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Abstract

This paper presents the standard CW decomposition of the real Grassmannian
manifold. We begin by giving a general description of both the Grassmannian and
CW decompositions. We conclude with a proof that the decomposition presented is
indeed a CW decomposition.





Introduction

The Grassmannian Gr(k, n) parameterizes the set of k-dimensional subspaces of an
n-dimensional vector space. It is a key ingredient for the foundation of Schubert
calculus, which was created by Hermann Schubert in the nineteenth century. Schubert
was interested in solving various counting problems of enumerative geometry. For
example, a typical problem might be “how many lines in 3-space, in general, intersect
four given lines?” Grassmannians are also useful in mathematics in the creation of
parameter spaces for objects that are more complicated than linear spaces.

One component of the analysis of the Grassmannian is its CW decomposition,
i.e., a method of constructing Gr(k, n) by gluing together open balls of various di-
mensions. The collection of cells of a CW decomposition, which are homeomorphic
to these open balls, form a CW complex. More generally, a CW complex is a type of
topological space that was first introduced by J.H.C. Whitehead in the mid-twentieth
century and remains important in algebraic topology. The purpose of this thesis is
to provide an exposition of the CW decomposition of Gr(k, n) suitable for advanced
undergraduates. CW decompositions of Gr(k, n) have been discussed and proven by
various mathematicians. Our main reference is the book Characteristic Classes by
Milnor & Stasheff (1974). We were also helped by notes from a course by Mark
Hopkins (2014).

Chapter 1 outlines the general definition of Gr(k, n) and puts a manifold structure
on Gr(k, n). Examples of Gr(k, n) with matrix representatives are also provided. The
chapter ends with a brief discussion of Plücker coordinates. Chapter 2.1 provides
general definitions and examples relevant to CW complexes and CW decompositions.
More broadly, Chapter 2.2 constructs the CW decomposition of Gr(k, n). It starts
by discussing the Schubert cells of the Grassmannian, before briefly discussing Young
diagrams in Section 2.2.1. Section 2.2.2 defines Schubert varieties. Lastly, Section
2.2.3 gives the characteristic maps necessary to prove that the Schubert cells do indeed
form a CW decomposition of Gr(k, n). An example of why Gr(k, n) is not a regular
CW complex is also provided.





Chapter 1

Manifold structure of the
Grassmannian

Fix non-negative integers k ≤ n. Define Gr(k, n) as the set of k-dimensional subspaces
of Rn. Our first goal is to give “coordinates” of points in Gr(k, n). Let Mk×n denote
the real matrices with k rows and n columns. Given a k dimensional subspace V ⊆ Rn,
choose a basis v1, v2, . . . , vk ∈ Rn for V , and let L ∈ Mk×n be the k×n matrix whose
rows are v1, . . . , vk. We can then use L to represent V , since L determines the subspace
V ⊆ Rn by its rowspace. Every k × n matrix of rank k determines an element of
Gr(k, n). Note that there are multiple options for the basis of V , so L depends on the
choice of v1, v2, . . . , vk. This results in two matrices representing the same V differing
by elementary row operations.

We would like to choose a favorite representative in each equivalence class so that
the set of L ∈ Gr(k, n) is in bijection with the set of k dimensional subspaces of Rn.
First, let M∗

k×n ⊆ Mk×n denote the k × n matrices of full rank k (determining rank
will be discussed shortly). We will define an equivalence class on M∗

k×n as L ∼ L′ if
there exists some invertible k × k matrix A such that L′ = AL (which is equivalent
to L and L′ differing by row operations).

Example 1. Let V = Span{(1, 3, 3, 0), (0, 1, 0, 1)}. One matrix L that represents V
is

L =

[
1 3 3 0
0 1 0 1

]
.

Consider L and L′, where L′ is L with elementary row operations applied.[
2 0
0 2

] [
1 3 3 0
0 1 0 1

]
=

[
2 6 6 0
0 2 0 2

]
=⇒

[
1 3 3 0
0 1 0 1

]
∼

[
2 6 6 0
0 2 0 2

]
.

We see that the k-dimensional V ⊆ Rn are in bijection with the equivalence classes
for ∼, since two matrices representing V that differ by elementary row operations are
in the same equivalence class. Thus, we now redefine Gr(k, n) to be M∗

k×n/∼, and we
have the projection map

π : M∗
k×n → Gr(k, n) (1.1)

L 7→ [L]
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with [L] as the equivalence class of L defined by ∼.

Topology. Our next goal is to put a topology on Gr(k, n). First, consider the k × k
submatrices of some L ∈ Mk×n. Let

(
[n]
k

)
be the collection of k element subsets of

[n] := {1, 2, ..., n}. Given L ∈ Mk×n and Λ ∈
(
[n]
k

)
, let LΛ be the k × k submatrix of

L consisting of the columns indexed by Λ in increasing order. Further, the minor of
L corresponding to Λ is ∆Λ(L) := det(LΛ). For example, let

L =

[
1 3 3 0
0 1 0 1

]
.

If Λ = {1, 3} ∈
(
[4]
2

)
, we obtain the 2× 2 submatrix

LΛ =

[
1 3
0 0

]
and ∆Λ(L) = 0.

By elementary linear algebra, we have the following characterization of rank.

Proposition 2. Let L ∈ Mk×n. Then the rank of L is k if and only if ∆Λ(L) ̸= 0 for
some Λ ∈

(
[n]
k

)
.

Now, identify Mk×n with Rkn by reading off the elements of Mk×n left-to-right and
top-to-bottom. Then given Mk×n, the topology it inherits is the ordinary topology
of Rkn.

Proposition 3. M∗
k×n is an open subset of Mk×n.

Proof. First, we will define the complement X ⊆ Mk×n of M∗
k×n:

X = {L ∈ Mk×n : rank(L) < k} =

{
L ∈ Mk×n : ∆Λ(L) = 0 ∀Λ ∈

(
[n]

k

)}
.

To prove the proposition, we need to show thatX is closed. Denoting the determinant
mapping ∆ : Mk×k → R, recall that

X =
⋂

Λ∈([n]
k )

{L ∈ Mk×n : ∆Λ(L) = 0} =
⋂

Λ∈([n]
k )

∆−1
Λ (0).

Since ∆ is a polynomial function of the entries of its argument, it is continuous. Then,
since {0} ⊂ R is closed, ∆−1{0} is closed. So X is a finite intersection of closed sets,
and hence is closed.

Define the topology on Gr(k, n) to be the quotient topology via the projection
map (1.1). Thus, U ⊆ Gr(k, n) is open if and only if π−1(U) is open in M∗

k×n.

Manifold Structure. Now that we have defined the topology on the Grassmannian,
we can define the manifold structure. For Λ ∈

(
[n]
k

)
, define

UΛ := {[L] ∈ Gr(k, n) : ∆Λ(L) ̸= 0}.
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Note that UΛ is well-defined since performing a row operation on L will not change
the fact that ∆Λ(L) ̸= 0. In detail, suppose L = AL′ for some A ∈ M∗

k×k. Then

∆Λ(L
′) = ∆Λ(AL) = det((AL)Λ)

= det(ALΛ) = det(A) det(LΛ) = det(A)∆Λ(L).

Since det(A) ̸= 0, we have ∆Λ(L
′) ̸= 0 if and only if ∆Λ(L) ̸= 0.

Given Λ ∈
(
[n]
k

)
, define the homeomorphism

ϕΛ : UΛ → Mk×(n−k)
∼= Rk(n−k)

as follows: given [L] ∈ UΛ,

1. Apply row operations to L to obtain the matrix K such that KΛ = Ik×k, the
k × k identity matrix.

2. Remove the columns indexed by Λ in K to create KΛ ∈ Mk×(n−k).

3. Define ϕΛ([L]) = KΛ.

See Example 4 below. Note that ϕΛ is well-defined since the reduced row-echelon
form of a matrix is unique. Additionally, UΛ ⊆ Gr(k, n) is an open since the set
[L] such that all ∆Λ = 0 is closed. Thus, UΛ maps homeomorphically to ϕΛ(UΛ) =
Mk×(n−k)

∼= Rk(n−k). The manifold structure on Gr(k, n) is given by the atlas

{(UΛ, ϕΛ)}Λ∈([n]
k )
.

Then Gr(k, n) is locally Euclidean since every point of Gr(k, n) belongs to some chart
domain of Gr(k, n), i.e., Gr(k, n) =

⋃
Λ∈([n]

k )
UΛ.

Example 4. Using L from Example 1, let Λ1 = (1, 2) and Λ2 = (3, 4). Applying
steps given above, we obtain

Λ1 :

[
1 3 3 0
0 1 0 1

]
reduces to

[
1 0 3 −3
0 1 0 1

]
, so KΛ1 =

[
3 −3
0 1

]
,

Λ2 :

[
1 3 3 0
0 1 0 1

]
reduces to

[
1/3 1 1 0
0 1 0 1

]
, so KΛ2 =

[
1/3 1
0 1

]
.

Using {UΛ1 , ϕΛ1} and {UΛ2 , ϕΛ2}, with the values as assigned above, we can define
the transition map from ϕΛ1 to ϕΛ2 as

(ϕΛ2 ◦ ϕ−1
Λ1
) = ϕΛ1,Λ2 .

Defining the matrices as coordinates in R4 we obtain

ϕΛ1,Λ2(3,−3, 0, 1) = (1/3, 1, 0, 1).



6 Chapter 1. Manifold structure of the Grassmannian

Now we seek to define these transition functions more generally. The transition
function from UΛi

to UΛj
is defined as

ϕΛi,Λj
:= ϕΛj

◦ ϕ−1
Λi
.

These transition functions are defined on a domain of UΛi
∩UΛj

, which is the collection
of matrices in Gr(k, n) such that both ∆Λi

,∆Λj
̸= 0.

Example 5. To further elaborate, we will define a new matrix L ∈ Gr(k, n) and
compute the transition function ϕΛ1,Λ2 with Λ1 = (1, 2),Λ2 = (2, 4). Let

L =

[
1 0 a b c
0 1 d e f

]
, with a, b, c, d, e, f ∈ R such that b ̸= 0.

This gives

ϕΛ1([L]) =

[
a b c
d e f

]
.

Taking columns 2 and 4 of L, we can define the matrix A with its inverse:

A =

[
0 b
1 e

]
A−1 =

1

det(A)

[
e −b
−1 0

]
=

1

−b

[
e −b
−1 0

]
.

Due to how A has been defined, A−1L will have columns 2 and 4 as the identity
matrix. After columns 2 and 4 have been turned into the identity matrix, ϕΛ2(L)
omits those two columns, so they can be omitted before multiplication as follows:

ϕΛ2(L) = (LΛ2)
−1(LΛ2) = A−1

[
1 a c
0 d f

]
=

[
− e

b
− ea−bd

b
− ec−bf

b
1
b

a
b

c
b

]
ϕΛ1,Λ2

([
a b c
d e f

])
=

[
− e

b
− ea−bd

b
− ec−bf

b
1
b

a
b

c
b

]
.

Notice that each entry of the matrix resulting from ϕΛ1,Λ2 (and ϕΛi,Λj
more gen-

erally) is a rational function of the entries of its argument. Additionally, since
∆Λi

,∆Λj
̸= 0, there is no division by zero, so these transition functions are both

rational and well-defined, and thus, differentiable.

Plücker Coordinates. The Plücker coordinates for [L] ∈ Gr(k, n) are the minors
∆Λ(L) for L listed lexicographically according to Λ:

(∆{1,2,...,k}(L),∆{1,2,...,k+1}(L), . . . ,∆{2,3,...,k+1}(L), . . . ,∆{n−k,n−k+1,...,n}(L)).

For instance, if L is the specific 2 × 4 matrix given in Example 4, then the Plücker
coordinates for [L] ∈ Gr(k, n) are

(∆{1,2}(L),∆{1,3}(L),∆{1,4}(L),∆{2,3}(L),∆{2,4}(L),∆{3,4}(L)) = (1, 0, 1,−3, 2, 3).

By Proposition 6, the Plücker coordinates are well defined up to a non-zero scalar.
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Proposition 6. The Plücker coordinates of [L] ∈ Gr(k, n) are well-defined as a point
in projective space. Thus, we have a mapping, called the Plücker embedding, defined
by

Γ: Gr(k, n) → P(
n
k)−1

[L] 7→ (∆Λ([L]))Λ.

Proof. By Proposition 2, any representative of [L] will have some ∆Λ(L) ̸= 0. Let L
and L′ both be representatives of [L]. Because L and L′ differ by row operations, there
exists some matrix A ∈ M∗

k×k such that L = AL′. Thus, LΛ = AL′
Λ. This implies

that ∆Λ(L) = det(A)∆Λ(L
′) for all Λ ∈

(
[n]
k

)
. This gives (∆Λ(L))Λ = γ(∆Λ(L

′))Λ
with γ = det(A) ̸= 0. Since the Plücker coordinates of L and L′ are scalar multiples
of one another, they both map to the same point in projective space. Hence, the

Plücker embedding maps all [L] ∈ Gr(k, n) into the projective space P(
n
k)−1.

Proposition 7. The Plücker embedding is a smooth embedding of manifolds, and its
image is given by the Grassmann-Plücker relations:

∆(i1,...,ik) ·∆(j1,...,jk) =
k∑

s=1

∆(s,i2,...,ik) ·∆(j1,...,js−1,i1,js+1,...,jk)

for any i1, . . . , ik, j1, . . . , jk ∈ [n], with (i1, . . . , ik) as an ordered sequence instead of a
subset.

Proof. See (Kleiman & Laksov, 1972, Theorem 1).





Chapter 2

CW decomposition of Gr(k, n)

2.1 CW complexes

We seek to define a CW complex more generally, and then define the CW decompo-
sition of Gr(k, n). First, define the n-dimensional disk (or n-disk) in Rn as

Dn = {x ∈ Rn : |x| ≤ 1},

which is a closed subset of Rn. The open n-disk in Rn is the interior of Dn,

Bn = int(Dn) = {x ∈ Rn : |x| < 1}.

The boundary of Dn ⊂ Rn is the (n− 1)-sphere,

Sn−1 = {x ∈ Rn : |x| = 1}.

For example, since R0 = {0}, by definition, we have

D0 = {0} = B0.

The 1-disk is D1 = [−1, 1], with B1 = (−1, 1), and boundary S0 = {−1, 1}.

Definition 8. An n-cell is a space homeomorphic to Bn. A cell, more generally, is
an n-cell for some n ≥ 0.

Definition 9. A cell decomposition of a space X is a collection E = {e(α) : α ∈ I}
(where I is an indexing set) of subspaces of X such that each e(α) is a cell and X is
the disjoint union

X =
⊔
α∈I

e(α).

The n-skeleton of the cell decomposition, denoted Xn, is

Xn =
⊔

α∈I:dim(e(α))≤n

e(α).

A finite cell decomposition is a cell decomposition consisting of finitely many cells,
i.e. |I| < ∞.
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Definition 10. A CW complex is a pair (X, E) consisting of a Hausdorff topological
space X with cell decomposition E of X with the following properties:

1. (Characteristic Maps) For each n-cell e ∈ E , there exists a map Φe : D
n → X.

Furthermore, (i) restricting Φe to the interior of Dn gives a homeomorphism

Φe|Bn : Bn → e,

and (ii) the image of Φe restricted to the boundary of Dn is contained in the
(n− 1)-skeleton of the CW complex,

Φe(S
n−1) ⊆ Xn−1.

2. (Closure Finiteness) For any cell e ∈ E , the closure e intersects only a finite
number of other e ∈ E .

3. (Weak Topology) A subset A ⊆ X is closed if and only if A ∩ e is closed in X
for all e ∈ E .

Reflecting axioms 2 and 3, the C in CW stands for “closure-finite,” and the W stands
for “weak” topology. If (X, E) is a CW complex, then E is a CW decomposition
of X. A finite CW complex is a CW complex with a finite cell decomposition (see
Example 13).

The following proposition shows that to define a finite CW complex, Properties 2
and 3 are unnecessary.

Proposition 11. Let E be a finite cell decomposition of a space X. Then, Properties
2 and 3 of Definition 10 hold.

Proof. Axiom 2 is holds since E is finite. To prove Property 3, first suppose A ⊆ X
is closed. Then A ∩ e is the intersection of two closed set and, hence, is closed.
Conversely, now suppose A ∩ e is closed for all e ∈ E . Then,

A = A ∩X = A ∩
⋃
e∈E

ē =
⋃
e∈E

(A ∩ ē).

We have written A as a finite union of closed sets. So A is closed.

Proposition 12. Let (X, E) be a Hausdorff space X with a cell decomposition E.

(i) If (X, E) satisfies Axiom 1 from Definition 10, then we have

ē = Φe(D
n)

for all e ∈ E.

(ii) Furthermore, ē is a compact subspace of X and the cell boundary ē\e = Φe(S
n−1)

lies in Xn−1.
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Proof. (i) Since Φe is continuous, Φe(Bn) ⊆ Φe(Bn). Because Φe(B
n) = e and Bn ⊆

Dn = Bn, we obtain

e = Φe(B
n) ⊆ Φe(D

n) = Φe(Bn) ⊆ Φe(Bn) = ē.

Note, since Dn is compact and Φe is continuous, Φe(D
n) is also compact. Then, since

X is Hausdorff, Φe(D
n) is closed. Since Φe(D

n) is closed and contains e, it follows
that ē ⊆ Φe(D

n). We have now shown that ē ⊆ Φe(D
n) and ē ⊇ Φe(D

n), thus,
ē = Φe(D

n).
(ii) First we will prove that Φe(S

n−1) ⊇ ē\e. Let y ∈ ē\e. Then, y ∈ Φe(D
n) = ē.

There exists x ∈ Dn such that Φe(x) = y. If x ∈ Bn, then Φe(x) = y ∈ e. However,
we assumed y /∈ e. Therefore, x ∈ Dn \Bn = Sn−1.

Now we will prove the opposite inclusion. Since dim(e) = n, we have Xn−1∩e = ∅,
which implies that Φe(S

n−1) ∩ e = ∅. Furthermore, Φe(S
n−1) ⊆ Φe(D

n) = ē. Thus,
Φe(S

n−1) ⊆ ē \ e. Since we have show both directions of containment, we obtain the
desired Φe(S

n−1) = ē \ e.

Example 13. We give two examples of CW decompositions of S1:

1. Let E = {e(α), e(β)} where e(α) = {(−1, 0)} and e(β) = S1 \ {(−1, 0)}, with
characteristic maps

Φe(α) : B
0 → S1 Φe(β) : B

1 → S1

0 7→ (−1, 0) t 7→ (cos πt, sin πt).

Note that B1 = (−1, 1), so for Φe(β), t goes over the interval (−1, 1). Here is an
illustration of the decomposition:

e(α) e(β)

2. Let E ′ = {e(α)′, e(β)′, e(γ)′, e(δ)′} where

e(α)′ = {(−1, 0)} e(γ)′ = {(x, y) ∈ S1 : y > 0}
e(β)′ = {(1, 0)} e(δ)′ = {(x, y) ∈ S1 : y < 0},

with the characteristic maps

Φe(α)′ : B
0 → S1 Φe(γ)′ : B

1 → S1

0 7→ (−1, 0) t 7→ (t,
√
1− t2)

Φe(β)′ : B
0 → S1 Φe(δ)′ : B

1 → S1

0 7→ (1, 0) t 7→ (t,−
√
1− t2).

Below is an illustration of this decomposition:
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e(α)′ e(β)′

e(γ)′

e(δ)′

Definition 14. A CW complex is a regular CW complex if for each e ∈ E , the
continuous map Φe from the n-dimensional closed ball to X is a homeomorphism
onto ē.

For example, Part 1 from Example 13 is not regular. The closure of B1 is the
closed interval D1 = [−1, 1]. For t = −1 and t = 1, we obtain

Φe(β)(−1) = (−1, 0) = Φe(β)(1).

Thus, Φe(β) is not injective, hence, not a homeomorphism onto its image. However,
part 2 of Example 13 is indeed regular. The maps Φe(α)′ and Φe(β)′ with the domain
{0} are clearly homeomorphisms. To show that Φe(γ)′ and Φe(δ)′ are also homeomor-
phisms, consider their inverses:

(Φe(γ)′)
−1 : e(γ)′ → D1 (Φe(δ)′)

−1 : e(δ)′ → D1

(x, y) 7→ x (x, y) 7→ x.

These inverses are clearly well-defined on both e(γ)′ = {(x, y) ∈ S1 : y ≥ 0} and
e(δ)′ = {(x, y) ∈ S1 : y ≤ 0}. Both functions have D1 as their images.

2.2 Schubert cell decomposition of Gr(k, n)

First, define the flag R of linear subspaces of Rn as

R = R0 ⊂ R1 ⊂ R2 ⊂ · · · ⊂ Rn.

Here, for each i ∈ [n], we consider Ri as a subspace of Rn via

Ri ∼= {(x1, . . . , xi, 0, . . . , 0) : xj ∈ R} ⊂ Rn.

Let X ∈ Rn be a k-dimensional subspace. This produces a sequence of integers

0 ≤ dim(X ∩ R1) ≤ dim(X ∩ R2) ≤ · · · ≤ dim(X ∩ Rn) = k.

Proposition 15. No two consecutive integers in the above sequence will differ by
more than one. More explicitly,

dim(X ∩ Ri+1) ≤ dim(X ∩ Ri) + 1.
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Proof. Let v1, . . . , vℓ ∈ Ri ⊆ Rn be a basis for X ∩ Ri, and let’s suppose there exists

vℓ+1 = (a1, . . . , ai+1, 0, . . . , 0) ∈ (X ∩ Ri+1) \ (X ∩ Ri).

In particular, ai+1 ̸= 0 since vℓ+1 /∈ X ∩ Ri. We claim that {v1, . . . , vℓ+1} is a basis
for X ∩ Ri+1. First, note that vℓ+1 is linearly independent from {v1, . . . , vℓ} since
vℓ+1 /∈ Span{v1, . . . , vℓ} = X ∩ Ri. Next, suppose w = (b1, . . . , bi+1, 0, . . . , 0) ∈
X ∩Ri+1. Then, w− bi+1

ai+1
vℓ+1 ∈ X ∩Ri. So there exists some c1, . . . , cℓ ∈ R such that

w − bi+1

ai+1
vℓ+1 = c1v1 + · · ·+ cℓvℓ. But then,

w = c1v1 + · · ·+ cℓvℓ +
bi+1

ai+1

vℓ+1 ∈ Span{v1, . . . , vℓ+1}.

Thus, {v1, . . . , vℓ+1} is indeed a basis for X ∩ Ri+1. Since the basis of X ∩ Ri+1 can
have at most one more element than the basis of X ∩Ri, we obtain dim(X ∩Ri+1) ≤
dim(X ∩ Ri) + 1.

Definition 16. A Schubert symbol for Gr(k, n) is a sequence of integers σ = (σ1, . . . , σk)
satisfying

1 ≤ σ1 < σ2 < · · · < σk ≤ n.

The corresponding Schubert cell is defined as

e(σ) = {X ∈ Gr(k, n) : dim(X ∩ Rσi) = dim(X ∩ Rσi−1) + 1 for i = 1, . . . , k}.

Let X ∈ e(σ) and suppose X = [L] with L ∈ M∗
k×n. Let L̃ be the matrix obtained

from L by “upside down and backwards” row reduction. In other words, instead of
reducing starting in the upper left, reduce starting in the lower right. Then, the basic
columns of L̃ have indices σ1, . . . , σk. We will call L̃ the canonical representative
of X.

Example 17. For example, in the case of Gr(3, 9), the Schubert cell e(2, 4, 7) consists
of points X = [L] with corresponding canonical representative L̃ of the form

L̃ =

∗ 1 0 0 0 0 0 0 0
∗ 0 ∗ 1 0 0 0 0 0
∗ 0 ∗ 0 ∗ ∗ 1 0 0

 ,

where each ∗ is some element of R.

Example 18. Consider the Schubert symbols σ = (1, 2) and τ = (3, 4) for Gr(2, 4).
Then e(σ) contains the single element represented by the matrix[

1 0 0 0
0 1 0 0

]
,

and e(τ) contains elements [L] where L has the form[
a b 1 0
c d 0 1

]
,
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for some a, b, c, d ∈ R. Thus,

e(σ) = {Span{(1, 0, 0, 0), (0, 1, 0, 0)}}
e(τ) = {Span{(a, b, 1, 0), (c, d, 0, 1)} : a, b, c, d ∈ R}.

The cell e(σ) is the wx-plane (in wxyz-space, i.e., R4). The cell e(τ) is all 2-
dimensional subspaces of R4, except for the space when both w = 0 and x = 0.
Thus, e(τ) = Gr(2, 4) \ e(σ).

It is easy to see from looking at canonical representatives that we can also write
e(σ) as

e(σ) = {X ∈ Gr(k, n) : dim(X ∩ Rσi) = i for i = 1, . . . , k}. (2.1)

Proposition 19. Let σ be a Schubert symbol for Gr(k, n). Then e(σ) is a cell of
dimension

dim(e(σ)) =
k∑

i=1

(σi − i), with 0 ≤ dim(e(σ)) ≤ k(n− k).

Proof. Let e(σ) be the set of all canonical representatives of k × n matrices with
basic columns σ1, . . . , σk. Then there is a bijection e(σ) → e(σ) given by L 7→ [L].
The elements of e(σ) are exactly k × n matrices with σi-th column being the i-th
standard basis vector and with 0s appearing to the right of the 1 in that column for
i = 1, . . . , k. The other entries are arbitrary and uniquely determine the element of
e(σ). We picture an arbitrary element of e(σ) as a matrix whose entries are 0, 1, or
∗, where ∗ represents an arbitrary real number, as in Example 17. The dimension of
e(σ) is the number of ∗ entries.

We count the number of ∗ entries by row. In the first row, there are σ1 − 1, since
the ∗ entries are exactly those preceeding the 1 in column σ1. In the second row, a ∗
appears in each entry preceding the 1 in column σ2, except for the entry in column
σ1, which is a 0. Thus, a ∗ appears σ2 − 2 times in row 2. Similarly, ∗ appears σi − i
times in row i for all i. The total number of ∗s is

∑k
i=1(σi − i).

Consider Example 17, which has dim(e(2, 4, 7)) = 1+2+4 = 7. For the leading 1
in the first row, there is only one ∗ preceding it, with 0s composing the rest of the
row. This must be the case since the first basic column is in the second position.
Similarly, for the leading 1 in the second row, there are two ∗s preceeding it, with 0s
composing the rest of the row. Since the second basic column is in the fourth position,
and the first column is already taking up one column to the left, there are only two
open columns to the left of the second basic column. Using this same reasoning, we
obtain 4 ∗s preceeding the 1 in the third basic column.

Reading off the ∗ entries left-to-right top-to-bottom then determines a homeomor-
phism e(σ) → Rd where d =

∑k
i=1(σi − i) = dim(e(σ)). To show that Rd ∼= Bd for

any d ∈ N, let the mapping ω be defined as

ω : Bd → Rd ω−1 : Rd → Bd

x 7→ x

1− |x|
x 7→ x

1 + |x|
.
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Since ω is a rational function with a non-vanishing denominator, ω is continuous.
The inverse ω−1 is similarly continuous. Thus, ω is a homeomorphism, so Rd ∼= Bd.
Since e(σ) ∼= Rd, this also implies that e(σ) ∼= Bd as well. Thus, e(σ) is a d-cell
(Definition 8).

Example 20. Notice that the cell e(n − k + 1, n − k + 2, . . . , n) for Gr(k, n) has
dimension k(n− k):

dim(e(n− k + 1, n− k + 2, . . . , n)) =
k∑

i=1

(σi − i)

= (n− k + 1− 1) + (n− k + 2− 2) + · · ·+ (n− k)

= (n− k) + (n− k) + · · ·+ (n− k) = k(n− k).

This cell is an element in the standard atlas for Gr(k, n) described in Chapter 1. For
instance, in Gr(3, 9):

e(7, 8, 9) =

∗ ∗ ∗ ∗ ∗ ∗ 1 0 0
∗ ∗ ∗ ∗ ∗ ∗ 0 1 0
∗ ∗ ∗ ∗ ∗ ∗ 0 0 1

 .

2.2.1 Young diagrams

We will now introduce Young diagrams as a combinatorial tool for encoding the
Schubert symbols of Gr(k, n).

Definition 21. Let λ be a sequence (λ1, . . . , λk) of non-increasing non-negative inte-
gers, and let λi be the ith integer of λ. First, create a row of λ1 boxes. Next, aligned
to the left, create a row of λ2 boxes on top of the row of λ1 boxes. Repeat this process
for all λi to obtain a diagram containing rows of boxes of non-increasing order. This
arrangement of boxes determined by λ is called a Young diagram.

Example 22. λ = (5, 2, 2, 1) produces the following Young diagram,

.

(Note that this is the French notation of a Young diagram. The standard English
notation flips the diagram over the above x-axis. Given the shape of our canonical
representatives, the French notation is more suitable here.)

Now we seek to define the correspondence between Schubert symbols of Gr(k, n)
and Young diagrams. Consider Example 17 with Gr(3, 9) and σ = (2, 4, 7). We have
shown that the cell e(2, 4, 7) corresponds to the matrix∗ 1 0 0 0 0 0 0 0

∗ 0 ∗ 1 0 0 0 0 0
∗ 0 ∗ 0 ∗ ∗ 1 0 0

 .
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Using this matrix, we can draw the cell’s corresponding Young diagram by mimicking
the shape of the ∗s as follows,

2
4

7

.

It is evident that λ = (4, 2, 1). Additionally, the the numbers to the right of each
column can be obtained by counting the edges touched by going down the diagram
like stairs (touching the vertical edges as well) until touching the edge to the left
of the number. These integers also denote the placement of the leading 1 in the
corresponding row, giving us the Schubert symbol σ = (2, 4, 7). In general, for a
Schubert symbol σ of Gr(k, n), there is a bijection between λ and σ, given by

λk+1−i = σi − i, for i = 1, . . . , k.

2.2.2 Schubert varieties

We now seek to define and discuss the Schubert varieties to help us develop the
CW-decomposition of Gr(k, n).

Definition 23. For each Schubert symbol σ for Gr(k, n) define the Schubert variety
Ωσ to be the closure e(σ) of e(σ) in Gr(k, n).

Proposition 24. For each Schubert symbol σ,

Ωσ =
⋃
τ≤σ

e(τ) = {X ∈ Gr(k, n) : dim(X ∩ Rσi) ≥ i}.

Proof. The second equality,
⋃

τ≤σ e(τ) = {X ∈ Gr(k, n) : dim(X ∩ Rσi) ≥ i}, follows
by looking at canonical forms of Gr(k, n) just as in Equation (2.1). We now concen-
trate on the first equality. Visualizing the canonical form of e(σ), notice that all entries
to the right of σi in row i are zeros. Therefore, considering the sub-determinants of
e(τ), we have⋃

τ≤σ

e(τ) = {X ∈ Gr(k, n) : ∆j1,...,jk(X) = 0 whenever ji > σi}.

Each equation ∆j1,...,jk = 0 defines a closed set. So
⋃

τ≤σ e(τ) is the intersection of
closed sets, hence, it is closed. Since

⋃
τ≤σ e(τ) is closed and contains e(σ),⋃

τ≤σ

e(τ) ⊇ e(σ) = Ωσ.

It remains to show that
⋃

τ≤σ e(τ) ⊆ e(σ). Let τ ≤ σ and assume τ ̸= σ. Let
X ∈ e(τ). We claim there is a curve γ : R → Gr(k, n) such that γ restricted to
R \ {0} has image in e(σ) and γ(0) = X. This shows that X is a limit point of e(σ)
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and is, thus, an element of e(σ). To construct γ, let L be the canonical representation
of X, and let t be an indeterminate. Define the matrix L̃(t) by

L̃i,j(t) =

{
t if j = σi > τi

Li,j otherwise.

For example, if τ = (1, 3, 5), σ = (2, 4, 5), and

L =

1 0 0 0 0
0 1 1 0 0
0 2 0 3 1

 .

Then,

L̃(t) =

1 t 0 0 0
0 1 1 t 0
0 2 0 3 1

 .

Finally, let γ : R → Gr(k, n) where γ(t) = [L̃(t)]. So [L̃(t)] ∈ e(σ) whenever t ̸= 0,
and when t = 0, we obtain some element X = [L̃(0)] ∈ e(τ). Thus, X is indeed a
limit point of e(σ), so X ∈ e(σ) and ∪τ≤σe(τ) ⊆ e(σ). Since we have shown both
directions of containment,

Ωσ = e(σ) =
⋃
τ≤σ

e(τ).

2.2.3 Characteristic maps

Proposition 25. Let V ∈ e(σ). There exists a unique orthonormal basis u1, . . . , uk

for V such that ui ∈ V ∩ Rσi and ui · eσi
> 0 and ui · ej = 0 for j > σi.

Proof. To start, we know dim(V ∩Rσ1) = 1. Say V ∩Rσ1 = Span{v}. If u ∈ V ∩Rσ1 ,
then u = αv for some α ∈ R. But then |u| = 1 implies α = ± 1

|v| . The condition
u · eσi

> 0 then specifies α. We proceed by induction supposing that u1, . . . , ul−1

have been chosen for some l ≤ k. Since dim(V ∩ Rσl−1) = dim(V ∩ Rσl), there exists
w ∈ V ∩ Rσl such that V ∩ Rσl = Span{u1, . . . , ul−1, w}. So if u ∈ V ∩ Rσl , there
exists λ, λ1, λ2, . . . , λl−1 ∈ R such that

u = λw +
l−1∑
i=1

λiui.

Now we will proceed with the Gram-Schmidt process. For u to be orthogonal to each
ui, we need

0 = u · uj = λw · uj +
l−1∑
i=1

λw · uj + λj.
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Hence, λj = −λw · uj for j = 1, . . . , l − 1. For |u| = 1, we need

1 = u · u = (λw +
l−1∑
i=1

λiui)(λw +
l−1∑
i=1

λiui)

= λ2w · w + 2λ
l−1∑
i=1

λi(uiw) + 2
∑
i ̸=j

λiλjui · uj +
l−1∑
i=1

λ2
iui · ui

= λ2w · w − 2
l−1∑
i=1

λ2
i +

l−1∑
i=1

λ2
i

= λ2w · w −
l−1∑
i=1

λ2
i .

Thus,

λ = ±

√√√√1 +
l−1∑
i=1

λ2
i .

The requirement that ul · eσl
> 0 then determines a unique choice for λ. The result

follows by induction.

Now, let Dσ be sequences of orthonormal vectors (u1, u2, . . . , uk) such that, ui ∈
Rσi and ui · eσi

≥ 0. Now we can define the map

sσ : Dσ → Ωσ

(u1, . . . , uk) 7→ span{u1, . . . , uk}.
(2.2)

Note that Dσ is a closed subset of R
∑

σi . Denote the interior D̊σ.

Example 26. Consider Gr(2, 3) and let σ = (1, 3). Then elements of Dσ have the
form (u1, u2),

u1 = (1, 0, 0) u2 = (0, b,
√
1− b2),

with −1 ≤ b ≤ 1. So Dσ is homeomorphic to the set of points {(b,
√
1− b2) ∈ R2 :

−1 ≤ b ≤ 1}. We can now visualize the closed set Dσ as a one-dimensional subset of
R2:

(1,0)(-1,0)

Dσ
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The interior D̊σ is when
√
1− b2 ̸= 0. Similarly, we can visualize the open set D̊σ:

D̊σ

(1,0)(-1,0)

Notice that D̊σ is homeomorphic to e(σ) for σ = (1, 3), since

e(1, 3) =

{[
1 0 0
0 ∗ 1

] ∣∣∣∣∣ ∗ ∈ R

}
∼= R ∼= any open interval of R,

and D̊σ is homeomorphic to an open interval of R. Now we seek to define and prove
a more general case.

Proposition 27. The map sσ in Equation (2.2) restricts to a homeomorphism of the
interior of Dσ with e(σ).

Proof. Let s̊σ be the restriction of sσ to the interior of Dσ,

D̊σ = {(u1, . . . , uk) ∈ Dσ : ui · eσi
> 0 for i = 1, . . . , k}.

For (u1, . . . , uk) ∈ D̊σ, let V = Span{u1, . . . , uk}. It follows dim(V ∩Rσi) = dim(V ∩
Rσi−1) + 1 for all i = 1, . . . , k. So V ∈ e(σ). Thus, we have a well defined mapping

s̊σ : D̊σ → e(σ).

By Proposition 25, the mapping is bijective. Next, we must show continuity for
both directions. The forwards mapping sends (u1, . . . , uk) to the matrix with rows
u1, . . . , uk. Since Gr(k, n) has the quotient topology, the mapping s̊σ is continuous.
Its inverse is continuous via the continuity of the Gram-Schmidt process.

Proposition 28. The image of ∂Dσ, the boundary of Dσ, lies in the dim(Ωσ) − 1
skeleton of Ωσ.

Proof. Let u = (u1, . . . , uk) ∈ ∂Dσ. Then there exists i such that ui · eσi
= 0. Hence,

sσ(u) /∈ e(σ). However, sσ(u) ∈ Ωσ = ∪τ≤σe(τ). Therefore, sσ(u) is in ∪τ⪇σe(τ), the
dim(Ωσ)− 1 skeleton of Ωσ.

Definition 29. The special orthogonal group, SO(n), consists of all orthogonal ma-
trices of determinant 1. More explicitly,

SO(n) = {n× n matrices M : MM⊤ = Id and detM = 1}.
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If M ∈ SO(n), then there exists an orthogonal basis for Rn such that, with respect
to this basis, M has the form

R1 · · · 0 0 · · · 0

0
. . . 0 0 · · · 0

0 · · · Rk 0 · · · 0
0 · · · 0 1 · · · 0

0 · · · 0 0
. . . 0

0 · · · 0 0 0 1


,

where each Ri is a 2× 2 rotation matrix,[
cos θ − sin θ
sin θ cos θ

]
.

For reference, see Orthogonal group (2005).

Proposition 30. The space Dσ is homeomorphic to the product

Dσ1−1
0 ×Dσ2−2

0 × · · · ×Dσk−k
0 ,

where each Dσi−i
0 is the set of vectors v ∈ Rσi ⊆ Rn with the properties

|v| = 1

v · eσi
≥ 0

v · eσj
= 0 for j < i.

Thus, Dσ is homeomorphic to the disk Ddim(e(σ)) where dim(e(σ)) =
∑k

i=1(σi − i).

Proof. First, note that the product of disks Dσ1−1 × · · · ×Dσk−k is a compact convex
set, and hence homeomorphic to Ddim(e(σ)). Using the definition of Dσi−i

0 in Proposi-
tion 30, notice that Dσi−i

0 is composed of vectors of the following form:

v = (v1, v2, . . . , vσi−1,
√
1− v21 − v22 − · · · − v2σi

, 0, 0, . . . , 0),

such that v · eσj
= 0 for j < i. Note that Dσi−i

0 is homeomorphic to Dσi−i. For
example, let σ = (3, 5, 6) and n = 8. Then, for instance, there is a homeomorphism

D3 → Dσ3−3
0

(a1, a2, a3) 7→ (a1, a2, 0, a3, 0,
√

1− a21 − a22 − a23, 0, 0).

Using the definition of v ∈ Dσi−i
0 , we can create such mappings for all i = 1, . . . , k.

Thus, so far we have shown that

Ddim(e(σ)) ∼= Dσ1−1 × · · · ×Dσk−k ∼= Dσ1−1
0 × · · · ×Dσk−k

0 .
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Next, to show that Dσ and Ddim(e(σ)) are homeomorphic, we seek to construct a
homeomorphism between Dσ and Dσ1−1

0 × · · · ×Dσk−k
0 . First, we construct a homeo-

morphism
fσ : Dσ → Dσ1−1

0 ×Dσ′ ,

where σ′ = (σ2 − 1, σ3 − 1, . . . , σk − 1) = (σ′
1, σ

′
2, . . . , σ

′
k−1) and Dσ′ is associated with

the cell e(σ′) in Gr(k − 1, n − 1). The result then follows by induction on k. Let
Tv ∈ SO(n), which rotates v to eσ1 in the plane spanned by v and eσ1 , and is the
identity in the orthogonal complement of this plane. As a matrix, it will take the
form of a rotation sub-matrix in the upper left corner to rotate v to eσ1 , with the rest
of the diagonal as the identity matrix. Let Rn

σ1
= {x ∈ Rn : xσ1 = 0} and define the

isomorphism p : Rn
σ1

→ Rn−1 by dropping the σ1-th component. Now we can define
fσ as

fσ(v1, . . . , vk) = (v1, p(Tv1v2), p(Tv1v3), . . . , p(Tv1vk)).

Notice that v1 takes the form

v1 = (b1, b2, . . . , bσ1−1,
√

1− b21 − b22 − · · · − b2σ1−1, 0, . . . , 0),

so v1 ∈ Dσ1−1
0 . Thus, v1 is mapped to itself, and (v2, · · · , vk) is mapped to an element

in Dσ′ . However, we must still show that (p(Tv1v2), p(Tv1v3), . . . , p(Tv1vk)) is indeed
in Dσ′ . First, if i > 1, then

0 = v1 · vi = Tv1v1 · Tv1vi = eσ1 · Tv1vi.

So the σ1-th component of each Tv1vi is 0 for i > 1. Next we show

Tv1v2, . . . , Tv1vk are orthonormal, (2.3)

eσi
· Tv1vi ≥ 0 for i > 1, (2.4)

ej · Tv1vi = 0 if j > σi. (2.5)

Let δ(i, j) be 1 if i = j and 0 if i ̸= j. Then, using the fact that rotations do not
change length nor angles between vectors, we have for i, j > 1,

Tv1vi · Tv1vj = vi · vj = δ(i, j).

This proves (2.3). For (2.4), we use the fact that Tv1eσi
= eσ1 for i > 1:

eσi
· Tv1vi = Tv1eσi

· Tv1vi = eσi
· vi ≥ 0.

Equation (2.5) follows similarly. Since the σ1-th component of each Tv1vi for i > 1 is
0, each of (2.3), (2.4), and (2.5) hold after applying p:

p(Tv1v2), . . . , p(Tv1vk) are orthonormal,

eσ′
i
· p(Tv1vi) = eσi−1 · p(Tv1vi) = peσi

· p(Tv1vi) = 0 for i > 1,

ej−1 · p(Tv1vi) = pej · p(Tv1vi) = 0 if j > σi, i.e., j − 1 > σ′
i.
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Thus, we obtain the desired (p(Tv1v2), p(Tv1v3), . . . , p(Tv1vk)) ∈ Dσ′ . Lastly, the in-
verse homeomorphism of fσ is

f−1
σ (v1, u2, · · · , uk) = (v1, T

−1
v1

(p−1u2), . . . , T
−1
v1

(p−1uk)),

where p−1 adds a 0 in the σ1-th component of a vector in Rn−1 and T−1
v1

is the inverse

matrix of Tv1 ∈ SO(n). So Dσ is indeed homeomorphic to Dσ1
0 × · · · ×Dσk−k

0 , which
implies that Dσ

∼= Ddim(e(σ)).

Theorem 31. The set of e(σ) as σ ranges over Schubert symbols for Gr(k, n) forms
a CW decomposition.

Proof. By Proposition 19, each e(σ) is indeed a cell. Each e(σ) is uniquely determined
by its canonical representative. Hence, Gr(k, n) is a disjoint union of the e(σ),

Gr(k, n) =
⊔
σ

e(σ).

Since there are
(
n
k

)
Schubert symbols for a given Gr(k, n), there are finitely many

e(σ) cells in its CW decomposition. For a finite CW complex, it only remains to
show there are characteristic maps

Φe(σ) : D
dim(e(σ)) → Ωσ

for each Schubert symbol σ, such that (i) restricting Φe(σ) to the interior of Ddim(e(σ))

gives a homeomorphism
Φ̊e(σ) : D̊

dim(e(σ)) → e(σ),

and (ii) the image of Φe(σ) restricted to the boundary ∂Ddim(e(σ)) is contained in the
(dim(e(σ))− 1)-skeleton of the CW complex

Φe(σ)(∂D
dim(e(σ))) ⊆

⋃
τ⪇σ

e(τ).

First, fix a homeomorphism Fσ : Ddim(e(σ)) → Dσ. We have shown that such an Fσ

exists in the proof of Proposition 30. Next, recall the mapping sσ : Dσ → Ωσ. Now
we can define the characteristic mapping

Φe(σ) = sσ ◦ Fσ : Ddim(e(σ)) Fσ−→ Dσ
sσ−→ Ωσ.

By Proposition 27, we have already shown that s̊σ : D̊σ → e(σ) is a homeomorphism.
Using that and the fact that homeomorphisms map interiors to interiors, so we obtain

Φ̊e(σ) = s̊σ ◦ F̊σ : D̊dim(e(σ)) F̊σ−→ D̊σ
s̊σ−→ e(σ).

A composition of homeomorphisms is a homeomorphism, condition (i) is satisfied.
The proof of condition (ii) follows similarly. Proposition 28 shows that sσ(∂Dσ) ⊆⋃

τ⪇σ e(τ). Since homeomorphisms map boundaries to boundaries, we have

Φe(σ)(∂D
dim(e(σ))) = sσ(Fσ(∂D

dim(e(σ)))) = sσ(∂Dσ) ⊆
⋃
τ⪇σ

e(τ).
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Lastly, we present an example that shows that our CW decomposition of Gr(k, n)
is not regular: the characteristic maps are not necessarily homeomorphisms.

Example 32. Gr(1, 2) has two Schubert symbols, σ = (2) and τ = (1). The cell
e(σ) is the set of points in Gr(1, 2) whose canonical representatives are 1×2 matrices
of the form

[
a 1

]
with a ∈ R. By scaling, we can also take unique representatives

of the form
[
a

√
1− a2

]
such that a ∈ (−1, 1). The cell e(τ) is the single point

whose canonical representative is
[
1 0

]
. In R2, e(σ) is the set of non-horizontal lines

through the origin, and e(τ) is the single horizontal line through the origin. We have

Dσ = {(a,
√
1− a2) : a ∈ [−1, 1]},

a closed semi-circle in R2 (see Example 26 for visualization), and

sσ : Dσ → e(σ)

(a,
√
1− a2) 7→

[ [
a

√
1− a2

] ]
.

(The square brackets around the matrix are used to denote its equivalence class.)
There are two points in the boundary of Dσ:

∂Dσ = {(a,
√
1− a2) : a = ±1} = {(1, 0), (−1, 0)}.

Therefore,

sσ(Dσ) =
{[ [

1 0
] ]
,
[ [

−1 0
] ]}

=
{[ [

1 0
] ]}

= e(τ),

since
[
−1 0

]
is in the same equivalence class as

[
1 0

]
, and both represent the

horizontal line in R2. Since the mapping sσ sends two points in Dσ to a single point
in e(σ), it is not injective. Hence, sσ is not a homeomorphism.
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