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Abstract

Given a finite group G and a real matrix representation ρ(G) ⊂ GL(m, R), we

define the polytope P(G, ρ) to be the convex hull of the elements of ρ(G), seen as

points in Rm2 . If H ⊆ Sm is a permutation group, let G oH be the wreath product

of G and H. A representation of G and the natural permutation representation

of H combine to give us a representation ρ of G o H. This thesis describes the

combinatorial structure of the polytope P(G o H, ρ) in the case that H is a regular

permutation group.





Introduction

Given a finite group G and a real matrix representation ρ : G → GL(m, R), we

can view ρ(G) as a set of points in Rm2 . This observation forms the basis for this

thesis by allowing us to view a group as a geometric object. We construct the

polytope P(G, ρ) ⊂ Rm2 by taking the convex hull of the set ρ(G). The main goal

of the study of such group polytopes is to relate the structure of the group G to

the structure of its associated polytope P(G, ρ).

This geometric construction is usually applied to a permutation group G ⊆ Sm

and the standard permutation representation ρ : Sm → GL(m, R). Ideally, we

would be able to make observations about the general permutation polytope

P(G, ρ), but this proves to be surprisingly difficult [M]. Instead, most of the

literature makes an effort to characterize the combinatorial structure of P(G, ρ)

for a particular type of permutation group, G. Birkhoff [Bi], for example, char-

acterizes the polytope for the full symmetric group, P(Sm, ρ) as exactly the set of

bistochastic m×m matrices. Brualdi [Br] and Gibson [BrG] have written several

papers on the structure of this polytope. Interesting work has also been done by

Onn [O] and Billera and Sarangarajan [BiS]. There remain, however, several open

questions about the so-called Birkhoff polytope, such as the derivation of the vol-

ume of P(Sn, ρ) for arbitrary n [BP]. As another example, Perkinson and Collins

[PC] characterize the Frobenius polytope P(F, ρ), where F is a Frobenius group.

This thesis works in the same vein by characterizing the polytope P(G o H, ρ) of

the wreath product G oH.

The first chapter outlines some basic results about general polytopes. Section

1.1 consists mainly of preliminary definitions and constructions, most of which

can be found in [Z]. Here we formally define convex hull, polytope, face lattice,

and polar dual. In section 1.2 we examine three standard binary operations on

polytopes: the cartesian product (×), the direct sum (⊕), and the free join (1).

We prove the useful result P∗ × Q∗ ∼= (P ⊕ Q)∗, where P and Q are polytopes
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containing the origin in their relative interiors, and ‘∗’ represents the polar dual

operation. In addition, we investigate the combinatorial structure of P×Q, P⊕Q,

and P 1 Q.

Chapter two discusses polytopes arising from groups. The first section con-

sists of a review of real group representations and permutation representations,

and how these are turned into polytopes. In section 2.2, some important results

about general group polytopes are presented. Of fundamental importance is the-

orem 17, which states that the vertices of a polytope P(G, ρ) are precisely the set

ρ(G). Section 2.3, then, talks about the computation of specific polytopes using

computers, and gives some data on permutation group polytopes up to degree

seven.

In the third chapter we finally address the wreath-product polytope P(GoH, ρ).

First (section 3.1) the wreath product of groups is defined, and some general

structural attributes of the operation are discussed. Section 3.2 presents our main

result that, given a representation of a group G, a regular permutation group

H ⊆ Sn, and a representation ρ(G o H), the wreath-product polytope P(G o H, ρ)

is isomorphic to [P(G)n]⊕|H| if the origin is in the relative interior of P(G), or

[P(G)n]1|H| if not.



Chapter 1

Polytopes

1.1 Elementary Results

This section summarizes the basic theory of polytopes. A more detailed treatment

can be found in [Z].

Given a set K in Rd, we say that K is convex if for every pair of points s and

t in K, the line segment {(λ − 1)s + λt | 0 ≤ λ ≤ 1} connecting s to t lies entirely

inside of K. Given a set G in Rd, we define its convex hull to be the intersection of

all convex sets K with G ⊆ K. That is,

conv(G) =
⋂

{K ⊆ Rd | G ⊆ K, K convex}.

Theorem 1. Given a finite set G = {x1, . . . , xk} ⊂ Rn,

conv(G) =

{
k∑

i=1

λixi

∣∣∣∣∣ each λi ≥ 0,

k∑
i=1

λi = 1

}
. (1.1)

Proof. First we will show that the right-hand side of equation 1.1 is contained in

the left-hand side. If λj = 1 for some j, then λm = 0 for each m 6= j. In this case∑
λixi = xj which is clearly contained in conv(G).

Now assume that each λi < 1, and note that

λ1x1 + · · ·+ λkxk = (1 − λk)

(
λ1

1 − λk

x1 + · · ·+ λk−1

1 − λk

xk−1

)
+ λkxk.

Thus,
∑k

i=1 λixi lies on the line segment connecting xk to the point

λ1

1 − λk

x1 + · · ·+ λk−1

1 − λk

xk−1.
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By convexity, it will suffice to show that this point lies inside of conv(G).

Now, if we note that

1

1 − λk−1

1−λk

=
1 − λk

1 − λk − λk−1

and repeat the above process for the coefficient of xk−1, we get

λ1

1−λk
x1 + · · ·+ λk−1

1−λk
xk−1

=
(
1 − λk−1

1−λk

)(
λ1

1−λk−λk−1
x1 + · · ·+ λk−2

1−λk−λk−1
xk−2

)
+ λk−1

1−λk
xk−1.

Clearly, 0 ≤ λk−1

1−λk
< 1, so it will now suffice to show that(

λ1

1 − λk − λk−1

x1 + · · ·+ λk−2

1 − λk − λk−1

xk−2

)
∈ conv(G) .

Repeating this process, we see that it will suffice to show that λ1

1−λk−···−λ2
x1 =

λ1

1−(1−λ1)
x1 = x1 ∈ conv(G), which is trivial. This proves that each point

∑k
i=1 λixi ∈

conv(G).

The containment in the other direction is clear if we note that the set in the

right hand side of equation (1.1) is convex, which proves equality and completes

the proof. 2

We can now define a polytope to be the convex hull of a finite set of points

in Rd. An alternate definition of a polytope is the intersection of finitely many

closed halfspaces in some Rd if the intersection is bounded. We will not prove

here that these definitions are equivalent. For a finite point set G, the polytope of

G is P(G) := conv(G).

Given a set G = {x1, . . . , xk}, the affine span of the polytope P(G) is defined to

be

aff(P(G)) =

{
k∑

i=1

λixi

∣∣∣∣∣
k∑

i=1

λi = 1

}
. (1.2)

Notice that the only difference between this equation and equation (1.1) defining

the convex hull of G is that the restriction that each λi ≥ 0 has been removed. An

affine relation on G is any k-tuple (λ1, . . . , λk) such that

k∑
i=1

λixi = 0 with
k∑

i=1

λi = 0.

The dimension of a polytope P(G) is the dimension of its affine span. Furthermore,

if the number of independent affine relations on G (that is, the number of affine
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relations such that any affine relation on G is a linear combination of these affine

relations) is r, then the dimension of the polytope is |G| − r − 1. We call a d-

dimensional polytope a d-polytope.

A face of a d-polytope P(G) is any set of the form

F = P(G) ∩ {x ∈ Rd | c · x = c0}

where c ∈ Rd and c0 ∈ R are chosen such that c · x ≤ c0 for any x in P(G). In-

tuitively, a face is the intersection of the polytope with any hyperplane that does

not cut the polytope. An elementary result in the theory of polytopes states that

any face of a polytope is itself a polytope. The vertices, edges, ridges and facets of a

d-polytope are its 0-, 1-, (d − 2)- and (d − 1)-dimensional faces, respectively. The

empty set ∅ is considered to be a (−1)-dimensional face. A face with dimension

at least 0 and at most d − 1 is called a proper face.

A d-dimensional simplex, or d-simplex, is a d-polytope with d + 1 vertices. A

d-polytope is called simplicial if each of its facets is a simplex—that is, each of its

facets contains d vertices. A simple polytope, on the other hand, is a d-polytope

for which each vertex is contained in d facets (the minimum number possible).

It is simple to prove that every facet of a simplex is itself a simplex, and that

therefore every proper face of a simplicial polytope is a simplex.

For any polytope P, we can construct a poset (partially ordered set) called the

face lattice of P whose elements are the faces of P. The face lattice, denoted L(P),

is partially ordered by inclusion of faces. Thus, given a d-dimensional face F

of a polytope P, the faces directly ‘above’ F in L(P) have dimension d + 1, and

those directly ‘below’ F have dimension d − 1. Furthermore, the polytope P is

the unique ‘highest’ face in the lattice, and the empty set ∅ (the (−1)-dimensional

face) is the unique ‘lowest’ face. Two polytopes are combinatorially equivalent if

their face lattices are isomorphic.

tabcdtacd tadb tabc tbcdtac tad tab tbc tcd tbdta tb tc tdt∅
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The face lattice of the three-dimensional simplex P({a, b, c, d})
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Given a polytope P(G) with vertices V(G) = {x1, . . . , xk},

relint(P(G)) =

{
k∑

i=1

λixi

∣∣∣∣∣ each λi > 0,

k∑
i=1

λi = 1

}

is the relative interior of P(G). The relative interior of a polytope is the convex hull

of the polytope minus the points on its surface. Notice that the only difference

between this equation and equation (1.1) is the tighter restriction that λi > 0.

Given two polytopes P1 and P2 we say that P2 is the combinatorial dual of P1

if L(P1) is anti-isomorphic to L(P2). That is, the two polytopes are dual if L(P2)

is just L(P1) flipped upside-down. Furthermore, we can define the polar dual of

P ⊂ Rd as

P∗ = {c ∈ Rd | c · x ≤ 1 for all x ∈ P},

where it is assumed that the origin is contained in the relative interior of P. It is

possible to define the polar dual for general polytopes, regardless of location of

the origin, but for our purposes this assumption will be sufficient. [Z] provides a

good treatment of this construction, which associates with each vertex of P a facet

of P∗, where the line connecting a vertex to the origin is normal to the resulting

facet and the facet’s distance from the origin is the multiplicative inverse of that

of the vertex.

For a proof of the following proposition, we refer the reader to [Z].

Proposition 2. Given a polytope P,

i) dim (P) = dim (P)
∗,

ii) P ∼= P∗∗ (see page 8 for definition of ‘∼=’),

iii) If P = conv(V), then P∗ = {p | p · v ≤ 1 for all v ∈ V},

iv) If P = conv(V), then the facets of P∗ are given by {p ∈ P | v · p = 1} for each

v ∈ V ,

v) If P ⊂ Rn, and C ⊂ Rn is a set such that P = {p ∈ Rn | c · p ≤ 1 ∀ c ∈ C}, then

P∗ = conv(C).

For the purposes of this thesis, we mainly care about the combinatorial struc-

ture and dimension of a polytope, not it’s orientation, position or size. The fol-

lowing propositions show that affine transformations of a polytope — that is,
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Figure 1.1: A polytope P and its polar dual P∗

transformations that consist of a linear transformation and a translation — don’t

change any of the qualities we care about.

Proposition 3. Let P ⊂ Rm be a polytope, and A : Rm → Rm an invertible affine

transformation. Then A(P) is a polytope combinatorially equivalent to P.

Proof. Let A = T ◦ L, the composition of a linear transformation, L, and a transla-

tion, T , by v ∈ Rm.

First, we will show that A(P) is a polytope. Let P = conv({x1, . . . , xm}). Each

p ∈ P, then, has the form p =
∑

λixi. Thus, by linearity, L(p) =
∑

λiL(xi).

Noticing that v = v
∑

λi and applying the translation T , we get

A(p) = T ◦ L(p) = v +
∑

λiL(xi) =
∑

λi(v + L(xi)) =
∑

λiA(xi),

which shows that A(P) = conv({A(x1), . . . , A(xm)}). Hence A(P) is a polytope.

We will now show that A(P) and P are combinatorially equivalent. An ele-

mentary result from linear algebra tells us that any linear function from Rm → R
is equivalent to the dot product map (a·) : x 7→ a · x for some a ∈ Rm. Let

F = {p ∈ P | c · p = c0} be a face of P. Then we have the map (c·) : p 7→ c · p = c0

for all p ∈ F. Additionally, (c·) ◦ A−1 is a map from Rm → R, and so there must

exist some c ′ such that (c·) ◦A−1 = (c ′·). Thus,

(c ′·) : A(p) 7→ c ·A−1(A(p)) = c0
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and c ′ · A(p) = c0 for all p ∈ F. In addition, given any p ∈ P, we have c · p ≤ c0.

Therefore c ′ ·A(p) = c ·p ≤ c0, and A(F) = {A(p) | p ∈ F} = {p ∈ A(P) | c ′ ·p = c0}

is a face of A(P).

Clearly, the invertible affine transformation A is bijective and preserves subset

inclusions, and the two polytopes must have isomorphic face lattices. Thus, A(P)

is combinatorially equivalent to P. 2

If P ⊂ Rr and Q ⊂ Rs are polytopes, we say that P is isomorphic to Q if there

exists an affine transformation A : Rr → Rr such that A is injective when restricted

to P and A(P) = Q. In this case, we write P ∼= Q. By proposition 3, if two

polytopes are isomorphic, then they are combinatorially equivalent.

Notice that if P ⊂ Rm is an n-polytope with n ≤ m, then we can choose an

affine transformation A : Rm → Rm such that A(aff(P)) = Rn. Thus A can be

seen as a projection sending the n-polytope P ⊂ Rm to an isomorphic and full-

dimensional n-polytope A(P) ⊂ Rn. Thus in most cases we can assume without

loss of generality that a polytope P of dimension n is full-dimensional, that is,

P ⊂ Rn.

1.2 Standard Constructions

In preparation for chapter three, we will define three different ways to combine

polytopes: the cartesian product, the direct sum, and the free join.

Let P1 ⊂ Rr be an r-polytope and P2 ⊂ Rs be an s-polytope. We define the

cartesian product of P1 and P2 to be the polytope

P1 × P2 = conv({(x, y) ∈ Rr+s | x ∈ P1, y ∈ P2}) .

If ~0 ∈ relint(P1) and ~0 ∈ relint(P2), then the polytope

P1 ⊕ P2 = conv
(
{(x,~0s) ∈ Rr+s | x ∈ P1} ∪ {(~0r, y) ∈ Rr+s | y ∈ P2}

)
defines the direct sum (or free sum) of P1 and P2. Finally, let P1 ⊂ Rr+s+1 be an

r-polytope and P2 ⊂ Rr+s+1 be an s-polytope. If aff(P1) and aff(P2) are skew —

that is, they do not intersect and contain no parallel lines — then the free join of

the polytopes is

P1 1 P2 = conv(P1 ∪ P2) .

Some simple visual examples of these operations are useful.
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Example 4. Let P1 = conv((1), (3)) ⊂ R, a line segment of length 2, and let P2 =

conv((−1,−1), (1,−1), (1, 1), (−1, 1)) ⊂ R2, a two-by-two square. We construct

the cartesian product

P1 × P2 = conv

(
(1,−1,−1), (1, 1,−1), (1, 1, 1), (1,−1, 1),

(3,−1,−1), (3, 1,−1), (3, 1, 1), (3,−1, 1)

)
,

a two-by-two-by-two cube in R3. (See figure 1.2.) 4

Figure 1.2: Cartesian product

Example 5. Let P2 be defined as in example 4, but let P1 = conv((−1), (1)) ⊂ R
so that now the origin is in the relative interior of both polytopes. We can now

construct the direct sum

P1 ⊕ P2 = conv

(
{(0,−1,−1), (0, 1,−1), (0, 1, 1), (0,−1, 1)}

∪ {(−1, 0, 0), (1, 0, 0)}

)
,

a bipyramid in R3. (See figure 1.3.) 4

Example 6. Unfortunately, the free join of a square and a line is four-dimen-

sional, so we will have to simplify the setup of the previous two examples a

bit to be able to visualize it. Let P1 = conv((0,−1, 1), (0, 1, 1)) and let P2 =

conv((−1, 0, 0), (1, 0, 0)). The affine spans of these polytopes are clearly skew,

allowing us to take the free join

P1 1 P2 = conv({(0,−1, 1), (0, 1, 1)} ∪ {(−1, 0, 0), (1, 0, 0)}) ,

a simplex in R3. (See figure 1.4.) 4
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Figure 1.3: Direct sum

Figure 1.4: Free join

The following few propositions characterize the face lattices of the polytopes

resulting from these three operations.

Proposition 7. Let P1 and P2 be polytopes. The k-faces of P1×P2, for k ≥ 0, are precisely

F1 × F2 where F1 is a nonempty i-face of P1, F2 is a nonempty j-face of P2, and i + j = k.

Proof. First we will prove that, given F1 and F2, F1 × F2 is a face of P1 × P2. Let

Fi be defined by the equation ci · xi = αi, where c1 ∈ Rr, c2 ∈ Rs, and αi ∈ R.

Define c = (c1, c2) ∈ Rr+s and α = α1 +α2. Then c ·p ≤ α for all p ∈ P1×P2, with

equality only if p ∈ Fi.

To prove the converse, let F be a nonempty face of P1×P2 defined by c·(x, y) =

α for some c ∈ Rr+s and some α ∈ R. Let c1 ∈ Rr and c2 ∈ Rs be defined by

c = (c1, c2). We define αi = max{ci · xi | xi ∈ Pi}, so that ci · xi = αi for at least one
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xi ∈ Pi. That is,

c1 · x1 + c2 · x2 = α1 + α2 = α

for at least one pair (x1, x2) ∈ P1 × P2. But then, ci · xi = αi must hold for all

(x1, x2) ∈ F. Thus, we identify the faces Fi = {xi ∈ Pi | ci · xi = αi} ⊆ Pi, and

F = F1 × F2, which completes the proof. 2

Proposition 8. Let P1 and P2 be polytopes. The k-faces of P1 1 P2 are precisely F1 1 F2

where dim (F1) + dim (F2) + 1 = k.

Proof. We will use an affine transformation to embed the polytopes into more

manageable spaces. Assume P1 ⊂ Rr and P2 ⊂ Rs are embedded in Rr+s+1. A sim-

ple linear change of coordinates allows us to let aff(P1) = p+span (e1, . . . , er) and

aff(P2) = q+span (er+1, . . . , er+s) where p = (p1, . . . , pr+s+1) and q = (q1, . . . , qr+s+1)

are vectors in Rr+s+1, and {e1, . . . , er+s+1} are the standard basis vectors. Translat-

ing the polytopes by −(q1, . . . , qr, pr+1, . . . , pr+s+1) gives us

aff(P1) = span (e1, . . . , er) = Rr × {~0s}× {0}

aff(P2) = αer+s+1 + span (er+1, . . . , er+s) = {~0r}× Rs × {α}

for some α ∈ R. Now, notice that α 6= 0 because otherwise ~0r+s+1 ∈ aff(P1) ∩
aff(P2), and the affine spans have a point of intersection. We can thus normalize

to set α = 1 with a linear map. Therefore, there is an affine transformation that

will transform two skew polytopes P1 and P2 into isomorphic polytopes

P1 ⊂ Rr × {~0s}× {0}

P2 ⊂ {~0r}× Rs × {1}.

Let Fi be a nonempty face of Pi with defining equation

ci · x = (ci,1, . . . , ci,r+s+1) · x = αi,

for i = 1, 2. Notice that c1 (resp. c2) can be modified by setting c1,r+1, . . . , c1,r+s

(resp. c2,1, . . . , c2,r) equal to zero without affecting the face. In fact, by adjusting

c2, we can assume α1 = α2. To see this, notice that adding some constant γ to

both α2 and c2,r+s+1 leaves the hyperplane unchanged, since the last coordinate

of every point in P2 is 1. Let γ = α1 −α2, so that c2 becomes c ′
2 = c2 +γer+s+1 and

α2 becomes α1. Then the equation c ′
2 · x = α1 defines F2. Defining c = c1 + c ′

2, the
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equation c · x = α1 holds for all x ∈ F1 1 F2. Furthermore, if p ∈ P1 × P2, then

p =
∑

xi∈P1∪P2
λixi with

∑
λi = 1. Hence,

c · p =
∑

λi(c · xi) ≤ α
∑

λi = α,

and F1 1 F2 is a face of P1 1 P2. Therefore the join of any two nonempty faces of

the polytopes is a face of the join.

If at least one of the Fi — say F2 — is empty, then we have F1 1 ∅ = F1.

Let (c1, . . . , cr+s+1) · x = α be a defining equation for F1. If we define c ′ =

(c1, . . . , cr, 0, . . . , 0), then c ′ · x = α for all x ∈ F1 × ∅. Also, by the argument

given in the previous paragraph, c ′ · p ≤ α for p ∈ P1 1 P2. Thus the join of any

two faces, empty or not, defines a face of P1 1 P2.

We will now show that every face of P1 1 P2 is F1 1 F2 for some faces F1

of P1 and F2 of P2. Let F be a face of P1 1 P2 defined by the equation c · x =

(c1, c2, 0) · x = α. The assumption that the last coordinate of c is zero is made

without loss of generality by the argument in the previous paragraphs. Each

point x ∈ F must be of the form x = tp + (1 − t)q with p ∈ P1 and q ∈ P2. If

t = 0 or t = 1 in this formula, then x ∈ Pi for some i, and is thus on the face

P1 1 ∅ or ∅ 1 P2. If, however, t is not zero or one, then the entire line segment

{tp + (1 − t)q | 0 ≤ t ≤ 1} must be contained in F, and

c · (tp + (1 − t)q) = tc1 · p + (1 − t)c2 · q = α

for all 0 ≤ t ≤ 1. Therefore, c1 · p = c2 · q = α, which defines a face F1 of P1 and a

face F2 of P2. Hence, F must be equal to F1 1 F2, which completes the proof. 2

The following theorem relates the operations of cartesian product and direct

sum through the polar dual.

Theorem 9. Given polytopes P1 ⊂ Rr and P2 ⊂ Rs, if the origin ~0 ∈ relint(P1) and
~0 ∈ relint(P2), then (P∗

1 × P∗
2)

∗ = P1 ⊕ P2.

Proof. We give Bremner’s proof [Br].

Let Pi = conv(Vi). Proposition 2 says that P∗
i = {pi | pi · vi ≤ 1 for all vi ∈ Vi},

and that the facets of P∗
i are given by {pi | vi · pi = 1} for each vi ∈ Vi. By

proposition 7, the facets of P∗
1 × P∗

2 are given by P∗
1 × F2 and F1 × P∗

2, where Fi is a

facet of P∗
i . Let P∗

i be defined by the equation ~0 · p = 0. Using the construction for

proposition 7 the facets of P∗
1×P∗

2 are defined by the equations (v1,~0s) ·p = 1 and
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(~0r, v2) · p = 1, where vi ∈ Vi, and P∗
1 × P∗

2 is defined by the halfspaces

{p ∈ Rr+s | (v1 × ~0s) · p ≤ 1 and (~0r × v2) · p ≤ 1}

for vi ∈ Vi. If we apply proposition 2(v) to P∗
1 × P∗

2, then we get

(P∗
1 × P∗

2)
∗ = conv

(
{(v1,~0s) ∈ Rr+s | v1 ∈ V1} ∪ {(~0r, v2) ∈ Rr+s | v2 ∈ V2}

)
,

which is precisely the definition of the direct sum, P1 ⊕ P2. 2

The cartesian product (×) of two face lattices L1 and L2 is a poset by the fol-

lowing rule: (x1, y1) ≤ (x2, y2) in L1 × L2 if and only if x1 ≤ x2 and y1 ≤ y2. We

are now ready for the following theorem, which fully characterizes the structure

of L(P1 × P2), L(P1 ⊕ P2), and L(P1 1 P2).

Theorem 10. Let P1 and P2 be polytopes with face lattices L(P1) and L(P2). Then

i) L(P1 × P2) ∼=
(
L(P1)× L(P2)

)
/(∼∅)

ii) L(P1 ⊕ P2) ∼=
(
L(P1)× L(P2)

)
/(∼P)

iii) L(P1 1 P2) ∼= L(P1)× L(P2),

where ∼∅ is the equivalence relation defined by (F × ∅) ∼∅ (∅ × F) ∼∅ (∅ × ∅) and ∼P is

the equivalence relation defined by (F× P2) ∼P (P1 × F) ∼P (P1 × P2) for all faces F.

Thus, L(P1 × P2) is constructed from L(P1) × L(P2) by identifying all of the

elements of the form ∅ × F2 or F1 × ∅. Similarly, L(P1 ⊕ P2) is constructed from

L(P1) × L(P2) by identifying all of the elements of the form P1 × F2 or F1 × P2.

Example 11 will be helpful in understanding this theorem and its proof.

Proof.

i) By proposition 7, we know that every face of P1×P2 is the cartesian product

F1 × F2, where Fi is a face of Pi. If F1 = ∅ or F2 = ∅, then F1 × F2 = ∅.

Therefore, we can construct an obvious isomorphism between L(P1 × P2)

and
(
L(P1)× L(P2)

)
/(∼∅).

ii) Theorem 9 gives us L(P1⊕P2) = L((P∗
1×P∗

2)
∗). If we apply part (i) and recall

the relation between the face lattice of a polytope and its dual (page 6), our

result follows directly.
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Figure 1.5: Face lattices of P 1 Q, P ×Q and P ⊕Q

iii) Using proposition 8, the isomorphism is just F1 1 F2 7→ F1 × F2. 2

Example 11. Let P be the line segment conv(a, b) and let Q be the line segment

conv(c, d). The face lattices of P 1 Q, P×Q, and P⊕Q are shown in figure 1.5. It is

assumed that aff(P) and aff(Q) are skew in the case of P 1 Q, and complementary

in the case of P ⊕Q. 4



Chapter 2

Group Polytopes

The aim of the study of group polytopes is to investigate the relationships be-

tween the structure of groups and the structure of their associated polytopes.

This chapter will cover some of the basic general results, some of which will ap-

ply to our treatment of wreath products in the next chapter.

2.1 Getting Polytopes from Groups

So far, we have only spoken of polytopes of generic point sets. The subject of

this thesis, though, is polytopes associated with groups. Before discussing how

these are constructed we will need a bit of real representation theory. Recall that

GL(m, R) is the set of invertible m×m matrices over the real numbers.

Definition 12. Given a group G, a mapping ρ : G → GL(m, R) is a real matrix

representation if ρ(xy) = ρ(x)ρ(y) for all x, y ∈ G. That is, ρ is a representation if

it is a group homomorphism from G to GL(m, R). 5

Although a representation of a group respects the structure of the group itself,

structure can be lost through a representation, as evidenced by the trivial repre-

sentation ρ : G → GL(1, R), where ρ(g) = [1] for all g in G. A representation is

said to be faithful if the homomorphism ρ is an injection, and thus loses none of

the group’s information in the mapping.

A common and useful kind of group representation is the permutation repre-

sentation:

Definition 13. If G ⊆ Sm is a permutation group of degree m then its permutation

representation, ρP : G → GL(m, R), is defined as follows. If x is an element in G,
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then the (i, j)-th entry of ρP(g) is given by

ρP(g)i,j =

{
1 if g sends j to i

0 otherwise.

5

If g ∈ G ⊆ Sm, then ρP(g) is an m×m matrix with m ones and m2 − m zeros.

Furthermore, each row and each column contains exactly one nonzero entry.

Now, given a group element g ∈ G and a representation ρ : G → GL(m, R), we

can construct a point ρ(g) ∈ Rm2 by “flattening” the matrix ρ(g). That is, create

an m2-vector by placing each successive row of ρ(g) after the previous. In this

way we can translate G into a point set ρ(G) ⊂ Rm2 .

Definition 14. We can now, given a group G and a matrix representation ρ, define

the polytope of G to be P(G, ρ) = conv(ρ(G)). 5

Example 15. Let G = C3 = {(1), (1 2 3), (1 3 2)}. Then the permutation represen-

tation ρP(G) is
{[

1 0 0
0 1 0
0 0 1

]
,
[

0 0 1
1 0 0
0 1 0

]
,
[

0 1 0
0 0 1
1 0 0

]}
. The flattened points in R9 are

(1, 0, 0, 0, 1, 0, 0, 0, 1), (0, 0, 1, 1, 0, 0, 0, 1, 0), (0, 1, 0, 0, 0, 1, 1, 0, 0).

So the polytope P(G, ρP) is a two-dimensional simplex (a triangle) embedded in

nine-dimensional space. 4

Example 16. Let G be as in the above example, but let ρ be the representation

mapping G to
{[

1 0

0 1

]
,
[

−1 1

−1 0

]
,
[

0 −1

1 −1

]}
. So P(G, ρ) is again a two-dimensional sim-

plex, but it is now embedded in R4. 4

Notice that in both of these examples the representation of G = C3 is faithful,

but that the resulting polytopes differ.

2.2 Useful Theorems and Definitions

It would be nice to know which elements of a group G become vertices of P(G)

and which become internal points. As it turns out, they must all be vertices.

Theorem 17. Let G be a group and ρ : G → GL(n, R) be any representation of G, giving

us the polytope P(G) = P(G, ρ). If h is an element of G, then ρ(h) is a vertex of P(G).



2.2. USEFUL THEOREMS AND DEFINITIONS 17

Proof. Because P = conv({ρ(g) | g ∈ G}), the point ρ(g) must be a vertex of P for

some g ∈ G. Given some h ∈ G, construct an invertible linear transformation

hg−1 : Rn → Rn defined as matrix multiplication by ρ(hg−1). Thus, hg−1 sends

ρ(g) to ρ(h). By proposition 3, ρ(h) must be a vertex of P(hG) = P(G). 2

Edges of a group polytope are much harder to characterize in general than the

vertices. Brualdi’s theorem is a useful tool in characterizing edges.

Theorem 18. (Brualdi’s Theorem) Let G ⊆ Sm be a permutation group and let P(G)

be the polytope associated with its permutation representation, ρ. Let ρ(h), ρ(g) ∈ P(G)

be two vertices. The line segment connecting ρ(g) to ρ(h) is an edge of the polytope if

and only if the cycle decomposition of g−1h cannot be factored into two disjoint nontrivial

parts, both of which are elements of G.

Proof. For simplicity, we will identify the permutation group G with its permuta-

tion representation ρ(G).

It will suffice to show that the theorem holds for the vertices e and g, where e

is the identity permutation. In this case e−1g = g, so we need to show that the line

segment is an edge if and only if the cycle decomposition for g cannot be factored

into a product of disjoint group elements. We will prove the forward direction

first.

Suppose the cycle decomposition of g factors as g = g1g2, with g1, g2 ∈ G.

Then, by swapping out the appropriate rows in the permutation matrix, we have

e + g = g1 + g2 and therefore 1
2
e + 1

2
g = 1

2
g1 + 1

2
g2. This means that the point

1
2
g1+

1
2
g2 lies on the line segment connecting e to g. But an elementary result from

geometry tells us that two vertices of a convex polytope determine an edge if and

only if no point on the line segment connecting the vertices can be represented

as a nontrivial convex combination of two points of the polytope, at least one

of which does not lie on the line segment. Therefore, if g factors as above, then

the point 1
2
g1 + 1

2
g2 is a nontrivial combination of g1 and g2 and the segment

connecting e to g cannot be an edge.

To prove the converse, we will show that if the line segment between e and g

is not an edge, then the cycle decomposition of g factors nontrivially as g = g1g2

with g1, g2 ∈ G.

Assuming that the line segment connecting e to g is not an edge, let x = 1
2
e+ 1

2
g

so that x lies on this line segment. Since x does not lie on an edge, it must be a
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positive convex combination of the other group elements:

x =
∑
gj∈G

λjgj,

where each λl ≥ 0,
∑

l λl = 1, and where the coefficient is nonzero for some g ′

not on the line segment. Fix any such g ′. Because the above sum is nonnegative,

any entry with a zero in the matrix x forces a zero in the corresponding entry

of g ′. Furthermore, because x is a sum of e and g, we must have either g ′(i) = i

or g ′(i) = g(i).

Since g ′ does not lie on the line segment connecting e to g, there must be some

i1 for which g ′(i1) 6= i1. Therefore g ′(i1) = g(i1), or, letting (i1, . . . , im) be a cycle

in the cycle decomposition of g, g ′(i1) = i2. Now, assuming g ′(ik) = g(ik) = ik+1

for some k < m, we know that either g ′(ik+1) = ik+1 or g ′(ik+1) = g(ik+1) = ik+2.

In the first case, we have g ′(ik) = g ′(ik+1), which is impossible because ik 6=
ik+1. Thus the second case, g ′(ik+1) = g(ik+1) = ik+2, must be true, and we have

shown by induction that both g and g ′ contain the cycle (i1, . . . , im). This process

can be repeated until all cycles of g ′ have been covered, showing that the cycle

decomposition of g contains each disjoint cycle in the cycle decomposition of g ′.

Now, gg ′−1 cannot be the identity, because g 6= g ′. Thus, g = g ′g ′′ for some

g ′, g ′′ ∈ G whose cycles are disjoint, which completes the proof. 2

2.3 Computing Polytopes

Using computers, it is possible to generate and analyze specific examples of poly-

topes associated with groups. Using GAP [GAP] for the general algebra, and

PORTA [PORTA] for the polytope-specific tasks, it is possible to get complete in-

formation about almost any polytope (provided enough running time).

The following GAP script will take the j-th transitive group of order i (see

[CHM]) and output the resulting point set to a file polytope.poi .

G:=TransitiveGroup(i,j);

n:=NrMovedPoints(G);

points:=List(Elements(G),x->Flat(PermutationMat(x,n)));

name:="polytope.poi";

AppendTo(name,"DIM=",nˆ2,"\n\n");

AppendTo(name,"COMMENT ",G," ",Size(G),"\n\n");
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AppendTo(name,"CONV_SECTION\n");

for x in points do

for y in x do

AppendTo(name,y," ");

od;

AppendTo(name,"\n");

od;

AppendTo(name,"\n","END\n\n");

Then, using the traf -v polytope.poi command with PORTA, a file titled

polytope.poi.ieq is generated. This file contains a list of the inequalities that

define the facets of the polytope, and how many vertices lie on each of these

facets.

For example, if we let the group in question be the symmetric group S3, a

relatively simple group (TransitiveGroup(3,1) ), the resulting point set file,

polytope.poi , is

DIM=9

COMMENT S3 6

CONV_SECTION

1 0 0 0 1 0 0 0 1

1 0 0 0 0 1 0 1 0

0 1 0 1 0 0 0 0 1

0 1 0 0 0 1 1 0 0

0 0 1 1 0 0 0 1 0

0 0 1 0 1 0 1 0 0

END

The corresponding inequalities file, polytope.poi.ieq , is

DIM = 9

VALID

0 0 1 0 1 0 1 0 0
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INEQUALITIES_SECTION

( 1) +x3 +x6-x7-x8 == 0

( 2) +x2+x3-x4 -x7 == 0

( 3) +x4+x5+x6-x7-x8-x9 == 0

( 4) +x1+x2+x3-x4-x5-x6 == 0

( 5) +x7+x8+x9 == 1

( 1) -x5-x6-x8-x9 <= -1

( 2) -x5 <= 0

( 3) -x6 <= 0

( 4) -x8 <= 0

( 5) -x9 <= 0

( 6) +x8+x9 <= 1

( 7) +x6 +x9 <= 1

( 8) +x5 +x8 <= 1

( 9) +x5+x6 <= 1

END

strong validity table :

\ P | |

\ O | |

I \ I | |

N \ N | 1 6 | #

E \ T | |

Q \ S | |

S \ | |

\ | |

-----------------------

1 | ..*** * : 4

2 | .**** . : 4

3 | *.*.* * : 4

4 | *.**. * : 4

5 | .*.** * : 4

6 | ***.* . : 4

7 | ****. . : 4

8 | **..* * : 4
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9 | **.*. * : 4

.............

# | 66666 6

From this we can see that P(S3) has nine facets, each containing four of the six

vertices. In addition, the inequalities defining the facets are given.

Table 2.1 provides a list of transitive permutation groups up to degree seven.

The groups are organized by degree and traditional ordering (see [CHM]), and

are listed with name, size, number of facets, dimension, size of the 1-stabilizer,

and the number of vertices per facet. The blank fields required unreasonable

computing times, and were therefore ignored.
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deg. num. name size # facets dim. |G1| # verts./fac.

2 1 S2 2 2 1 1 1

3 1 A3 3 3 2 1 2

3 2 S3 6 9 4 2 4

4 1 C(4) = 4 4 4 3 1 3

4 2 E(4) = 2[×]2 4 4 3 1 3

4 3 D(4) 8 8 5 2 6

4 4 A4 12 64 9 3 9

4 5 S4 24 16 9 6 18

5 1 C(5) = 5 5 5 4 1 4

5 2 D(5) = 5 : 2 10 25 8 2 8

5 3 F(5) = 5 : 4 20 625 16 4 16

5 4 A5 60 8665 16 12 16, 18, 19, 20, 48

5 5 S5 120 25 16 24 96

6 1 C(6) = 6 6 6 5 1 5

6 2 D6(6) 6 6 5 1 5

6 3 D(6) = S(3)[×]2 12 18 9 2 10

6 4 A4(6) = [22]3 12 12 11 2 11

6 5 F18(6) = 3 o 2 18 12 9 3 15

6 6 2A4(6) = 2 o 3 24 18 11 4 20

6 7 S4(6d) 24 82 13 4 13, 18, 20

6 8 S4(6c) 24 474 13 4 13, 14, 20

6 9 F18(6) : 2 36 72 17 6 30

6 10 F36(6) 36 72 17 6 30

6 11 2S4(6) = 2 o S(3) 48 18 13 8 40

6 12 L(6) = A5(6) 60 1334581 25 10

6 13 F36(6) : 2 = S(3) o 2 72 36 17 12 60

6 14 L(6) : 2 = S5(6) 120 25 20

6 15 A6 360 25 60

6 16 S6 720 36 25 120 600

7 1 C(7) = 7 7 7 6 1 6

7 2 D(7) = 7 : 2 14 49 12 2 12

7 3 F21(7) = 7 : 3 21 343 18 3 18

7 4 F42(7) = 7 : 6 42 117649 36 6 36

7 5 L(7) = L(3, 2) 168 36 24

7 6 A7 2520 36 360

7 7 S7 5040 36 720

Table 2.1: Transitive Permutation Polytopes
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Wreath-Product Polytopes

The goal of this chapter will be to completely characterize polytopes of groups

arising as the wreath product of two groups, one of which is a regular permu-

tation group. First, though, we will need to define wreath products and derive

some basic results about them.

3.1 Wreath Products of Groups

Given a group G and a permutation group H ⊆ Sn, the wreath product G o H =

{(g, h) | g ∈ Gn, h ∈ H} is a group under the operation defined by

(g ′, h ′)(g, h) = ((g ′
1, . . . , g

′
n), h ′)((g1, . . . , gn), h) := ((g ′

h(1)g1, . . . , g
′
h(n)gn), h ′h).

(3.1)

Clearly, |G oH| = |H||G||H|.

Because this rule for multiplication is cumbersome in practice, we will use the

following notation when working with wreath products. Any element (g, h) =

((g1, . . . , gn), h) of G oH can be represented by hIg where Ig is the diagonal matrix

with {g1, . . . , gn} on the diagonal. Equivalently, the element can be represented

by the n × n permutation matrix corresponding to h, but with gi replacing the 1

in the i-th column (i = 1, . . . , n).

Example 19. For example, let G = {e, g}, and let H = S2
∼=

{[
1 0

0 1

]
,

[
0 1

1 0

]}
. Then

G oH ∼=


[

e 0

0 e

]
,

[
g 0

0 e

]
,

[
e 0

0 g

]
,

[
g 0

0 g

]
,[

0 e

e 0

]
,

[
0 e

g 0

]
,

[
0 g

e 0

]
,

[
0 g

g 0

]
 . (3.2)
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4

If G is also a permutation group, say G ⊆ Sm, then G o H is a permutation

subgroup of Smn. In this case we have a permutation representation for the

group. The construction of the permutation representation is similar to that of

the generic wreath product, except that each element of an n × n permutation

matrix is changed to an m × m block representing an element of G. Thus each

zero is converted to a block of m2 zeros. This yields an mn×mn matrix.

Example 20. If we let G ′ = H = S2
∼=

{[
1 0

0 1

]
,

[
0 1

1 0

]}
, then the permutation

representation of G ′ oH is


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

 ,


0 1 0 0

1 0 0 0

0 0 1 0

0 0 0 1

 ,


1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

 ,


0 1 0 0

1 0 0 0

0 0 0 1

0 0 1 0

 ,


0 0 1 0

0 0 0 1

1 0 0 0

0 1 0 0

 ,


0 0 1 0

0 0 0 1

0 1 0 0

1 0 0 0

 ,


0 0 0 1

0 0 1 0

1 0 0 0

0 1 0 0

 ,


0 0 0 1

0 0 1 0

0 1 0 0

1 0 0 0




.

This should be compared to display (3.2) in the above example, noting that the

two groups G and G ′ are isomorphic. 4

We will now devote some attention to the structure of the group G oH. Let G

be any finite group, and let H be a regular subgroup of Sn. (That is, the identity

is the only element of H that has a fixed point.) Then we can write the wreath

product as

G oH =

{
h

[
g1 · · · 0

.

.

.
. . .

.

.

.
0 · · · gn

] ∣∣∣∣ h ∈ H; g1, . . . , gn ∈ G

}
.

Call the subgroup of G oH defined by

(G oH)1 =


e 0 · · · 0

0 g2 0

.

.

.
. . .

.

.

.
0 0 · · · gn

∣∣∣∣∣∣ g2, . . . , gn ∈ G


the stabilizer of 1 in G oH.1 Clearly, |(G oH)1| = |G|n−1. Now, define the subgroup

R =

{
h

[
g · · · 0
.
.
.

. . .
.
.
.

0 · · · g

] ∣∣∣∣ h ∈ H; g ∈ G

}
.

1The 1-stabilizer of a permuatation representation is usually defined to contain any element

with 1 in the upper-lefthand entry.
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It is clear that, |R| = |H||G|. With some inspection we see that R is a set of coset

representatives for (G o H)1. As we will see, structuring G o H in this way is very

useful.

Example 21. Let G = {e, g}, and let H = C3 =
{[

1 0 0
0 1 0
0 0 1

]
,
[

0 0 1
1 0 0
0 1 0

]
,
[

0 1 0
0 0 1
1 0 0

]}
. Then

(G oH)1 =
{[

e 0 0
0 e 0
0 0 e

]
,
[

e 0 0
0 e 0
0 0 g

]
,
[

e 0 0
0 g 0
0 0 e

]
,
[

e 0 0
0 g 0
0 0 g

]}
,

and

R =
{[

e 0 0
0 e 0
0 0 e

]
,
[

g 0 0
0 g 0
0 0 g

]
,
[

0 0 e
e 0 0
0 e 0

]
,
[

0 0 g
g 0 0
0 g 0

]
,
[

0 e 0
0 0 e
e 0 0

]
,
[

0 g 0
0 0 g
g 0 0

]}
.

Thus, G oH = {e, g} o C3 = {rg1 | r ∈ R ; g1 ∈ (G oH)1}. 4

For each h ∈ H, define

Rh =

{
h

[
g · · · 0
.
.
.

. . .
.
.
.

0 · · · g

] ∣∣∣∣ g ∈ G

}
.

Example 22. Let G and H be defined as in example 21. Let h0 =
[

1 0 0
0 1 0
0 0 1

]
, h1 =[

0 0 1
1 0 0
0 1 0

]
, and h2 =

[
0 1 0
0 0 1
1 0 0

]
. Then G oH =

Rh0
(G oH)1


[

e 0 0
0 e 0
0 0 e

] [
e 0 0
0 e 0
0 0 g

] [
e 0 0
0 g 0
0 0 e

] [
e 0 0
0 g 0
0 0 g

] }
(G oH)1[

g 0 0
0 g 0
0 0 g

] [
g 0 0
0 g 0
0 0 e

] [
g 0 0
0 e 0
0 0 g

] [
g 0 0
0 e 0
0 0 e

]

Rh1
(G oH)1


[

0 0 e
e 0 0
0 e 0

] [
0 0 e
e 0 0
0 g 0

] [
0 0 e
g 0 0
0 e 0

] [
0 0 e
g 0 0
0 g 0

]
[

0 0 g
g 0 0
0 g 0

] [
0 0 g
g 0 0
0 e 0

] [
0 0 g
e 0 0
0 g 0

] [
0 0 g
e 0 0
0 e 0

]

Rh2
(G oH)1


[

0 e 0
0 0 e
e 0 0

] [
0 e 0
0 0 e
g 0 0

] [
0 e 0
0 0 g
e 0 0

] [
0 e 0
0 0 g
g 0 0

]
[

0 g 0
0 0 g
g 0 0

] [
0 g 0
0 0 g
e 0 0

] [
0 g 0
0 0 e
g 0 0

] [
0 g 0
0 0 e
e 0 0

] .

Note that the leftmost column is simply R, while the top row is (G oH)1. 4

This partitioning of G oH into
⋃

h∈H Rh(G oH)1 will prove very useful in char-

acterizing its polytopes in section 3.2.
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3.2 Polytopes of Wreath Products

Proposition 23. Given a representation of a finite group G, its associated polytope P(G),

and a permutation group H ⊆ Sn, let Rh and (G oH)1 be defined as in section 3.1. Then

P(Rh(G oH)1) ∼= P(G)n

for each h in H, where the exponent refers to cartesian product. Furthermore, if H is

regular, and if h and h ′ are distinct elements of H, then P(Rh(GoH)1) and P(Rh ′(GoH)1)

lie in complementary spaces.

Proof. Notice that each P(Rh(G o H)1) is just a change of coordinates of the poly-

tope P(Re(G o H)1), so it will suffice to show that the first part of theorem holds

for

P(Re(G oH)1) = conv
({[

g1 · · · 0
.
.
.

. . .
.
.
.

0 · · · gn

] ∣∣∣∣ gi ∈ G

})
.

By rearranging the coordinates to put all the zeros at the end, we get

P(Re(G oH)1) = conv
(
{(g1, . . . , gn,~0}

)
,

which is precisely the definition of P(G)n embedded in a larger space.

To see that the P(G)n associated with distinct elements of a regular group H

sit in complementary spaces, one need only notice that the linear spans of the

polytopes intersect only at the origin. 2

We thus have P(GoH) as the convex hull of |H| complementary polytopes. The-

orem 24 describes how these subpolytopes produce the polytope of the wreath

product.

Theorem 24. Given a representation of a finite group G, its corresponding polytope

P(G), and a regular permutation group H ⊆ Sn,

P(G oH) ∼=

{
[P(G)n]

⊕|H| if the origin is in relint(P(G))

[P(G)n]
1|H| otherwise.

Proof. The proof of this theorem will require two cases.

Case 1: ~0 ∈ relint(P(G))

Since H is regular, the affine spans of each P(Rh(G oH)1) intersect either at the

origin or nowhere. But because the origin is in the relative interior of P(G), it must

be in the relative interior of P(G)n, and the polytopes P(Rh(G oH)1) intersect only

at the origin, which is in the relative interior of each. Thus, P(G oH) ∼= [P(G)n]
⊕|H|.
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Case 2: ~0 /∈ relint(P(G))

We want to show that in this case the affine spans of two polytopes P(Rh(G o
H)1) and P(Rh ′(G o H)1)} must be skew. That is, we want to show that the affine

spans of the spaces contain no parallel lines and do not intersect. We know by

proposition 23 that the spaces are complementary, and so contain no parallel

lines. Then, because the only possible point of intersection is the origin, we need

only show that neither has the origin in its affine span.

To do this, assume that the origin ~0 ∈ aff(P(G)). Now, let x = 1
|G|

∑
g∈G g. If

we multiply both sides of this equation on the left by some particular g0 ∈ G, we

have

g0x =
1

|G|
g0

∑
g∈G

g =
1

|G|

∑
g∈G

g0g = x.

Thus, gx = x for all g, i.e., x is invariant under G. Now, because ~0 ∈ aff(P(G)), we

have
∑

λgg = ~0 for some {λg | g ∈ G ;
∑

λg = 1}. Therefore, (
∑

λgg) x = ~0, and∑
λggx =

∑
λgx =

(∑
λg

)
x = ~0.

Because
∑

λg = 1, this means that x = ~0. Also, notice that x =
∑

1
|G|

g is in

relint(P(G)), contradicting our condition that ~0 /∈ relint(P(G)) and showing that
~0 /∈ aff(P(G)). Thus, given distinct elements h, h ′ ∈ H, aff(P(Rh(G oH)1)) and

aff(P(Rh ′(G oH)1)) must be skew. Therefore, taking the convex hull of the poly-

topes in the set {P(Rh(G o H)1) | h ∈ H} gives the free join. That is, P(G o H) ∼=

[P(G)n]1|H|. 2

Corollary 25. If P(G) is a d-polytope and H is a regular subgroup of Sn, then

dim (P(G oH)) =

{
nd|H| if ~0 ∈ relint(P(G))

nd|H| + |H| − 1 if ~0 /∈ relint(P(G)).

Proof. This is clear from the dimensions of cartesian products, direct sums, and

free joins. 2

Remark 26. The combinatorial structure of P(G oH) — that is, the structure of the

face lattice L(P(G oH)) — now follows directly from theorems 24 and 10.
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http://www.cs.unb.ca/˜bremner/papers/phd/

[BrG] Richard A. Brualdi and Peter M. Gibson, Convex polyhedra of doubly

stochastic matrices, Linear Algebra and Appl., vol. 15, 1976.

[Br] Richard A. Brualdi, Convex Polytopes of permutation invariant doubly

stochastic matrices, J. Combinatorial Theory Ser. B, vol. 23, 1977.

[CHM] John H. Conway, Alexander Hulpke and John McKay, On Transitive

Permutation Groups, LMS J. Comput. Math., vol. 1, 1998.

[GAP] The GAP Group, GAP – Groups, Algorithms, and Programming, Version

4.3; 2002, available at http://www.gap-system.org .

[M] L. Mirsky, Results and problems in the theory of doubly-stochastic ma-

trices, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete, vol. 1, 1962/63.



30 BIBLIOGRAPHY

[O] Shmuel Onn, Geometry, complexity, and combinatorics of permutation

polytopes, J. Combin. Theory Ser. A, vol. 64, 1993.

[PC] David Perkinson and John Collins, Frobenius Polytopes, preprint.

[PORTA] Thomas Christof and Andreas Löebel, PORTA – A Polyhe-

dron Representation Transition Algorithm, version 1.3.2, available

from the ZIB electronic library ELIB via anonymous ftp from

ftp.zib.de/pub/Packages/mathprog/polyth/porta

[S] Hana Steinkamp, Convex Polytopes of Permutation Matrices, Thesis

(B.A.), Reed College, 1999.

[Z] Günter M. Ziegler. Lectures on Polytopes. Springer-Verlag, New York,

1995.


	List of Tables
	List of Figures
	Introduction
	Polytopes
	Elementary Results
	Standard Constructions

	Group Polytopes
	Getting Polytopes from Groups
	Useful Theorems and Definitions
	Computing Polytopes

	Wreath-Product Polytopes
	Wreath Products of Groups
	Polytopes of Wreath Products

	Bibliography

