

di = |G|,

and we can conclude that for each g ∈ G, eg = 1 while eq = 0 for all q. Thus the zero

set of Ip contains exactly the points in OG(p), which makes Ip the ideal describing

OG(p) as claimed.
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The standard argument used to find the constant term of the Hilbert polynomial

goes as follows:

To find the Hilbert polynomial, we first determine the Hilbert series of R[x0]/Ip.

Since we know the Hilbert polynomial is a constant, there will be some exponent

past which all coefficients of the Hilbert series will equal deg(R[x0]/Ip).

Let S be a graded polynomial ring and consider the sequence given by

0 −−−→ S(−d)
f−−−→ S −−−→ S/(f) −−−→ 0

where deg(f) = d and S(−d) denotes the ring S with a shift by d in the grading:

S(−d)e = Se−d. If f is not a zero-divisor in S, then this sequence is exact. Thus

HS/(f)(`) = HS(`)−HS(`− d).

Multiplying by z` and summing over ` we get

ΦS/(f)(z) =
∑
`≥0

HS/(f)(`)z
` =

∑
`≥0

HS(`)z` − zd
∑
`≥0

HS(`− d)z`−d

= (1− zd)
∑
`≥0

HS(`)z` = (1− zd)ΦS(z).

However, when S = R[x0], HS(`) =
(
n+`
`

)
. Therefore

ΦR[x0](z) =
∑
`≥0

(
n+ `

`

)
z` =

1

(1− z)n+1
.

Thus by induction we have

ΦR[x0]/Ip(z) =

∏n
i=1(1− zdi)
(1− z)n+1

=
1

1− z

n∏
i=1

(1 + z + · · ·+ zdi−1)

=

[ n∏
i=1

(1 + z + · · ·+ zdi−1)

][
1 + z + z2 + . . .

]
=
∑
`≥0

a`z
`.

We would like to show that there is some `0 such that for all ` ≥ `0, a` =
∏

i di.

Our proof will proceed by induction on n. Let n = 1. Then

ΦR[x0]/Ip(z) = (1 + z + · · ·+ zd1−1)(1 + z + z2 + . . . )

= 1 + 2z + 3z2 + · · ·+ d1z
d1−1 + d1z

d1 + . . .

so past `0 = d1 − 1, we have a` = d1.
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Now suppose the result for n− 1. Then for n we have

ΦR[x0]/Ip(z) =

∏n
i=1(1− zdi)
(1− z)n+1

=

∏n−1
i=1 (1− zdi)
(1− z)n

· (1− zdn)

(1− z)

= (1 + · · ·+ (
∏n−1

i=1 di)z
` + (

∏n−1
i=1 di)z

`+1 + . . . )(1 + z + · · ·+ zdn−1).

If we let ` be large enough, then the z` term will be

dn−1∑
k=0

(n−1∏
i=1

di

)
z`−kzk =

(n−1∏
i=1

di

) dn−1∑
k=0

z` =

( n∏
i=1

di

)
z`.

Thus for large enough ` the coefficient on z` is always
∏n

i=1 di, so the Hilbert poly-

nomial of R[x0]/Ip is just
∏

i di. Therefore deg(R[x0]/Ip) =
∏

i di.

3.2 Hilbert Functions of G and G1

The proof of the last section’s final theorem computed the Hilbert function of a

finite pseudo-reflection group in terms of the degrees of its primary invariants. In

this section we will compute for small values of n the Hilbert functions of the three

main families of reflection groups as well as the Hilbert functions of their subgroups

of determinant 1. Since we are dealing only with reflection groups, the subgroup of

determinant 1, G1, is the subgroup of all the even length elements and has order

equal to half the order of G. These Hilbert functions were computed using the

computer algebra system CoCoA. [2]

When G = An, we know that C[~x]G = C[σ1, . . . , σn] where σi is the i-th sym-

metric polynomial; so for all i, we have di = i. It follows that

ΦAn(z) =

[∏
i

(1 + z + · · ·+ zi−1)

]
(1 + z + z2 + . . . ).

When G = An, G1 is the group whose elements are made up of even numbers of

transpositions.

For n = 3 we have:

ΦA3(z) = 1 + 3z + 5z2 + 6z3 + 6z4 + . . .
ΦG1(z) = 1 + 3z + 3z2 + . . .

For n = 4 we have:

ΦA4(z) = 1 + 4z + 9z2 + 15z3 + 20z4 + 23z5 + 24z6 + 24z7 + . . .
ΦG1(z) = 1 + 4z + 9z2 + 12z3 + 12z4 + . . .
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For n = 5 we have:

ΦA5(z) = 1 + 5z + 14z2 + 29z3 + 49z4 + 71z5 + 91z6 + 106z7 + 115z8

+119z9 + 120z10 + . . .
ΦG1(z) = 1 + 5z + 14z2 + 29z3 + 49z4 + 60z5 + 60z6 + . . .

When G = Bn, we know C[~x]G = C[τ1, . . . , τn] where τi = σi(x
2
1, . . . , x

2
n); so for

all i, we have di = 2i. This means that

ΦBn(z) =

[∏
i

(1 + z + · · ·+ z2i−1)

]
(1 + z + z2 + . . . ).

When G = Bn, G1 is the group whose elements are made up of w transpositions

and x sign changes where w + x is even.

For n = 3 we have:

ΦB3(z) = 1 + 4z + 9z2 + 16z3 + 24z4 + 32z5 + 39z6 + 44z7 + 47z8

+48z9 + . . .
ΦG1(z) = 1 + 4z + 9z2 + 16z3 + 24z4 + . . .

For n = 4 we have:

ΦB4(z) = 1 + 5z + 14z2 + 30z3 + 54z4 + 86z5 + 125z6 + 169z7 + 215z8 + 259z9

+298z10 + 330z11 + 354z12 + 370z13 + 379z14 + 383z15 + 384z16 + . . .
ΦG1(z) = 1 + 5z + 14z2 + 30z3 + 54z4 + 86z5 + 125z6 + 169z7 + 192z8 + . . .

When G = Dn, we know C[~x]G = C[τ1, . . . , τn−1, σn]; so for i = 1, . . . , n − 1, we

have di = 2i. When i = n, we get di = n. This means that

ΦDn(z) =

[n−1∏
i=1

(1 + z + · · ·+ z2i−1)

]
(1 + z + · · ·+ zn−1)(1 + z + z2 + . . . ).

When G = Dn, G1 is the group whose elements are made up of u transpositions and

2v sign changes where u+ v is even.

For n = 4 we have:

ΦD4(z) = 1 + 5z + 14z2 + 30z3 + 53z4 + 81z5 + 111z6 + 139z7 + 162z8 + 178z9

+187z10 + 191z11 + 192z12 + . . .
ΦG1(z) = 1 + 5z + 14z2 + 30z3 + 53z4 + 81z5 + 96z6 + . . .

For each group G, comparing ΦG(z) with ΦG1(z) we see that the Hilbert function

of G1 is term for term exactly the same as the Hilbert function of G until its final

term. There the coefficient of ΦG1(z) must equal the order of G1 which is half

the order of G. Put simply, the Hilbert function of G1 “keeps up” with the Hilbert

function of G as long as it can. It is our conjecture that this is the case in general for
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all reflection groups. For instance, in the case of An, this means that if a polynomial

of degree less than
(
n
2

)
/2 vanishes on a generic orbit of some even permutation under

the alternating group, then it vanishes on a generic orbit under the full symmetric

group.
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The Covariant Ring

4.1 Covariant Rings and Harmonics

In this section, G will be a finite pseudo-reflection group and R will denote the

polynomial ring C[~x]. We will denote the degree d piece of R by Rd.

Definition 4.1.1. Let I be the graded ideal generated by all homogeneous invariants

of G which have positive degree. Then RG = R/I is the covariant ring of G.

Since C[~x]G = C[θ1, . . . , θn], we know that I = (θ1, . . . , θn). From the induction

argument on exact sequences in the last chapter, we can use this information to

easily compute the Hilbert series of the covariant ring of G. Recall from the previous

chapter that γi = θi − θi(p)xdio . The sequence

0 −−−→ R[xo]/(γi)(−1)
x0−−−→ R[xo]/(γi) −−−→ R[x0]/(γi, x0) −−−→ 0

is exact and R[x0]/(γi, x0) = R/I = RG, so

ΦRG(z) = (1− z)ΦR[x0]/(γi) = (1− z)

∏
i(1− zdi)

(1− z)n+1
=
∏
i

1− zdi
1− z

.

While knowing the Hilbert function of the covariant ring is helpful, to really get

our hands around RG, it is useful to have another way to compute it. To do so, we

will need the following definitions.

Definition 4.1.2. Let f, g ∈ R. We define f(∂) = f(∂1, . . . , ∂n) where ∂i = ∂
∂xi

.

Then the action of f(∂) on g(x) is a linear extension of the action of a monomial

∂q = ∂q11 · · · ∂qnn on another monomial xp = xp1

1 · · ·xpnn . This action is defined to be

∂q(xp) = ∂q11 · · · ∂qnn (xp1

1 · · ·xpnn ) =
∏
i

pi(pi − 1) · · · (pi − qi + 1)xpi−qii .
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Definition 4.1.3. For any homogeneous ideal J = (f1, . . . , fn) ⊂ R, we call the

killed space of J

K(J) = {g ∈ R | f(∂)(g) = 0 for all f ∈ J}.

Note that K(J) ⊂ R inherits the structure of a graded ring, but probably is

not an ideal of R. It is easy to prove that this definition of K(J) is equivalent to

K(J) = {g ∈ R | fi(∂)(g) = 0 for all i}.
Our definition of one polynomial acting on another as a differential operator

allows us to define a pairing on each graded piece of R.

Definition 4.1.4. Let 〈 , 〉 : Rd×Rd → C where for any f, g ∈ Rd, 〈f, g〉 = f(∂)(g).

The next two lemmas follow [5].

Lemma 4.1.5. The pairing defined above is symmetric and nonsingular, i.e.

〈f, g〉 = 〈g, f〉, 〈f, g〉 = 0 for all f ∈ Rd iff g = 0, and 〈f, g〉 = 0 for all g ∈ Rd iff

f = 0.

Proof. Let f(x) =
∑

I αIx
I and g =

∑
J βJx

J , where I = (i1, . . . , in) and J = (j1, . . . , jn)

such that
∑

k ik =
∑

k jk = d. Then 〈f, g〉 =
〈∑

I αIx
I ,
∑

J βJx
J
〉

=
∑

I,J αIβJ
〈
xI , xJ

〉
.

Clearly the only nonzero terms are those where I = J , so the sum becomes∑
I

αIβI
〈
xI , xI

〉
=
∑
I

(I!)αIβI .

From this calculation, it is easy to see that the pairing is symmetric.

Now suppose that f 6= 0. Then by our previous calculation, 〈f, f〉 6= 0. Thus

our pairing 〈 , 〉 is nonsingular.

With this inner product on each graded piece of R we can take orthogonal

complements of sets within each Rd.

Definition 4.1.6. Let S be a set in Rd. Then

S⊥ = {g ∈ Rd| 〈f, g〉 = 0 for all f ∈ S}.

Lemma 4.1.7. Let J ⊂ R be a homogeneous ideal. Then

(K(J))d = (Jd)
⊥.
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Proof. It is easy to see that we have the inclusion (K(J))d ⊂ (Jd)
⊥, because if

g ∈ (K(J))d then 〈f, g〉 = 0 for all f ∈ Jd since Jd ⊂ J .

Now suppose g ∈ (Jd)
⊥. Choose any f ∈ J . Without loss of generality we may

choose f to be one of the homogeneous generators of J . We need to show 〈f, g〉 = 0.

Since g ∈ (Jd)
⊥, deg(g) = d. Thus if deg(f) ≥ d then we are done, so let deg(f) < d.

Set α = (a1, . . . , an) where
∑n

i=1 ai = d−deg(f). This makes deg(xαf) = d with

xαf ∈ Jd. Thus for all such monomials xα,

0 = 〈xαf, g〉 = (xαf)(∂)(g) = xα(∂)(f(∂)(g))

= 〈xα, f(∂)(g)〉 = 〈xα, 〈f, g〉〉 .

Since xα, 〈f, g〉 ∈ Rd−deg(f) and the pairing is nonsingular, we must have 〈f, g〉 = 0.

This means g ∈ (K(J))d so (Jd)
⊥ ⊂ (K(J))d, completing the proof.

In the special case where J = (θ1, . . . , θn) = I, we call K(I) = K(θ1, . . . , θn) the

harmonics of G denoted HG. The name comes from the fact that any orthogonal

matrix preserves length, leaving the polynomial x2
1 + · · ·+x2

n invariant. This means

that in the Euclidean case, if a polynomial g is in HG, we know g satisfies Laplace’s

equation:
∑n

i=1
∂2g
∂2x2

i
= 0.

Theorem 4.1.8. HG = RG, i.e. the ring of harmonics is isomorphic to the ring of

covariants.

Proof. By definition, HG = K(I), so by the above lemma, (HG)d = (K(I))d = (Id)
⊥.

Since the pairing 〈 , 〉 : Rd ×Rd → C is nonsingular, Rd decomposes as

Rd = Id ⊕ (Id)
⊥ = Id ⊕ (HG)d.

This means that

(HG)d = Rd/Id = (R/I)d = (RG)d,

so taking the direct sum over degrees we see that HG = R/I = RG.

This theorem allows us to calculate the covariant ring of a group G by computing

the set of polynomials killed by the generators of I.
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4.2 The Harmonics and Ω

Although we now have a fairly straightforward way of computingHG, there is an even

easier way to obtain HG explicitly. Recall that in section 2.2 where we discussed

the invariant ring of G1, we defined the concept of a χk-invariant function and

constructed a polynomial fχk which divided all other χk-invariant functions. In

this section we will restrict ourselves to the case where k = 1, the so-called “skew”

invariants.

Definition 4.2.1. To simplify our notation we define Ω = fχ1 .

Remember that deg(Ω) is the number of reflections in G.

Lemma 4.2.2. Ω ∈ HG.

Proof. Let f ∈ I. Then for any g ∈ G,

g(f(∂)(Ω)) = f(g−1∂)(gΩ) = f(∂)(det(g)−1Ω) = det(g)−1f(∂)(Ω)

since f is invariant and Ω is skew. This means that f(∂)(Ω) is skew. Thus we have

Ω|f(∂)(Ω). However since deg(f(∂)(Ω)) < deg(Ω), we must have f(∂)(Ω) = 0.

Lemma 4.2.3. Let f ∈ R. If f(∂)(Ω) = 0 then f ∈ I.

Proof. From [7].

Let f ∈ R be chosen so that f(∂)(Ω) = 0. Since the ring R/I is finite di-

mensional, we know f ∈ I if its degree is high enough. The proof will proceed by

downward induction on degree, so assume that the result holds for degree greater

than deg(f).

Let s ∈ G be a pseudo-reflection and LHs be the linear polynomial defining Hs.

As in Lemma 2.2.4, we know sLHs = det(s)LHs . Since the polynomial LHsf has

degree greater than the degree of f and LHsf(∂)(Ω) = LHs(∂)f(∂)(Ω) = 0 we have

LHsf ∈ I.

This means we can write LHsf = f1θi+ · · ·+fnθn where each fi ∈ R. Applying s

to this we get

(det(s)LHs)(sf) = (sLHs)(sf) = s(LHsf) = (sf1)θ1 + · · ·+ (sfn)θn.
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From these calculations, we see that

det(s)sf − f =
sf1 − f1

LHs
θ1 + · · ·+ sfn − fn

LHs
θn

with sfi−fi
LHs

∈ R for each i, since (sfi − fi)(Hs) = 0. This means that we have

det(s)sf − f ∈ I so

f ≡ det(s)sf mod I

for all pseudo-reflections s. Since G is generated by pseudo-reflections, we have

f ≡ det(g)gf mod I

for all g ∈ G.

Since this last equivalence holds for all g ∈ G, we can sum both sides over G and

divide by |G|. This gives us

f ≡ 1

|G|
∑
g∈G

det(g)gf mod I.

Given this relationship, watch what happens to f when we act on it with an element

h ∈ G.

hf ≡ 1

|G|
∑
g∈G

det(g)ghf ≡ det(h)−1 1

|G|
∑
g∈G

det(hg)ghf

≡ det(h)−1 1

|G|
∑
g∈G

det(g)gf ≡ det(h)−1f mod I.

This shows that f is a skew invariant modulo I, so we know that

f ≡ bΩ mod I

for some b ∈ R. If deg(b) > 0 then deg(f) > deg(Ω) =
∑

i(di − 1) which is the

highest degree of anything in R/I so f = bΩ ∈ I. Thus if deg(b) > 0 we are done,

so assume b ∈ C.

Then since f = bΩ + i for some i ∈ I we have

f(∂)(Ω) = bΩ(∂)(Ω) + i(∂)(Ω) = bΩ(∂)(Ω) = 0,

but since Ω(∂)(Ω) 6= 0, we must have b = 0. Therefore f ≡ 0 mod I as required.

Definition 4.2.4. Let ∂•Ω be the linear span of partial derivatives of Ω.
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Theorem 4.2.5. HG = ∂•Ω.

Proof. To prove this result, we will show mutual containment. One way is easy.

Since Ω ∈ HG and for each f ∈ I, f(∂)(Ω) = 0, we know that each element of I

must also kill each of Ω’s derivatives. This means that we have ∂•Ω ⊂ HG.

To go the other way, let f ∈ (∂•Ωd)
⊥. Recalling that deg(Ω) = r = the number

of reflections in G, we know that for all xα ∈ Rr−d

0 = f(∂)xα(∂)(Ω) = (fxα)(∂)(Ω) = xα(∂)f(∂)(Ω).

Since f(∂)(Ω) ∈ Rr−d, this is equivalent to saying

〈xα, f(∂)(Ω)〉 = 0

for all xα ∈ Rr−d. Since our pairing is nonsingular, this means we must have

f(∂)(Ω) = 0 so by our last lemma, f ∈ Id. Thus (∂•Ωd)
⊥ ⊂ Id or

(HG)d = (Id)
⊥ ⊂ ∂•Ωd.

Summing over d we get HG = ∂•Ω as claimed.

4.3 The Covariant Ring as the Regular Represen-

tation

It is possible to look at the covariant ring of G as a vector space over C. Since G is

a pseudo-reflection group, there is a very special way in which G acts on R/I .

Definition 4.3.1. The regular representation of a group G is a vector space with a

basis {vg | g ∈ G} where G acts on V by hvg = vhg for all h, g ∈ G.

Recall the definition of OG(p) as the orbit of a point p under G embedded in

projective space. In the last chapter we proved that the ideal of polynomials van-

ishing on OG(p) is precisely Ip = (θi(x)− θi(p)xdi0 ) ⊂ R[x0]. The ring A = R[x0]/Ip

is graded, so we can write it as A = A0 ⊕ A1 ⊕ A2 ⊕ . . . where A` is the piece of

degree `.

We can find some φe(x) ∈ Ad, of minimal degree d, such that

φe(q) =

{
1 q = p

0 q ∈ OG(p) \ {p}.
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For each g ∈ G, define φg(x) = φe(g
−1x). Note that all the φg’s live in Ad. Also note

that for each g ∈ G, because the φg’s are of minimal degree we know that x0 - φg(x).

Lemma 4.3.2. The set {φg(x) | g ∈ G} forms a basis for Ad.

Proof. Let f ∈ R. Then

f(q)−
∑
g∈G

f(q)φg(q) = 0 for all q ∈ OG(p).

This means that

f(x) =
∑
g∈G

f(x)φg(x) mod Ip.

We can see that dim(Ad) = |G| and that Ad is the regular representation of G.

Theorem 4.3.3. The ring of covariants, RG, is the regular representation of G.

Proof. Let the map ψ : Ad → RG be defined by φg(x) 7→ φg(x)|x0=0 mod I. Since

ψ(γi) = θi for each i and x0 does not divide any of the basis vectors of Ad, we know

that the map ψ is well-defined and injective.

From the previous lemma we know that dim(Ad) = |G|. However, evaluating

the Hilbert series of RG at z = 1, we get that

dim(RG) = ΦRG(1) =
∏
i

(1 + 11 + 12 + · · ·+ 1di−1) =
∏
i

di = |G|.

Thus ψ is an injective map between two vector spaces of equal dimension which

means ψ is an isomorphism. This gives us RG
∼= Ad so since Ad is the regular

representation of G, so is RG.
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