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Abstract

For an arbitrary real-valued representation ρ of a cyclic group
 
/n

 
, we define a

polytope P = conv{ρ(a) | a ∈
 
/n

 
}, which we refer to as a multi-cyclic polytope. In

studying the face structure of this family of polytopes we first present a connection
to generalized Vandermonde matrices and Schur functions. A duality is later proved
between various representations for any fixed cyclic group and is applied to classify
certain sets of these polytopes. We further reduce the problem of their face structure
to a problem concerning minimal relations among roots of unity over ! +.



Introduction

0.1 Representations of Cyclic Groups

For any finite group G, a representation ρ is a homomorphism ρ : G → GL(V ), into
the set of all invertible linear maps on a vector space V over  . For G =

!
/n

!
, the

characters, homomorphisms χk : G →  ∗, are representations. These must have the
form χk(a) = e

2πı
n

ka where k ∈ {0, 1, . . . , n−1}. It turns out that all representations
of

!
/n

!
are direct sums of characters.

The fundamental real-valued representations ρ of
!
/n

!
are:

for k = 0 : ρ(a) = χ0(a) = e0 = 1 (1)

for k =
n

2
: ρ(a) = χn

2
(a) = eπia = (−1)a (2)

for other k : ρ(a) =

(

cos(2πka
n

) − sin(2πka
n

)

sin(2πka
n

) cos(2πka
n

)

)

. (3)

Thinking of (3) as a representation in  2, we could, by a linear change of coordinates,
get

(

χk(a) 0
0 χ−k(a)

)

.

Note that χ−k = χk, so that both χk and its conjugate appear as part of the
representation. So in (3), ρ(a) = χk(a) ⊕ χ−k(a).

For an arbitrary real representation then, we have

ρ(a) =











B1 0 · · · 0
0 B2 · · · 0
...

...
. . .

...
0 0 · · · Bm











∈ " d×d (4)

where Bj is of the form of (1), (2), or (3).
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0.2 Polytopes

We now present an introduction of the necessary aspects of the theory of polytopes
for this paper. For a more thorough treatment of the material, see [8].
Definition. The convex hull of K ⊆  d is the smallest convex set containing K:

conv(K) :=
⋂

{K ′ ⊂  d | K ⊂ K ′, K ′ convex}.

A polytope P in  d is the convex hull of a finite set of points V ∈  d. If the
points in V span an affine space of dimension k, then we say P is a k-polytope. A
subset F ⊆ P forms a face if there exists a hyperplane H such that H ∩ P = F
and P \ F lies in exactly one of the half spaces formed by H . In this case, we
say that H is a support hyperplane of P . A face of a k-polytope P whose affine
dimension is k − 1 is a facet. A k-polytope all of whose facets contain k vertices
is said to be simplicial. We will say that two polytopes, P ⊂  d and Q ⊂  e, are
combinatorially equivalent, denoted P ∼ Q, if there exists a bijection π :  d →  e

between their vertices preserving inclusion of faces. Finally, a function f :  d →  e

such that f(x) = a + L(x) for a ∈  and some linear function L :  d →  e is an
affine function. Two polytopes P ⊂  d and Q ⊂  e are isomorphic, denoted P ≈ Q,
if there is an affine function A :  d →  e, injective when restricted to the affine span
of P , such that A(P ) = Q. Isomorphic polytopes are combinatorially equivalent,
but the opposite is not necessarily true.

A classic example, and one that will enter into our discussion, is the cyclic
polytope. Define the mapping x :  →  d by x(t) = (t, t2, t3, . . . , td). The image of x
is called the moment curve, and the cyclic d-polytope with n vertices, denoted Cd(n),
is conv(x(ti)) with t1 < t2 < · · · < tn. It is worth noting that the specific value of
each ti is unimportant. We require only that they are distinct and ordered. Their

structure is well known; they are simplicial polytopes with
(

n−b d+1

2
c

n−d

)

+
(

n−b d+2

2
c

n−d

)

facets [3]. We will, however, show a classic result of the defining characteristic of
cyclic polytopes, first noted by Gale [3]. The proof we will follow is due to Ziegler
[8].

Theorem 1. Gale’s Evenness Condition: Let n > d ≥ 2. The cyclic polytope
Cd(n) = conv(x(t1), . . . , x(tn)) is a simplicial d-polytope such that for a d-subset
S = {i1, . . . id} ⊂ {1, . . . , n}, the set of vertices D = {x(ti1), . . . x(tid)} forms a facet
of Cd(n) if and only if, for all l, k in the complement of S in {1, . . . , n} with (k < l),
there is an even number of ij’s in S such that k < ij < l.

Proof. Looking at the Vandermonde determinant, note that:

det

(

1 1 · · · 1
x(t0) x(t1) · · · x(td)

)

=
∏

0≤i<j≤d

(tj − ti).

Since this vanishes only when ti = tj for some i 6= j, we see that no d+ 1 vertices of
Cd(n) are affinely dependent, which means that any facet contains only d vertices,
so Cd(n) is simplicial.
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Now, define

FS(x) := det

(

1 1 · · · 1
x x(ti1) · · · x(tid)

)

for x =







x1
...

xd







and {i1, . . . , id} = S as above. FS(x) = 0 for x lying on the hyperplane intersecting
x(ti1), . . . , x(tid). Note that FS(x(t)) is a polynomial of degree d which vanishes at
t = ti for i ∈ S and changes sign at each such zero. The set {x(ti1), . . . x(tid)} forms
a facet of Cd(n) if and only if FS(x(t)) has the same sign at all k ∈ Sc. So FS(x(t))
must have an even number of sign changes between t = tk and t = tl with k, l ∈ Sc

and k < l, and hence an even number of elements ij ∈ S with k < ij < l.

0.3 The Problem

Returning then to the subject of representations, let ρ be an arbitrary real-valued
representation of

 
/n

 
for some n with ρ(a) as given in the matrix (4). Thinking

of ρ as a function from
 
/n

 
to ! d×d, we can “flatten” the image of ρ(a) and then

reorder the entries to get ρ(a) = (b1(a), . . . , bm(a), 0, . . . , 0) ∈ ! d2

where, for each
bi(a), either

bi(a) = (1)

bi(a) = ((−1)a) or

bi(a) =

(

cos(
2πka

n
),− sin(

2πka

n
), sin(

2πka

n
), cos(

2πka

n
)

)

,

depending on the character(s) that the corresponding Bi is derived from in (4). For
the set {ρ(a) | a ∈

 
/n

 
} then, we can obviously map each point bijectively to ! e for

some e < d2 such that the image is the set {ρ′(a) = (b1(a), . . . , bm(a)) | a ∈
 
/n

 
}.

The main goal of the thesis is to describe the face structure of

P = conv{ρ(a) | a ∈
 
/n

 
} ≈ conv{(b1(a), . . . , bm(a)) | a ∈

 
/n

 
}.

To simplify the problem somewhat more, let bi(a) = 1 for some i, where bi(a)
was derived from the identity character χ0(a). For some j then, the jth coordinate
of ρ′(a) is 1 for all a. Once again, there is a bijection f defined on the image of ρ′

such that

f(x1, . . . , xj−1, 1, xj+1 . . . , xe) = (x1, . . . , xj−1, xj+1, . . . , xe) ∈ ! e−1,

and hence the polytope in ! e−1 defined as conv(f(ρ′(a))) is isomorphic to the poly-
tope defined by conv(ρ′(a)) ⊂ ! e.

Now, let P be conv({ρ′(a) | a ∈
 
/n

 
}) ⊂ ! e for ρ′(a) as above. Further,

assume that for all a ∈
 
/n

 
, the jth coordinate of ρ′(a)is equal to a fixed scalar
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multiple of the ith coordinate: so ρ′(a) = (x1, . . . , xi, . . . , xj−1, c · xi, xj+1, . . . , xe)
for a scalar c. Once again, there is an obvious bijection f :  e →  e−1 such that
f(x1, . . . , xe) = (x1, . . . , xj−1, xj+1, . . . , xe). From this fact, we gain two results.
First, we see that we can reduce

bi(a) = (cos(
2πka

n
),− sin(

2πka

n
), sin(

2πka

n
), cos(

2πka

n
))

to (cos(
2πka

n
), sin(

2πka

n
))

by applying the argument to both the second and fourth entries. Secondly, this
means that if any bi appears more than once in ρ′, we can remove all but one of them
without changing the isomorphism class of the polytope defined as conv({ρ′(a) | a ∈!
/n

!
}).

As an example, let n = 6. For a ∈
!
/6

!
, let

ρ(a) =















1a 0 0 0

0 (−1)a 0 0

0 0 cos(2πa
6

) − sin(2πa
6

)

0 0 sin(2πa
6

) cos(2πa
6

)















.

From above, we view this as a mapping into  4×4, and “flatten” the image of ρ so
that we have

a 7→

(

1a, (−1)a, cos(
2πa

6
),− sin(

2πa

6
), sin(

2πa

6
), cos(

2πa

6
), 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)

)

.

The resulting polytope for this representation is the convex hull of the set Y of
points of this form in  42

for a = {0, 1, . . . , 5}. By the above reasoning, we can map
the image of ρ to  3 and study instead the 3-polytope defined as conv(X) where
X = {((−1)a, cos(2πa

6
), sin(2πa

6
)) | a ∈

!
/6

!
}. To see this, define a function

π :  16 →  3

(x1, . . . , x16) 7→ (x2, x3, x5),

which is clearly injective on Y and therefore gives an isomorphism of polytopes,
conv(X) ≈ conv(Y ).

For any arbitrary representation ρ, we have now shown 1) that the trivial char-
acter χ0 can be ignored when studying the facial structure of the convex hull of the
image of ρ, and 2) that thinking of ρ as a direct sum of characters, we may assume
that each character in the sum is unique, i.e., has multiplicity one.

As a result of the above observations, we can confine our attention to the set
conv(X) where X is the image of any representation ρ such that, for a given n,

ρ = χi1 ⊕ χ−i1,⊕ · · · ⊕ χik ⊕ χ−ik
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where {i1, . . . , ik} ⊆ {1, . . . , bn
2
c} and all ij’s are distinct1. As a note, we will use

ρ(a) to denote the image of the representation and ρ to denote the representation
itself.

For each representation χi ⊕ χ−i (or resp. χn
2

if n is even), call this Vi (resp.
Vn

2
). Then the complete set of real-valued representations of

 
/n

 
, which are direct

sums of the Vi’s, forms a lattice ordered by inclusion, which we will call L.

. . .

.

 

.

 

.

.

 

.

 

.

.

 

.

 

.

.

 

.

 

.

.
 
.
 
.

.
 
.
 
.

. . .

.

 

.

 

.

.

 

.

 

.

.

 

.

 

.

.

 

.

 

.

.
 
.
 
.

.
 
.
 
.

.
 
.
 
.

V1

Level 1

Level 2

Level b n
2
c

⊕iVi

Level b n
2
c − 1

V1 ⊕ ViV1 ⊕ V2

V2

Vb n
2

c

Vj ⊕ Vb n
2

c

Vb n
2

c−1

V2 ⊕ · · · ⊕ Vb n
2

c

Vb n
2

c−1
⊕ Vb n

2
c

∅Level 0

V1 ⊕ · · · ⊕ Vb n
2

c−1

Figure 1: The representation lattice for
 
/n

 

The lattice corresponding to the complete set of representations of
 
/n

 
for any

fixed n will be denoted Ln.
We note first that the polytopes corresponding to representations from level 0

are 0-dimensional, where all n vertices share a single point. Those from level bn
2
c

are (n − 1)-dimensional simplices with n vertices by Theorem 2 below. Polytopes
derived from level 1 are regular k-gons where, for Vj , we have k = n

(j,n)
, and each

vertex has multiplicity (j, n).
The extent of present investigations concerning the remainder of the polytopes

derived from the representations of the lattice is mainly confined to two areas, and
our problem can be seen as a generalization of both of these.

The first is the case where a representation of
 
/n

 
is of the form ρ(a) =

(

cos(1(2πa)
n

), sin(1(2πa)
n

), cos(2(2πa)
n

), sin(2(2πa)
n

), . . . , cos(m(2πa)
n

), sin(m(2πa)
n

)
)

1Note, however, that if n is even and the character χ n
2

appears in ρ, then of course χ
−

n
2
(= χn

2
)

does not.
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for a ∈
 
/n

 
. For such ρ, the convex hull of its image is combinatorially equiva-

lent to the 2m-dimensional2 cyclic polytope of n vertices, and is referred to as the
trigonometric cyclic polytope.

Theorem 2. For such a representation ρ, the polytope P defined by its convex hull
is cyclic.

Proof. Again, we will study the determinant and use the identity:

det



















1 1 . . . 1
cos(θ0) cos(θ1) . . . cos(θ2m)
sin(θ0) sin(θ1) . . . sin(θ2m)

...
...

. . .
...

cos(mθ0) cos(mθ1) . . . cos(mθ2m)
sin(mθ0) sin(mθ1) . . . sin(mθ2m)



















= 4n2
∏

0≤i<j≤2m

sin
1

2
(θj − θi)

for θi = 2πai

n
and ai ∈

 
/n

 
. As above, this product vanishes only when θi = θj for

some i 6= j, so we see that no 2m vertices are affinely dependent, meaning that P
is simplicial, once again. From here we continue as in the previous theorem and the
result follows.

Note that for any n, at least one polytope from this combinatorial equivalence
class will exist on each level of Ln: for any level k of Ln, it is the representation
ρ = V1 ⊕ V2 ⊕ · · · ⊕ Vk−1 ⊕ Vk.

The other set of polytopes in L which are studied fairly well are all those in
level 2, which Smilansky refers to as the bi-cyclic polytopes [6],[7]. We will now state
briefly his results.

Smilansky defines a mapping into the torus imbedded in 4-space:

η : ! 2 → T ⊆ ! 4

such that

η(x, y) =

(

cos(
2π

n
x), sin(

2π

n
x), cos(

2π

n
y), sin(

2π

n
y)

)

.

Consider the lattice Θ = n
 
× n

 
⊆ ! 2 and for p, q ∈ {1, . . . , bn−1

2
c}, define the

set Sp,q = {a(p, q) | a ∈
 
/n

 
}. Then Λp,q = Sp,q + Θ is also a lattice such that

conv(η(Λp,q)) is the polytope whose representation ρ = Vp ⊕ Vq exists on level 2 of
Ln.

Smilansky showed that for any α1, α2, α3, α4, d ∈ ! with all αi non-zero, and the
hyperplane

H := α1 cos(
2π

n
x) + α2 sin(

2π

n
x) + α3 cos(

2π

n
y) + α4 sin(

2π

n
y) − d,

η−1(H) is a level set in ! 2 resembling an ellipse or a vertical or horizontal line. If
d = 1 and α1, . . . , α4 are such that H is a support hyperplane intersecting P on a

2If n is even and m = n

2
, then P is a (2m − 1)-dimensional cyclic polytope of n vertices and is

also a (n − 1)-dimensional simplex corresponding to the maximal representation.
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facet, then the set of vertices of P on the facet are mapped to points in Λp,q in one of
two ways. In some fundamental region (an n×n square) of Λp,q, the points will either
form: 1) a parallelogram of area n such that two of its edges have positive slope and
the other pair has negative slope or 2) a closed vertical (resp. horizontal) strip in
the plane bounded by distinct vertical (resp. horizontal) lines, each intersecting at
least two such points.

As an example, let P by the 4-polytope defined by conv(A) where

A = {(cos(
2π2a

7
), sin(

2π2a

7
), cos(

2π3a

7
), sin(

2π3a

7
)) | a ∈

 
/7

 
}.

Then the image of η−1(A) is a lattice generated by (2a, 3a):

0

1

4

2

6

3

5

Figure 2: η−1(A)

We find, then, that the faces of P correspond to the parallelograms of this lattice
with vertices (1, 2, 6, 5), (1, 6, 3, 5), (0, 1, 5, 4), etc.

Our polytope representations are a natural generalization of both the cyclic and
bi-cyclic polytopes, and we will refer to them as “multi-cyclic.” The goal of the
remainder of this paper is to describe the representations in the remaining levels of
the lattice and some relations between them.



Chapter 1

Generalized Vandermonde

Matrices

We have seen that the multi-cyclic polytopes are a natural generalization of the
trigonometric cyclic polytope described earlier (which we have already seen to be
combinatorially equivalent to the cyclic polytopes). Naturally, one would wonder
whether there is a corresponding generalization of the ‘classical’ cyclic polytopes.
We will see that by imbedding the images of our group representations into  m

for some m, we do in fact get a set of vertices which have a form similar to such
a generalization. The matrix representations of the vertex sets have the form of
generalized Vandermonde determinants (cf.[1]).

1.1 Generalized Vandermonde Determinants

For X = {x1, . . . , xn}, let VDMn(X) denote the familiar Vandermonde matrix:

V DMn(X) =















1 1 · · · 1
x1 x2 · · · xn

x2
1 x2

2 · · · x2
n

...
...

. . .
...

xn−1
1 xn−1

2 · · · xn−1
n















Let the columns of a matrix M be defined as (xµ1

i , xµ2

i , . . . , xµn

i ) ∈ ! n where
the xi’s are distinct real numbers and the µi’s are non-negative ordered integers
0 ≤ µ1 < µ2 < · · · < µn. Then

M(X) =











xµ1

1 xµ1

2 · · · xµ1
n

xµ2

1 xµ2

2 · · · xµ2

n
...

...
. . .

...
xµn

1 xµn

2 · · · xµn
n











is a generalized Vandermonde matrix.
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The determinants of these matrices, like those of Vandermonde matrices, are
based on polynomials of n variables where M is a n × n matrix. It turns out that

det(M(X)) = det(V DMn(X)) · Sλ [1],

where Sλ is a Schur function, a symmetric function of (x1, . . . , xn) consisting of
monomials. Schur functions will be discussed in the next section.

1.2 Schur Functions

A Young diagram is a set of boxes in left-justified rows, with a weakly decreasing
number of boxes in each row. Say the total number of boxes for such a diagram is ‘n.’
Then the Young diagram can be seen to represent a partition of [n] := {1, 2, . . . , n}
into m subsets, where m is the number of rows in the diagram. In this case we will
say then that the partition has length m. A filling for a given Young diagram is a
manner of placing a (not necessarily distinct) positive integer in each box. A Young
tableaux is a filling that is weakly increasing across each row and strictly increasing
down each column. An example of this is displayed in figure 1.1.

1

2

4

5

4

1 3 4 4

4

5

6

3

Figure 1.1: A Young tableaux

For a partition λ of length m corresponding to a Young diagram and its m rows,
there is associated a Schur function, which can be determined from a given diagram.

Let λ be a Young diagram and let T represent an arbitrary filling of λ. Then
let xT denote the monomial xi1

1 · xi2
2 · · ·xin

n where xj is a variable and the exponents
ij denote the number of times the integer j appears in the filling T of λ. As an
example, the monomial for the diagram above is x2

1 · x2 · x
2
3 · x

5
4 · x

2
5 · x6. The Schur

function for the diagram λ, then, is the sum of all monomials Sλ(x1, . . . , xm) =
∑

xT

for all possible fillings T of λ with a fixed set of m integers.
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1.3 Multi-cyclic Polytopes as Generalized Van-

dermonde Matrices

To see the connection to our problem, let us begin by operating on the vertex matrix
of an arbitrary multi-cyclic polytope P :

V =















cos(θ0k1) cos(θ1k1) · · · cos(θn−1k1)
sin(θ0k1) sin(θ1k1) · · · sin(θn−1k1)

...
...

. . .
...

cos(θ0km) cos(θ1km) · · · cos(θn−1km)
sin(θ0km) sin(θ1km) · · · sin(θn−1km)















where θa = 2πa
n

for a ∈
 
/n

 1.

Replacing cos(x) and sin(x) respectively by eix+e−ix

2
and eix−e−ix

2i
, we use row

operations to transform V into:

(
−1

2i
)m















eiθ0k1 · · · eiθn−1k1

e−iθ0k1 · · · e−iθn−1k1

...
. . .

...
eiθ0km · · · eiθn−1km

e−iθ0km · · · e−iθn−1km















Letting ωa = e
2πi·a

n , we then get

(
−1

2i
)m















ωk1

0 · · · ωk1

n−1

ω−k1

0 · · · ω−k1

n−1
...

. . .
...

ωkm

0 · · · ωkm

n−1

ω−km

0 · · · ω−km

n−1















where k is a positive integer and ‘−k’ is to be interpreted modulo n. After exchanging
rows so that the exponents appear in increasing order, we clearly have a generalized
Vandermonde matrix in the variables ωa.

For X = {x1, x2, . . . , xn} (with distinct xi’s) and integers µn−1 ≥ µn−2 ≥ · · · ≥
µ1 ≥ 0, let µ = (µn−1, µn−2, . . . , µ1, 0) be a partition of length n where each in-
teger µi corresponds to the exponent in the ith row of a generalized Vandermonde
matrix M(X). Now, let δ = (n − 1, n − 2, . . . , 1, 0) be a partition corresponding
to the exponents for the rows of the Vandermonde matrix VDMn(X). Then for
det(M(X)) = det(VDMn(X)) · Sλ(X) we have that λ is the partition µ − δ and
hence Sλ(X) is the sum of monomials corresponding to fillings of λ with x1, . . . , xn.
Following the example of Gale then, we can study the behavior of these determinants
and in turn study the polytope that such a matrix M(X) represents.

1We must keep in mind that in the case that n is even and χ n
2

is added to the representation

determining P , then the 2d + 1th row of V will be given by
(

1 −1 1 −1
)

.
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Define the determinant function

V (x) =

(

−1

2i

)m

det



















1 · · · 1 1

ωk1

j1
· · · ωk1

jd
ωk1

x

ωk2

j1
· · · ωk2

jd
ωk2

x
...

. . .
...

...

ω−k2

j1
· · · ω−k2

jd
ω−k2

x

ω−k1

j1
· · · ω−k1

jd
ω−k1

x



















with ωji
as defined above. The vertices corresponding to {j1, . . . , jd} will be con-

tained in a facet of P if and only if V (x) has the same sign for all j ∈ Sc. If V (j ′) = 0
for some j ′ ∈ Sc, then we add j ′ to the list of fixed test points and continue evaluat-
ing the sign of V (x) for the remaining j ∈ Sc. (This is the same tool that we used
in our determinantal approach to cyclic polytopes in the introduction.)

We note that for X = (ωj1, . . . , ωjd
, ωx),

V (x) = det(VDMd+1) · Sλ = det(VMDd+1) · (
d
∏

i=1

(ωx − ωji
))PM(X) [1].

where PM(X) is a polynomial in (ωj1, . . . , ωjd
, ωx).

Though connecting the problem to the determinants of these matrices and to
Schur functions is interesting, we have only introduced a new tool with which to
compute the face structure of any given polytope, and the general problem at this
point is still open.



Chapter 2

Duality Theorem of

Representations

2.1 Gale Diagrams

One method of visualizing and studying higher-dimensional polytopes is through the
use of Gale Diagrams. Though they are generally only applied to polytopes having
‘few’ vertices (a d-polytope with < d+4 vertices), we shall see that for our purposes,
the underlying idea is one that will characterize our entire family of polytopes. Our
exposition of Gale diagrams will follow [8].

Let X ={x1, x2, . . . , xn} with xi ∈  d be the columns1 of a d × n matrix X.2

Definition. The affine dependencies of X are:

Dep(X) = {λ = (λ1, . . . , λn) ∈  n | X · λ = 0,
∑n

i=1 λi = 0}.

If we define X̃ as (x̃1, . . . , x̃n) for x̃i =

[

1
xi

]

∈  d+1 then Dep(X̃) = ker(X̃).

Definition. We define the signed vectors of X as

!
(X) = {sign(λ) | λ ∈ Dep(X)}

where, for λ = (λ1, . . . , λn) ∈  n,

sign(λ) = (sign(λ1), . . . , sign(λn))

and, for λi ∈  ,

sign(λi) =







− if λi < 0
0 if λi = 0
+ if λi > 0

.

We order the signed vectors component-wise as well where 0 < −, 0 < +, and +,−
are incomparable. In this way we can define:

1As a convention, we will identify elements of " n as column matrices, and we will denote row
vectors by xtr for x ∈ " n.

2For such sets, we will assume from now on that {x1, . . . , xn} spans " d.
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Definition. The circuits of X are the minimal (non-zero) signed vectors:

C(X) = {v ∈
 
(X) | w ≤ v ⇒ v = w}.

Example : Let W̃ = {w̃1, w̃2, w̃3, w̃4} where w̃i=
(

1
wi

)
and wi is a vertex of the unit

square:

(1, 0)

(1, 1)

w2

(0, 1)

(0, 0)
w1

w4 w3

Figure 2.1: A square

Then

Dep(W̃ ) = ker




1 1 1 1
0 1 1 0
0 0 1 1



 = span




1
−1

1
−1


 .

Then clearly,  
(W̃ ) = {(+,−, +,−), (−, +,−, +), (0, 0, 0, 0)}

and
C(W̃ ) = {(+,−, +,−), (−, +,−, +)}.

Definition. Finally, define the value vectors of our set X as

Val(X) = {ctrX | c ∈ ( ! d)} = im(X tr)

Now, let X̃ be as defined above, and let f be a function f : ! d+1 → ! such that
f(x) = c̃tr · x for some c̃ =

(
c0
c

)
∈ ! d+1. The set {x ∈ ! d+1 | f(x) = 0} defines a

hyperplane in ! d+1. In this case, we have

Val(X̃) = {c̃trX̃ | c̃ ∈ ( ! d+1)} = {c0 + ctrx̃i | c0 ∈ ! , c ∈ ! d, x̃i ∈ X̃}.

Val(X̃) is, geometrically, the oriented distance of each x̃i ∈ X̃ from the defined
hyperplane. As above, then, we will define the signed covectors as

 ∗(X) = {sign(ctrX) | c ∈ ! d}.

Then, we have the signed cocircuits of X, denoted C∗(X), as we had in the linear
case; that is, C∗(X) is the set of minimal (non-zero) signed covectors of X.
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As we will see, any one of the 1) signed vectors, 2) circuits, 3) signed covectors,
and 4) signed cocircuits determines the other three. However, it is rather easy to
read off the faces of conv(X) directly from C∗(X). Any support hyperplane H ⊆  d

will correspond to a signed cocircuit of X such that all non-zero entries have the
same sign. The zero entries will correspond to the set of xi ∈ X lying on H , and
hence on the face.

We now prove a duality between Val(X) and Dep(X):

Theorem 3. For a set X of n vectors spanning  d, (a) Val(X) = (Dep(X))⊥ and
(b) Dep(X) = (Val(X))⊥

Proof. (a): First, note that dim(Dep(X)) = n − d. Then for the orthogonal
complement in  n, dim((Dep(X))⊥) = n − (n − d) = d. Now, dim(Val(X)) =
dim(im(X tr)) = rank(X tr) = rank(X) = n − dim(ker(X)) = n − (n − d) = d.

Then, (Dep(X))⊥ ={u ∈  n | u · v = 0 ∀v ∈ Dep(X)}. Then for cV ∈ Val(X)
and v ∈ Dep(X), (cV )v = c(V v) = c0 = 0.
(b): ((Dep(X))⊥)⊥ = Dep(X). Result from (a) applies.

Theorem 4. For some X as above, a duality exists between the circuits C and
cocircuits C∗:

C(X) = C∗(Dep(X)), C∗(X) = C(Dep(X))

Proof. See [4].

Taking, again, our vertex points X = {x1, . . . , xn} to be the columns of a d × n
matrix, the Gale diagram is found as follows: Given such X, we first linearize it,
getting the matrix X̃ ⊆  (d+1)×n with column vectors

x̃i =

(
1
xi

)

for xi ∈ X.
Then there is a matrix G ∈  n×(n−(d+1)) such that

Dep(X̃) = {Gv | v ∈  n−(d+1)}.

Since Dep(X̃) = ker(X̃), we know that the columns of G are exactly a basis for
ker(X̃). Here n− (d+1) = dim(Dep(X̃)). Denote the rows of G by g1, . . . . , gn. The
set {gtr

1 , . . . , gtr
n } with gtr

i ∈  n−(d+1) is the Gale diagram for X, and it is unique up
to linear change of coordinates. Using this method, we can then read off the circuits
of the Gale diagram of X to determine the face structure of conv(X).

Example : The Gale diagram for figure (2.1) is



1
−1

1
−1


 , given by figure 2.2.
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g3

g1

0

g2

g4

-1 1

Figure 2.2: Gale diagram for the unit square

Then Val(G) = {c · (1,−1, 1,−1) | c ∈  } = {(c,−c, c,−c) | c ∈  }. So
C∗(G) = ±(+,−, +,−) = C(X), as expected.

Example : We shall look at level bn
2
c − 1 of the representation lattice L15. For

some j ∈ {1, . . . , 7}, we have

ρ(a) =

(
cos(

2πa

15
), sin(

2πa

15
), . . . ,

̂
cos(

2πja

15
),

̂
sin(

2πja

15
), . . . , cos(

2π7a

15
), sin(

2π7a

15
)

)

. For the example, let j = 4. Then X = (x0, . . . , x14) where

xa =




cos(2πa
15

)

sin(2πa
15

)

...

cos(6πa
15

)

sin(6πa
15

)

cos(10πa
15

)

sin(10πa
15

)

...

cos(14πa
15

)

sin(14πa
15

)




and the polytope P = conv(X). Then by direct calculation, ker(X̃) is the span of
the columns of

G =




g0
...

g14




where ga =
(
cos(8πa

15
), sin(8πa

15
)
)
, and X̃ is the linearization of X as before. Since 15

and 4 are relatively prime, one sees easily that conv(ker(X̃)) is a regular 15-gon
Since the circuits C(G) of G are dual to the cocircuits C∗(X̃) of X̃, we want

to find minimal circuits of G, i.e., λ = (λ0, . . . , λ14) of minimal support such that∑
λigi = 0, with not all λi equal to zero. For each such circuit, the set of gi’s with

zero coefficients corresponds to a facet of the original polytope P if all non-zero λi’s
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Figure 2.3: A 15-gon

are of the same sign. When we have such a circuit, again, this corresponds to a
cocircuit of V , and hence a hyperplane supporting it, meaning that the set of all
vertices not spanning the hyperplane all lie on one “side” of it (hence all having the
same sign). Since P is a 12-polytope with 15 vertices, P is not simplicial if there
is a facet containing more than 12 vertices. This in turn corresponds to a circuit
of G with only 1 or 2 gi’s having nonzero coefficients. Since conv(G) is a regular
polygon centered at the origin, there is clearly not such a circuit with only one such
gi. For there to be a circuit with two such gi’s, the two must be antipodal. Each gi

corresponds to a 15th root of unity, and since 15 is odd, no two points are antipodal.
From this we see that P is a simplicial 12-polytope.

If, for our example, we had chosen j = 5, which divides 15, the Gale diagram G
would be 


g0
...

g14




where ga =
(
cos(2πa

3
), sin(2πa

3
)
)
. Conv(G) in this case is a regular triangle, each

vertex having multiplicity 5. Once again, there is no circuit with less than three
such gi’s having nonzero coefficients, all of which are of the same sign.

It turns out (as will be proved in the next section) that the Gale diagram as-
sociated to any representation on the bn

2
c − 1 level of the representation lattice is

a regular k-gon, each vertex of which has multiplicity (n, j) where k = (n,j)
n

and j
identifies the sole character Vj not appearing in the representation.

2.2 Duality Theorem

We now prove the main correlation between the various levels of our lattice L, which
tells us that for any polytope P corresponding to a representation ρ on level bn

2
c−k

of Ln, its Gale diagram exists as the vertices of a polytope P ′ associated with a
representation ρ′ ∈ Ln on level k.
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Theorem 5. Let n ∈
 
, and let P be a multi-cyclic polytope corresponding to a

representation ρ on level bn
2
c − l of the lattice Ln, such that ρ = Vk1

⊕ · · · ⊕ Vkm

where K = {k1, . . . , km} ⊂ {1, . . . , bn
2
c}. Then the Gale diagram of P consists of

the vertices of P ′, the polytope corresponding to the representation ρ′ on level l of
Ln such that ρ′ = Vk′

1
⊕ · · · ⊕ Vk′

l
where K ′ = {k′

1, . . . , k
′
l} is the complement of K

in {1, . . . , bn
2
c}.

Proof. First, note that for the root of unity z = e
2πi
n , the sum: 1+z+z2+· · ·+zn−1 =

1−zn−1

1−z
= 0.

Let the columns of the matrix V be the vertices of P . Then after we linearize
V , we have

Ṽ =




1 1 · · · 1

cos(2πk10
n

) cos(2πk11
n

) · · · cos(2πk1(n−1)
n

)

sin(2πk10
n

) sin(2πk11
n

) · · · sin(2πk1(n−1)
n

)

...
...

. . .
...

cos(2πkm0
n

) cos(2πkm1
n

) · · · cos(2πkm(n−1)
n

)

sin(2πkm0
n

) sin(2πkm1
n

) · · · sin(2πkm(n−1)
n

)




.

Let

G =




cos(
2πk′

1
0

n
) sin(

2πk′
1
0

n
) · · · cos(

2πk′
l
0

n
) sin(

2πk′
l
0

n
)

cos(
2πk′

11

n
) sin(

2πk′
11

n
) · · · cos(

2πk′
l
1

n
) sin(

2πk′
l
1

n
)

...
...

. . .
...

...

cos(
2πk′

1
(n−1)

n
) sin(

2πk′
1
(n−1)

n
) · · · cos(

2πk′
l
(n−1)

n
) sin(

2πk′
l
(n−1)

n
)




.

If V is the vertex matrix for some polytope P in Ln, this makes G the vertices of
the corresponding ‘complement’ polytope P ′. We have that G is the Gale diagram
of P if and only if Ṽ G = 0.

To this end, the entries in the product matrix Ṽ G will be determined in one of
four ways.

Case 1 : The product of the ith column of G with the top row of Ṽ will be either

n−1∑

j=0

cos(
2πjk′

n
) or

n−1∑

j=0

sin(
2πjk′

n
).

These are respectively the real and imaginary components of roots of unity, both of
which sum to zero from above. So the product is zero.

Case 2 : Entry k, k′ will be given by

n−1∑

j=0

cos(
2πjk

n
) cos(

2πjk′

n
).
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Using basic trigonometric identities, this expands to

1

2

n−1∑

j=0

[
cos(

2π · j(k − k′)

n
) + cos(

2π · j(k + k′)

n
)

]

=
1

2

n−1∑

j=0

cos(
2πj(k − k′)

n
) +

1

2

n−1∑

j=0

cos(
2πj(k + k′)

n
).

These two sums correspond to the sums of the real components of the pth and qth

roots of unity, respectively, where p = n
(n,k−k′)

and q = n
(n,k+k′)

. From above, these
both equal zero, and hence the entry in the product matrix is zero.

Case 3 : Entry k, k′ will be given by

n−1∑

j=0

sin(
2πkj

n
) sin(

2πk′j

n
).

Again, using trigonometric identities, this expands to

1

2

n−1∑

j=0

[
cos(

2π · j(k − k′)

n
) − cos(

2π · j(k + k′)

n
)

]

=
1

2

n−1∑

j=0

cos(
2πj(k − k′)

n
) −

1

2

n−1∑

j=0

cos(
2πj(k + k′)

n
).

As above, both of these sums are zero, and hence the entry in the product matrix
is zero.

Case 4 : Entry k, k′ will be given by

n−1∑

j=0

cos(
2πkj

n
) sin(

2πk′j

n
)

=
1

2

n−1∑

j=0

[
sin(

2π · j(k + k′)

n
) − sin(

2π · j(k − k′)

n
)

]

=
1

2

n−1∑

j=0

sin(
2πj(k + k′)

n
) −

1

2

n−1∑

j=0

sin(
2πj(k − k′)

n
).

These are the sums of the imaginary components of the pth and qth roots of unity
for p, q as defined above, and hence the sums are both zero.

Therefore, all entries in the product matrix Ṽ G are zero, and hence G is the
Gale diagram of V .
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2.3 Applications

We can now apply this duality found within the lattice L to certain levels in order
to classify the polytopes derived from the representations found there.

Going back to the case visited earlier, let P be a polytope corresponding to a
representation ρ on level bn

2
c − 1, such that ρ = Vk1

⊕ · · · ⊕ V̂kj
⊕ · · · ⊕ Vkbn

2
c

where

the ki’s are distinct elements in {1, . . . , bn
2
c}.

From the previous theorem, then, we know that the Gale diagram for P will
be either the vertices of a 2-dimensional regular polygon generated by ρ(a) =

(cos(
2πkja

n
), sin(

2πkja

n
)) for a ∈

 
/n

 
, or the set {−1, 1} if n is even and the missing

character is Vn
2
. From this we can state:

Corollary 1. A polytope P defined as conv(ρ(a)) for the representation ρ on the
bn

2
c − 1 level of Ln is simplicial if and only if n

(kj ,n)
is odd or equal to 2.

Proof. Let P be as stated and let G denote the Gale diagram of P . Note first that
P is either a d-polytope with d + 2 vertices (when n(= d + 2) is even and kj = n

2
),

or a d-polytope with d + 3 vertices (otherwise).
Assume the former and note that n

(kj ,n)
= 2. Then a non-simplicial facet of P will

correspond to a circuit of G with only one non-zero element. But by the previous
theorem, G is the set of points {(−1)a | a ∈

 
/n

 
}. Clearly, then, there is no such

1-circuit and hence P is simplicial3.
Now, assume the latter. In this case, as stated earlier, G consists of the vertices

of a regular polygon about the origin. A non-simplicial facet of P will correspond to
a circuit of G with one or two non-zero elements (both having the same sign in the
case of 2 vertices). Again, there can not be exactly one since no vertex is mapped
to the origin (the vertices correspond to roots of unity). Two vertices, g1 and g2,
will have a dependency exactly when they are antipodal. Clearly, this occurs only
when G denotes the vertices of a polygon with an even number of vertices. Viewing

the elements of G as roots of unity, the generator, e
2πi·kj

n is a n
(n,kj)

th root of unity.

So antipodal points will exist if and only if n
(n,kj)

is even. Hence, if n
(n,kj)

(or n,

obviously) is odd, no two such points will exist and P is simplicial.

More simply, if n is even and d = 2m is the highest power of 2 that divides n, then
P is simplicial if and only if d|kj or kj = n

2
. If n is odd, P is simplicial. Moreover,

the complete face structure of P is evident in that if kj = n
2
, then P is one of the

well studied cyclic polytopes, and if kj 6=
n
2
, then the simplicial faces correspond to

the complement (in
 
/n

 
) of any 3 elements of G that are not contained in a closed

semi-circle about the origin. Further, we see easily that the number of distinct
combinatorial types on this level of Ln is equal to the number of (proper) divisors
of n.

3In fact, such a polytope P is combinatorially equivalent to a cyclic polytope. This follows from
Theorem 2.
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We saw in the introduction that the multi-cyclic polytope whose vertices are of
the form

(
cos(

2πa

n
), sin(

2πa

n
), cos(

4πa

n
), sin(

4πa

n
), . . . , cos(

2mπa

n
), sin(

2mπa

n
)

)

for a ∈
 
/n

 
is combinatorially equivalent to the cyclic polytope C2m(n), and we

referred to them as the trigonometric cyclic polytopes.
So let P be the polytope whose representation is on level bn

2
c − 1 of Ln and

be of the form stated in the previous corollary. Then if n is odd and kj = bn
2
c,

we get a trigonometric cyclic polytope, and since (kj , n) = 1, the Gale diagram
consists of the vertices of a regular n-gon. Obviously, if two polytopes have the
same Gale diagram, then they are combinatorially equivalent. It follows then that
for odd n, all polytopes whose representations are missing only the character Vkj

are combinatorially equivalent to Cn−3(n) if (kj, n) = 1 since the respective Gale
diagram will be the set of vertices of a regular n-gon.

From this is also follows that if n is prime, such P is combinatorially equivalent
to Cn−3(n) for all kj since, for prime n, (n, m) = 1 for all m < n.

2.4 Sums of Roots of Unity

Using this duality we find in the lattice, we have reduced the problem of the face
structure of the multi-cyclic polytopes to a problem concerning systems of polyno-
mials in roots of unity over ! + with a minimal number of non-zero coefficients.

Let P = conv(V ) be a multi-cyclic polytope whose representation

ρ = Vk1
⊕ · · · ⊕ Vkm

is on level bn
2
c − i of Ln. By Theorem 5, then, the Gale diagram G of P consists of

the vertices of P ′ corresponding to the representation ρ′ = Vk′
1
⊕ · · · ⊕ Vk′

l
where, as

above, the set of all Vk′
j

is the set of characters missing from the representation ρ.

Let S = {a1, . . . , as} ⊂ {0, 1, . . . , n−1} and S ′ = {a′
1, . . . , a

′
s′} be the complement

of S in {0, . . . , n − 1}. Let also gai
= ρ′(ai) and vai

= ρ(ai) for ai ∈
 
/n

 
.

Then for a subset ga1
, . . . , gas

of G, if there exist scalars λ1, . . . , λs in ! + such that∑s

j=1 λjgaj
= 0 is minimal, then the set {va′

1
, . . . , va′

s′
} ⊂ V forms a facet of P . If P

is a d-polytope with n vertices, then for such sets, s ≤ n − d.
Expanding this slightly, let {ga1

, . . . , gas
} be such a set. Then we want λ1, . . . , λs

so that for θ = 2π
n

,

s∑

j=1

λj(cos(θajk
′
1), sin(θajk

′
1), . . . , cos(θajk

′
l), sin(θajk

′
l)) = 0 (2.1)

where k′
i refers to the representation Vk′

i
appearing in ρ′. If n is even and Vn

2

appears in the sum defining ρ′, then one entry (say, the first one) of (2.1) will be
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(−1)aj . Grouping this sum component-wise and replacing (cos(θajk
′
j), sin(θajk

′
j))

with e
2π
n

ajk′
j , we then have, for ω = e

2πi
n :

(λ1(−1)a1 + λ1(−1)a2 + · · ·+ λ1(−1)as = 0)

λ1ω
k′
1a1 + λ2ω

k′
1a2 + · · ·+ λsω

k′
1as = 0

...

λ1ω
k′

l
a1 + λ2ω

k′
l
a2 + · · · + λsω

k′
l
as = 0.

So, we want (λ1, . . . , λs) ∈ (  +)s such that




(−1)a1 (−1)a2 · · · (−1)as

ωk′
1
a1 ωk′

1
a2 · · · ωk′

1
as

...
...

. . .
...

ωk′
l
a1 ωk′

l
a2 · · · ωk′

l
as







λ1
...

λs


 = 0.

Note that the first row of this matrix exists only when applicable for the obvious
reasons.

Phrasing the problem in this way, let us apply the relation defined in Theorem
5 to level bn

2
c − 2 and level 2 of Ln. The representations on level 2 correspond to

either 3-dimensional polyhedra or the 4-dimensional bi-cyclic polytopes studied by
Smilansky, both of which are understood. So let P be the polytope corresponding to
the representation ρ on level bn

2
c−2 of Ln, which will be the complete representation

minus two characters χk1
and χk2

. Then the Gale diagram of P will consist of the
vertices of the polytope P ′ for the representation

ρ′(a) = ((−1)a, cos(θk1a), sin(θk1a)) (2.2)

or

ρ′(a) = (cos(θk1a), sin(θk1a), cos(θk2a), sin(θk2a)) (2.3)

for k1, k2 ∈ {1, . . . , bn
2
c} and θ = 2π

n
.

Theorem 6. For a multicyclic polytope P whose Gale diagram is given by (2.2),
P is non-simplicial if and only if n

(n,k1)
≡ 2 mod 4, in which case all non-simplicial

facets have n − 2 vertices.

Proof. P is an (n − 4)-polytope, and so is non-simplicial if and only if there exist
circuits of G, the Gale diagram of P , with less than 4 elements. Obviously, there
are no 1-circuits for G.

For 2-circuits, we want a1, a2 ∈
!
/n

!
such that

(
(−1)a1 (−1)a2

ωk1a1 ωk1a2

)(
λ1

λ2

)
= 0
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for λ1, λ2 ∈  +. We may assume that a1 = 0, giving
(

1 (−1)a2

1 ωk1a2

)(
λ1

λ2

)
= 0

For λ1, λ2 to be positive, (−1)a2 must be −1, so a2 ≡ 1 mod 2. Then we may
assume λ1 = λ2 = 1, implying that ωk1a2 = −1, and so clearly n

(n,k1)
is even and

k1a2 ≡ n
2

mod n. Then 2k1a2 ≡ 0 mod n and 2a2 ≡ 0 mod n
d

where d = (n, k1).
Since we know that n

d
is even, it follows that a2 ≡ 0 mod n

2·d
. Since a2 is odd, we

know from this that n
2·d

is odd, and hence n
(n,k1)

≡ 2 mod 4. The complement of
such a1, a2 for these circuits gives the n − 2 vertices of the non-simplicial facets.

To prove that these are the only non-simplicial facets we must show that for ρ′,
there are no 3-circuits.

To this end, assume otherwise, that there exist λ1, λ2, λ3 ∈  + such that λ1ρ(a′)+
λ2ρ(a′′) + λ3ρ(a′′′) = 0. Since ρ′(a) = ((−1)a, cos(2πak1

n
), sin(2πak1

n
)), then for all λi

to be positive, exactly one element, say ρ′(a′), has distinct first entry from the other
two. Then subtracting a′ from each such a gives us elements ρ′(a0) = ρ′(0) =
(1, 1, 0) and ρ′(a1), ρ

′(a2) each with first entry equal to −1. By dividing the linear
dependency through by λ1, we must now solve

(1, 1, 0) + c1(−1, y1, z1) + c2(−1, y2, z2) = 0.

For c1, c2 > 0, we have immediately that

c1 + c2 = 1

c1y1 + c2y2 = −1

c1z1 + c2z2 = 0

Which gives us that c2 = 1 − c1 and that

y1 =
c1y2 − y2 − 1

c1

and z1 =
c1z2 − z2

c1

(2.4)

Now, note that y2
1 + z2

1 = 1 and y2
2 + z2

2 = 1. By (2.4), the first becomes

(
c1y2 − y2 − 1

c1

)2

+

(
c1z2 − z2

c1

)2

= 1,

which is
c2
1(y

2
2 + z2

2) − 2c1(y
2
2 + z2

2 + y2) + (y2
2 + z2

2 + 2y2 + 1) = c2
1.

Since y2
2 + z2

2 = 1, we have

c2
1 − 2c1(y2 + 1) + 2(y2 + 1) = c2

1, so c1 =
−2(y2 + 1)

−2(y2 + 1)
= 1

and hence c2 = 0. So ρ′(a1) is a scalar multiple of ρ′(a0); but more importantly we
see that {ρ′(a0), ρ

′(a1), ρ
′(a2)} reduces to a 2-cycle.
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Now, let P a multi-cyclic polytope such that its Gale diagram is given by a
representation of the form in (2.3).

So given

G =

(
ω0·k1 ω1·k1 · · · ω(n−1)·k1

ω0·k2 ω1·k2 · · · ω(n−1)·k2

)

for ω = e
2πi
n , our goal then is to find 2 × s submatrices whose kernel contains an

element in (  +)s. We can confine our analysis to the set (s = {2, 3, 4, 5}); if s is
greater, then the complement of the vertex set can not be a full-dimensional facet
of P . We shall work through the possibilities for each such value of s.

Theorem 7. For a polytope P whose Gale diagram is given by (2.3), (so that P
is an (n − 5)-polytope): If n is odd, then there are no facets with exactly n − 2
vertices. Facets with exactly n − 3 vertices exist if and only if d = (k2 − k1, n) ≥ 3.
In this case the three vertices not contained in such a facet correspond to distinct
elements a1, a2, a3 all contained in a left coset of the unique subgroup of order d of!
/n

!
. If n is even, facets with exactly n− 2 vertices correspond to the complement

of some distinct a1 and a2 contained in some left coset of the subgroup of order 2d
for d = (k2 − k1, n) if d ≥ 2. Facets with exactly n − 3 vertices correspond to cosets
of the subgroup of order d where d = (k2 ± k1, n) ≥ 3.

Proof. For such 2-circuits, let

M =

(
ωk1a1 ωk1a2

ωk2a1 ωk2a2

)
.

M will have nontrivial kernel if and only if rank(M) = 1, meaning that the two
rows are dependent, and hence the desired kernel is the set {(x, y) | x · ωk1a1 + y ·
ωk1a2 = 0 for x, y ∈  +}. Since ωk1a1 , ωk1a2 are roots of unity, obviously they must
be antipodal. From this we see that n

(k1,n)
(and hence n) is even. Since the two points

must be antipodal, we know that k1a1 ≡ k1a2+
n
2

mod n, and then 2k1a1−2k1a2 ≡ 0
mod n. Similarly for the second row, we get 2k2a1 − 2k2a2 ≡ 0 mod n. Combining
these yields that a1 ≡ a2 mod n

2d
for d = (k2 − k1, n). Hence, such elements a1 and

a2 must be subsets of the left cosets xH of H , the subgroup of order d.
For 3-circuits of P ′, let now

M =

(
ωk1a1 ωk1a2 ωk1a3

ωk2a1 ωk2a2 ωk2a3

)
.

First let us assume that rank(M) = 2. By minors then,

ker(M) =




ωk1a2+k2a3 − ωk1a3+k2a2

ωk1a1+k2a3 − ωk1a3+k2a1

ωk1a1+k2a2 − ωk1a2+k2a1



 .

For z = reiϕ ∈ " , r 6= 0, we want elements in the kernel of M such that

eiϕ




ωk1a2+k2a3 − ωk1a3+k2a2

ωk1a1+k2a3 − ωk1a3+k2a1

ωk1a1+k2a2 − ωk1a2+k2a1



 ∈  3.
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For these entries to be real-valued, we need:

sin((k1a2 + k2a3)θ + ϕ) = sin((k1a3 + k2a2)θ + ϕ)

sin((k1a1 + k2a3)θ + ϕ) = sin((k1a3 + k2a1)θ + ϕ)

sin((k1a1 + k2a2)θ + ϕ) = sin((k1a2 + k2a1)θ + ϕ)

for θ = 2π
n

, 0 ≤ ϕ ≤ 2π.
So then we have congruencies of the form:

k1a2 + k2a3 + ϕ ≡ k1a3 + k2a2 + ϕ mod n

k1a1 + k2a3 + ϕ ≡ k1a3 + k2a1 + ϕ mod n

k1a1 + k2a2 + ϕ ≡ k1a2 + k2a1 + ϕ mod n

or
k1a2 + k2a3 + ϕ ≡ n

2
− (k1a3 + k2a2 + ϕ) mod n

k1a1 + k2a3 + ϕ ≡ n
2
− (k1a3 + k2a1 + ϕ) mod n

k1a1 + k2a2 + ϕ ≡ n
2
− (k1a2 + k2a1 + ϕ) mod n.

The first set of congruencies easily yields that a1 ≡ a2 ≡ a3 mod n
d
, where

d = (k2 − k1, n). Further, since a1, a2, a3 are distinct in
 
/n

 
, d ≥ 3. Let H be the

subgroup of order n
d

in
 
/n

 
. Then a1, a2, and a3 are again elements of the claimed

cosets.
For the second set of congruencies to apply, n must obviously be even. Subtract-

ing one from another in turn gives k1a2 − k1a1 ≡ −k2a2 + k2a1 mod n, etc, which
then give that a1 ≡ a2 ≡ a3 mod n

d
for d = (k2 + k1, n).

Now, let rank(M) = 1. For the rows of M to be dependent, we can claim that:
(ωk2a1 , ωk2a2 , ωk2a3) = ±ζ(ωk1a1 , ωk1a2 , ωk1a3) where ζ is an nth root or unity. Then
ωk2ai = ±(ωk1ai+x) for some x ∈ {0, . . . , n − 1}. Then k2ai = ±(k1ai + x) mod n,
and solving shows that a1 ≡ a2 ≡ a3 ≡ ±x′ mod n

d
for x′ = x

(x,d)
and d = (k2±k1, n).

Once again, d must be at least 3 for the ai’s to be distinct mod n. All ai’s are again
in the corresponding coset, and the theorem is completed.

Only certain subsets of the cosets of the above subgroups correspond to circuits;
note that we have only made restrictions on the elements of the circuits based on the
coefficients of the linear dependencies being real-valued and not necessarily positive.
If d ≥ 5, there are subsets {a1, a2, a3} that when multiplied by say, k1, all lie on
a closed semi-circle, and hence some coefficient of the linear dependency will be
negative.

Illustrating with a concrete example, let n = 15, k1 = 2, and k2 = 5. Then
non-simplicial facets will correspond to subsets of the cosets of the subgroup of
order 3, the elements of which are {0, 5, 10}. These subsets are exactly (a1, a2, a3) =
{(0, 5, 10), (1, 6, 11), . . . , (4, 9, 14)}. Since d = 3, all of these 3-tuples are circuits of
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G, showing that P is a 10-polytope with 5 nonsimplicial faces whose vertices are
the complements of the 3-tuples in the solution set above.

The exact classification of the 4-circuits of ρ′(a) are not solved, though the
problem can be restated (and reduced, hopefully). Let

M =

(
ωk1a1 ωk1a2 ωk1a3 ωk1a4

ωk2a1 ωk2a2 ωk2a3 ωk2a4

)
.

First, I claim that for (a1, . . . , a4) to be a minimal circuit, rank(M) = 2. To see
this, note that if the two rows of M are a dependent set, then the second row can be
written as ±(ωk1a1 , ωk1a2 , ωk1a3 , ωk1a4) or ζ(ωk1a1 , ωk1a2 , ωk1a3 , ωk1a4) where ζ is a nth

root of unity, both of which imply that the second row has the same “shape” as the
first (the entries of the second row have the same position relative to each other as
those on the first row). Then simply note that for any four points on a circle that
are cyclic, some proper subset of them must also be cyclic and hence the circuit is
not minimal.

So assume rank(M) = 2. Then

ker(M) = span




ωk1a2+k2a4 − ωk1a4+k2a2 ωk1a2+k2a3 − ωk1a3+k2a2

ωk1a1+k2a4 − ωk1a4+k2a1 ωk1a1+k2a3 − ωk1a3+k2a1

0 ωk1a1+k2a2 − ωk1a2+k2a1

ωk1a1+k2a2 − ωk1a2+k2a1 0




To find a 4-circuit, we are looking for some linear combination of the two columns
of the kernel matrix to be in (  +)4. So we will start with the entries on the bottom
two rows, which are equal. For these to be real, (as above we will assume a1 = 0) we
once again want solutions to one of the following congruencies: k2a2 ≡ k1a2 mod n
or k2a2 ≡

n
2
− k1a2 mod n

The reduction of the problem to vanishing sums of roots of unity has some
references in the literature. Though it is more concerned with the fields in which
the coefficients of roots of unity lie, there is some independent interest in the problem
itself; see [2] and its bibliography.
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