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Abstract

In my thesis, I studied the stability of divisors on fixed-energy sandpiles (FES). On a
FES, a divisor will either continue firing forever or stabilize within a finite number of
steps. For any alive divisor D, there always exists a cycle with firing vector ~1 that D
fires into. The minimal alive divisors are closely related to minimal recurrent divisors.
Following the discussion on generic graphs, I examined the stability of divisors on
three types of graphs: complete graphs, circles and trees. I explored a question of
the probability of life of the divisor obtained by randomly dropping chips onto the
vertices of a graph for the range of degrees for which the question is interesting.





Introduction

0.1 Background

Sandpiles have been introduced by Bak, Tang, and Wiesenfeld (BTW) as an example
of self-organized criticality [P. Bak and Wiesenfeld, 1987, 1988]. The phenomenon
of self-organized criticality appears in a wide range of contexts, such as earthquakes,
electrical circuits and fractal structures. In a sandpile model, as grains of sand, or
what I will use in this thesis to save paper, chips, on a vertex grow to a critical
threshold, that pile of chips will collapse and one chip will be sent to each adjacent
vertex. This action is called a firing or a toppling. The BTW sandpile models can
be described in terms of abelian groups. There are different alterations on the BTW
sandpile models. In this thesis, I studied one of these alterations known as the fixed-
energy sandpiles (FES). The total energy or the total number of chips is conserved
in a FES.

Studies on FESs take on both a statistical mechanics approach, and an alge-
braic, combinatorial approach. The critical behavior of driven dissipative systems
differs from that of energy conserving systems for Z2, the complete graph Kn, the
Cayley tree, the ladder graph, the bracelet graph, or the flower graph [Anne Fey,
2010]. For FES on complete graphs, the activity of the system traces out a “devil’s
Staircase” as the number of chips increases in large n limit, where n is the number
of vertices [Levine]. An exact solution was found by Janowsky and Laberge for the
steady-state probability distribution of avalanche sizes on complete graphs [Janowsky
and Laberge, 1993]. The period of a parallel chip-firing game on a bipartite graph
with n vertices is at most n. In fact, all possible periods of a parallel chip-firing FES
on a c-partite (c ≥ 2) graph are characterized [Jiang, 2010]. Exact solutions were
found for the cycle structures of the circle graph by Asta [Dall’Asta, 2006]. For par-
allel chip-firing game on trees, periods are of lengths either one or two. For generic
graphs, periods can depend on the graph size [Bitar and Goles, 1992].

0.2 Preliminary

Let Γ be an undirected, connected graph with vertices V and edges E. In this thesis, I
will use evivj

or eij to denote the edge between vertex vi and vj. All graphs concerned
are undirected, connected graphs. We allow loops and multiple edges between any
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given pair of vertices. For v ∈ V , define the degree of v,

dv = number of edges connected to v.

A divisor is an integer-valued linear function on the vertices of the graph:

D =
∑
v∈V

D (v) v.

An effective divisor is a divisor with non-negative coefficients. For effective divisor
D, coefficient D (v) denotes the number of chips on the vertex v. The vector repre-
sentation of D is (D (v1) , D (v2) , D (v3) , ...).

Assumption: All divisors are effective in this thesis unless otherwise spec-
ified.

The degree of D is defined as

degD =
∑
v∈V

D (v) .

A vertex v is unstable if Dv ≥ d (v). Otherwise, it is stable. If a vertex v of D is
unstable, we can fire or topple the vertex to get a new divisor D′. Define r (w, v) =
|{e | e = {w, v}}|. Then the divisor D′ is defined by

D′ (w) =

{
D (v)− dv + r (v, v) if w = v,
D (w) + r (w, v) if w 6= v.

A parallel firing is firing all unstable vertices at one firing step. It is equivalent to
a sequence of single firings that fires these vertices one by one.

The Laplacian ∆ of Γ is defined as the matrix

∆ij =

{
dvi
− r (vi, vi) if i = j

−r (vi, vj) if i 6= j

A legal firing sequence is a sequence of vertex firings fσ = (u1, u2, ...) such that at the
ith vertex firing, vertex ui is unstable for all i. We call σ the corresponding firing
vector: σ = (i1, i2, ...) where ij is the number of times that vj is fired in fσ.

The linear system of a divisor D, called |D|, is {D′ | D ∼ D′}. The equivalence
relation ∼ is defined as

D ∼ D′ ⇔ D −D′ =
∑
i

ki∆ei,

where ei’s are unit vectors. A sink is a vertex with the property that it has an infinite
capacity in holding chips and it can not be fired. A sandpile graph with a sink always
stabilizes to a configuration that is indifferent to the order of firing [Holroyd et al.,
2008]. For this thesis, graphs do not have a sink unless specified otherwise.
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0.3 Recurrent Configuration

In this section, we consider an undirected, connected graph Γ that has a sink.
A configuration c is a vector of non-negative integers indexed by the non-sink

vertices of a graph Γ, where c (v) is the number of chips on vertex v.
On Γ, a configuration c is recurrent if for any configuration b, there exists a

configuration a such that
(a+ b)o = c,

where (a+ b)o is obtained by stabilizing a+ b, that is, firing vertices until all vertices
are stable.

A reduced Laplacian matrix ∆′ is a Laplacian matrix with its row and column
corresponding to the sink removed. Suppose |V (Γ) | = n. Then each equivalence
class of Zn−1 mod ∆′ (Γ) has one and only one recurrent configuration of Γ [Holroyd
et al., 2008].

The maximal stable configuration on Γ is defined as

cmax =
∑
v∈V

(dv − 1) v.

A configuration c is recurrent if and only if there exists a configuration c′ such
that

c = (c′ + cmax)
o
,

where (c′ + cmax)o is the stabilization of c′ + cmax [Holroyd et al., 2008].
Define

β =
∑
v∈N

v,

where N is the set of non-sink neighboring vertices to the sink s. Thus β is the
configuration corresponding to firing the sink.

Burning Algorithm. A configuration c is recurrent if and only if (c+ β)o = c. If
configuration c is recurrent, then any firing sequence of the stabilization has firing
vector ~1.

A proof of the theorem can be found here [Holroyd et al., 2008].





Chapter 1

Foundations

This chapter is devoted to generic results on questions of stability that do not depend
on the the specific structures of graphs. Many of these results can be found in the
literature. Mentioned above, all divisors are assumed effective in this thesis.

A divisor D is alive if there does not exist a legal firing sequence fσ such that
divisor D −∆σ is stable. A divisor D is dead if there exist a legal firing sequence fσ
such that divisor D −∆σ is stable.

A cycle is any legal firing sequence that results in the same divisor as the one it
starts from. Because there are only finite different divisors of a certain degree on a
given finite graph, any alive divisor will eventually fire into a cycle. We call a divisor
that appears in a cycle cyclic.

Theorem 1. On a graph Γ, the firing vector σ for any cycle C is a scalar multipli-
cation of ~1.

Proof. Let v0 be a vertex such that σ (v0) = maxv {σ (v)}. In a cycle C, v0 sends dv0σ (v0)
number of chips in total to its neighbors. In order for v0 to receive the same number
of chips during C, by the pigeon-hole principle and the maximality of σ (v0), each
of the neighbors of v0 must also fire σ (v0) times during C. By the same argument,
all neighbors of the neighbors of v0 must also fire σ (v0) times during C. Apply the
argument enough times. Since Γ is connected and finite, eventually all vertices must
fire σ (v0) times during C.

Theorem 2. A dead divisor will stabilize in a finite number of firings regardless of
the order of firing.

Proof. Let D′ = D−∆σ for fσ = {u1, u2, ..., um} such that D′ is stable. Then to prove
the theorem, it suffices to prove that no legal firing sequence starting with D can be
longer than m. Suppose there is a legal firing sequence fσ′ = {u′1, u′2, ..., u′n} with n >
m. Then since u′1 is unstable in D, it has to appear in the firing sequence fσ, say as ui.
Change the firing sequence to {u′1, u1, ..., ui−1, ui+1, ..., um}, which is a legal firing se-
quence whose resulting configuration is still D′. With the same argument, bring u′2 (=
uj) to the second firing place and we have {u′1, u′2, u1..., ui−1, ui+1, ..., uj−1, uj+1, ..., um}.
Repeat the procedure to rearrange the order of firing. Eventually the firing sequence
becomes {u′1, u′2, ..., u′m}. Since {u′1, u′2, ...u′m} is just a rearrangement of {u1, u2, ..., um},
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the resulting configuration is alsoD′, which is stable. However, since fσ′ = {u′1, u′2, ..., u′m}
is a legal firing sequence, u′m+1 is an unstable vertex in D′! By contradiction, no legal
firing sequence starting with D can be longer than m.

Therefore, a divisor is either alive or dead.

Lemma 1. For any cyclic divisor D and a legal firing sequence fσ, there always exists
a legal firing sequence fσ′ such that D −∆(σ + σ′) = D.

Proof. Let n = maxv σ (v), the maximum number of firings of vertices in fσ. Consider
a cycle of D with firing vector k~1. Concatenate m such cycles where km ≥ n. Let this
concatenated firing sequence be fσm . Now create a firing sequence fσ′ in the following
way. Take the first vertex to fire in fσ, say v0. Eliminate v0 from fσm where v0 first
appears. Then eliminate the second vertex to fire in fσ from fσm . Continue until all
vertices in fσ disappear from fσm . Call the firing sequence left fσ′ . Thus contructed,
fσ′ is a legal firing sequence starting at D−∆σ, and satisfies D−∆(σ+σ′) = D.

Lemma 2. Let b and c be sandpile configurations on any undirected graph, and sup-
pose b 6= 0. Suppose that c+ b stabilizes to c. Then c is recurrent.

Proof. Note that for any integer k > 0, we have that c + kb stabilizes to c. Choose
k large enough so that we can selectively fire vertices, starting at c + kb and arrive
at a configuration a such that a ≥ cmax. Then, since a stabilizes to c, we see that
c is obtained by adding chips to the maximal stable configuration and stabilizing.
Hence c is recurrent.

Theorem 3. For any cyclic divisor D, there exists a single firing cycle C with firing
vector ~1 such that D ∈ C.

Proof. Starting from D, fire a maximum sequence fσ of unstable vertices F = {vi}
where vi 6= vj for all i, j. Let E be the resulting configuration. Let U be the
set of vertices left. Since F is maximum, all vertices from U must be stable in
configuration E. Let DU =

∑
v∈U D(v)v and EU =

∑
v∈U E(v)v. Let Γ̃ be the graph

obtained from Γ by shrinking F to a single vertex. In the rest of the proof, I will
argue that DU is recurrent with respect to Γ̃. Since D is cyclic, by Lemma 1, there
exists a legal firing sequence such that E − ∆σ′ = D. Call the cycle from D to E
then back to D, cycle C. Let b be the configuration on U consisting of all the chips
added by firing vertices from F during one repetition of the cycle C. Then we have
that DU + b stabilizes to DU . By Lemma 2, DU is recurrent. Since configuration
E is obtained from D by firing the “sink” F , by the Burning Algorithm, EU must
be unstable. This gives a contradiction. Then U must be an empty set. Therefore,
D −∆σ completes a single firing cycle with firing vector ~1.

Corollary 1. For any cyclic divisor D on graph Γ and any subgraph Γ′ of Γ such
that D restricted to Γ′ is stable, let Γ̃ be the graph obtained by shrinking Γ \ Γ′ to a

point and regard that vertex as the sink. Then DΓ′ is a recurrent configuration on Γ̃.
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Proof. Let U be the support of c. Let F be the set containing the rest of the vertices.
Again let Γ̃ be the graph obtained from Γ by shrinking F to a single vertex. Using the
same logic as in the proof of Theorem 3, c must be recurrent with respect to Γ̃.

If the degree of a divisor exceeds
∑

v (dv − 1), by pigeonhole principle the divisor
never stabilizes. Its probability of life is 1. On the other hand, the minimum degree
of an alive divisor is the number of edges in the graph.

Theorem 4. For a graph Γ, the minimum degree of an alive divisor is |E|, the number
of edges of Γ.

Proof. By Theorem 3, any alive divisor D can enter a cycle with firing vector ~1. Since
every vertex is fired once in the cycle, one can associate a chip aij to each edge (vi, vj)
by sending aij from vi to vj when vi was fired and from vj to vi when vj is fired,
assuming that vi fires before vj. Thus the total number of chips, i.e., the degree of
an alive divisor, is at least |E|.

Given |E| chips, an alive divisor can be constructed through the following method.
Let G be an arbitrary graph with a spanning tree T . Then pick a leaf and label the
leaf vertex v1. Label its neighboring vertex v2. Each time pick one vertex from the
neighbors of {v1, v2, ..., vi}. Label it vi+1. Continue the labeling process until T is fully
labeled. Define li =

∣∣{evivj
∈ G | 1 ≤ j ≤ i

}∣∣. Define fn = dvn − ln for all vn ∈ V .
Let D =

∑
fivi. Then D is an alive divisor since firing in the order v1, v2, ..., v|V |

restores D. Moreover,

|E| =
∣∣{evivj

∈ G | j ≤ i, 1 ≤ i, j ≤ |V |
}∣∣ =

|V |∑
i=1

∣∣{evivj
∈ G | 1 ≤ j ≤ i

}∣∣ =

|V |∑
i=1

li.

Hence,

degD =

|V |∑
t=1

ft =

|V |∑
t=1

dvt − lt =

|V |∑
t=1

dvt −
|V |∑
t=1

lt = 2 |E| − |E| = |E| .

Thus the minimum degree of an alive divisor is at most |E|. Therefore, the minimum
degree of an alive divisor is equal to |E|.

A divisor is minimal alive if removing any chip from it will result in a dead divisor.
Similarly, a configuration c is minimal recurrent if c is recurrent and reducing any
chip from c will result in a non-recurrent configuration.

Notice that every alive divisor can be reduced to a minimal alive divisor by re-
moving chips from it.

Corollary 2. For any ordering of the vertices v1, v2, ..., v|V |, there exist a minimal
alive divisor D such that firing v1, v2, ..., v|V | results in a cycle.

Proof. Notice that the construction of a minimal alive divisor in the proof of Theorem
4 does not depend on which underlying spanning tree is picked or vi+1 being a neighbor
of {v1, v2, ..., vi}. Thus for any order of the vertices, an alive divisor D can be defined
in the same way. The resulting divisor has degree |E| and hence is minimal.
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Theorem 5. For any minimal recurrent configuration c on an undirected graph with
the sink s, c+ dss is minimal alive and cyclic.

Proof. Any recurrent configuration c follows the Burning Algorithm. Hence c + dss
is a cyclic divisor.

Let fσ = {s (= v0) , v1, ..., vk} be a legal firing sequence of a cycle of c+ dss. Then
σ = ~1. Let li be defined in the same way as in Theorem 4. Then D (vi) ≥ dvi − li for
i = 0, 1, 2, ..., k. If D (vi) = dvi

− li for all i, then

degD =
i=1∑
k

D (vi) = |E| .

Since the minimum degree of an alive divisor is |E|, it follows that D = c+dss must be
minimal alive. Otherwise, there must exist j such that D (vj) > dvj

− li. In this case,
as many as D (vj)−

(
dvj
− li
)

chips can be reduced from the vertex vi while fσ remains
a legal firing sequence. Hence c− vi satisfies the Burning Algorithm. Therefore c− vi
is recurrent. But this contradicts c being minimal recurrent. Therefore, D = c+ dss
is minimal alive and cyclic.

Theorem 6. For any alive divisor D on a graph Γ, there exists a legal firing se-
quence fσ such that D−∆σ = c+ ts, where c is a recurrent configuration and t ≥ ds.
If D is minimal alive, then t = ds.

Proof. Choose a vertex s in Γ and stabilize D with respect to s. In the stabilization
of D, vertex s must be unstable. Fire s and stabilize again with respect to s. This
procedure can be repeated for an arbitrary number of times.

(...((c′ + β)o + β)o + ...)o︸ ︷︷ ︸
k times

= (c′ + kβ)o =: c,

where just like before β is the configuration added by firing the sink. By taking k
sufficiently large, kβ can be fired to cmax + c′ for some configuration c′. Stabilizing
from the configuration cmax + c′, the configuration c is recurrent. Thus there exists
a firing sequence fσ such that D −∆σ = c+ ts, where c is a recurrent configuration
and t ≥ ds.

Now let D be a minimal alive divisor. To show t = ds, it suffices to prove c+(t−1)s
is dead. The firing sequence fσ consists of two kinds of firing steps: the first kind
is the stabilization of divisor D with respect to the sink s, the second kind is firing
the sink s plus stabilization with respect to s. Divisor c + ts is obtained from D by
performing the first kind of firing step once and the second kind of firing step as many
times as needed. I will prove below that the divisor remains minimal alive after both
kinds of firing steps.

First, I will prove that if D
′

is obtained by stabilizing D with respect to s, then
divisor D

′ − s is dead. Let fσ be the firing sequence such that D −∆σ = D′. Then
(D − s)−∆σ = D′ − s since s is not fired in the firing sequence fσ. Since D fires to
a cyclic divisor via a legal firing sequence, without loss of generality we can assume
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D(s) > 0 so that both D− s and D′− s are effective divisors. Then D being minimal
alive implies that (D − s) is dead, which implies that (D′ − s) is dead.

Next, let D1 be any alive divisor on Γ obtained by stabilizing with respect to
s. Then consider the following firing sequence fσ′ : fire s ∈ D1 to obtain Ds, then
stabilize Ds with respect to s. Call the resulting divisor D2.

D1 −∆σ′ = D2.

I will prove that if D1−s is dead, then D2−s is dead. Since D1 is alive and stabilized
with respect to s, it follows that D1(s) ≥ ds. If D1(s) > ds, then fσ′ is a legal firing
sequence for D1 − s such that

(D1 − s)−∆σ′ = D2 − s.

In this case,
D1 − s is dead ⇒ D2 − s is dead.

If D1(s) = ds, it suffices to prove D2(s) = ds since then D2− s is dead. Again let the
firing sequence be fσ′ . Suppose there exist vertices that fired twice or more in fσ′ . Let
F be the set of vertices that are the first to fire for the second time in the paralleling
firing sequence that is equivalent to fσ′ . Pick a vertex v ∈ F . Then

D1 (v) < dv ⇒ D1 (v) + dv < 2dv.

In order for v to send out 2dv chips, at least one of the neighbouring vertices of v
must have already fired at least twice. This contradicts with v ∈ F . Hence vertices
of Γ fire at most once in fσ′ . Therefore, D2(s) ≤ ds. Since D2 is alive, it follows that
D2(s) = ds. With these two conclusions for both kinds of firing steps, we have

D − s is dead ⇒ (c+ ts)− s is dead.

Therefore, t = ds.

Define the directed single firing graph fΓ of a linear system |D| by

V = {D′ | D′ ∈ |D|} , and

E = {~eD1D2 | D2 can be obtained from D1 by firing a single vertex, for all D1, D2 ∈ V } .

Lemma 3. For any divisor E, if E ∼ c + ks where configuration c is recurrent and
k ≥ ds, then divisor E is alive.

Proof. The proof is from John Wilmes’ thesis Lemma 2.7. By the Burning Algorithm,
there exists a legal firing cycle (v1, v2, ..., vn) for c+ ks with firing vector ~1. Let σ be
the firing vector such that c+ks−∆σ = E. By adding or subtracting firing vector ~1’s,
we may assume that σ > 0, and that σ (vi) is 0 for some i. Then choose the minimal k
such that σ (vk) = 0. It follows that vk is unstable in E since all vertices with smaller
index are fired at least once in fσ and (v1, v2, ..., vk) is a legal firing sequence. So any
divisor linearly equivalent to c + ks must have some unstable vertex. Therefore, E
can not be a dead divisor and thus E is alive.
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Theorem 7. For any alive divisor D, the single firing graph fΓ of |D| is connected.

Proof. By Theorem 6, there exists a legal firing sequence fσ such that D−∆σ = c+ks
where configuration c is recurrent and k ≥ ds. Let E be any divisor in |D|. It follows
that E ∼ c + ks. Hence by Lemma 3, E is alive. Again by Theorem 6, there exists
a legal firing sequence fσ′ such that E − ∆σ′ = c′ + k′s where configuration c′ is
recurrent and k′ ≥ ds. Then,

D ∼ E ⇔ c+ ks ∼ c′ + k′s⇒ c ∼′ c′

where the last equivalence is with respect to the reduced Laplacian matrix of the
graph. The last implication can be checked by performing matrix algebra and using
the property of the Laplacian ∆ that ∆~1 = ~0. Since there is only one recurrent
configuration in an equivalence class, we have c = c′. The relationship D ∼ E implies
that the degree of D is equal to that of E. Then necessarily k = k′. Therefore,

c+ ks = c′ + k′s.

So every divisor in |D| fires to c+ ks via a legal firing sequence. Therefore, the single
firing graph fΓ is connected.

The single firing graph for a dead divisor is not necessarily connected. Here’s a
counterexample. Let D = {0, 0, 1, 1} on the following graph. Then D is stable.

01

2 3

The linear system of D contains {2, 0, 0, 0} , {0, 0, 1, 1} , {1, 1, 0, 0} , {0, 2, 0, 0}. The
corresponding single firing graph is
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It is not connected.
Theorem 7 does not apply to multiple firing graphs either, where two divisors are

connected by an edge if one can be obtained from the other by a parallel firing step.
Here is a counterexample:

Let D = {29, 0, 0, 0, 0} on the complete graph on five vertices, K5. Since degD ≥∑
dv − 1+1 = 5(5−2)+1 = 16, by the pigeonhole principle, D is alive. The multiple

firing graph of its linear system is

It is not connected.





Chapter 2

Complete Graphs, Circles and
Trees

2.1 Complete Graphs

For a complete graph with n vertices, denoted Kn, the minimum degree of divisors
that ensures life is

∑
(dv − 1) + 1 = n(n− 2) + 1 = (n− 1)2. The minimum degree of

possible alive divisors is |E| = n(n−1)
2

.

Theorem 8. Any minimal alive divisor on Kn is a permutation of (n− 1, n− 2, ..., 2, 1, 0)
and cyclic. Any cyclic divisor D =

∑n
i=1 fivi satisfies fi ≥ i− 1 after a permutation

of vertices if necessary.

Proof. Let D be any minimal alive divisor on Kn. By Theorem 3, there exists a cycle
C with firing vector ~1 such that D appears in C. Let v1, v2, ..., vn be the order of firing
for cycle C starting at D. Let D =

∑n
i=1 fivi. For vi to be fired in C, it follows that

fi ≥ dvi
− (i− 1) = n − i for i = 1, 2, ..., n. Then degD reaches its minimum when

fi = n − i for all i, that is, D = (n− 1, n− 2, ..., 2, 1, 0) up to permutation. Let
D (v1) = 0. Suppose there exists a divisor E on Kn such that D can be obtained by
firing a single vertex of E. Then the vertex fired must be v1 since firing any other
vertex adds a chip onto v1 and as a result D (v1) can not be 0. Reverse-fire v1 in D,
that is, sending one chip from each neighbor of v1 to v1. The resulting divisor E is
a permutation of (n− 1, n− 2, ..., 2, 1, 0). Hence, any divisor that fires to obtain D
appears in cycle C. Therefore, any minimal alive divisor is also cyclic.

Randomly putting k chips on the vertices of a complete graph Kn, what is the
probability that the divisor is alive? There are three versions of the question. I tried
to answer this question in its first version.

• Drop k chips, one after another, randomly onto the vertices of G with no firing
allowed. So each vertex has the same probability of getting that chip being
dropped. When done, start the chip-firing game. What is the probability that
the resulting configuration never stabilizes?
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• Suppose that each (effective) divisor of a certain degree has the same probability
of occurring. What is the probability of life of a random divisor of degree k?

• Drop k chips randomly onto the vertices of G, but drop a chip only if the
configuration formed by all previous chips completely stabilizes. What is the
probability that the chip-firing graph never stabilizes with k or fewer chips
dropped?

For the first version of the question, the probability that the resulting configuration
never stabilizes for a total of k chips dropped is,

P (k) =
∑

{~k alive, k1≤...≤kn}

k!
k1!...kn!

· n!
n1!...nkn !

nk
,

where ni is the number of vertices that have i chips on them. So n1+n2+...+nkn = n.
I calculated the probabilities of life according to this fomula for a range of degrees

of alive divisors on complete graphs. Please see Appendix A for probabilities of
divisors of degrees from n(n−1)

2
to (n− 1)2 for n = 4, 5, 6, 7, 8, 9, 10.

A following question is: how many chips does one expect to use to obtain an alive
divisor on Kn?

Let P be the probability space of life with the random variable being the degree
of the divisor. Then the expectation for the degree of an alive divisor is,

E =
∞∑
i=1

iP (i) =
∞∑
i=1

i∑
j=1

P (j) =
∞∑
j=1

∞∑
i=j

P (j) =
∞∑
j=1

(1− P (j − 1))

=

n(n−1)
2∑
j=1

(1− P (j − 1)) +

(n−1)2∑
j=

n(n−1)
2

+1

(1− P (j − 1)) +
∞∑

j=(n−1)2+1

(1− P (j − 1))

=
n (n− 1)

2
+ (n− 1)2 − n (n− 1)

2
−

(n−1)2∑
j=

n(n−1)
2

+1

(P (j − 1))

= (n− 1)2 −
(n−1)2−1∑
j=

n(n−1)
2

(P (j)) .

I do not have a closed formula for the expectation function on Kn, but here are two
approximating functions of the expectation function. Call them E1 and E2. Define

ei =
Ei − n(n−1)

2

(n− 1)2 − n(n−1)
2

,
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for i = 1, 2.

I.

E1 (n) =
(n− 1) (2n− 1)

3
.

The approximation E1 (n) is a third of the distance
(

(n− 1)2 − n(n−1)
2

)
away from

n(n−1)
2

. So e1 = 1
3
.

II.

E2 (n) =
(n− 1) (3n− 1)

2
− n (n− 1)φ

2
,

where φ = 1+
√

5
2

.

E2 (n) =
n− 1

2
(3n− 1− nφ) ∼ n (n− 1)

3− φ
2

.

e =
E2 − n(n−1)

2

(n− 1)2 − n(n−1)
2

,

∼
n (n− 1) 3−φ

2
− n(n−1)

2

(n− 1)2 − n(n−1)
2

,

∼ 2− φ,

which is approximately 0.382. E2 was found by rounding E (n) and looking at the
encyclopedia of integer sequences [Sloane, 2008].

The following comparison table runs from n = 4 to 10:

E (n) E1 (n) E2 (n)
6.97558593750000, 7.00000000000000, 6.79179606750063,
11.9227801600000, 12.0000000000000, 11.8196601125011,
18.1980179985134, 18.3333333333333, 18.2294901687516,
25.8380990775113, 26.0000000000000, 26.0212862362522,
34.8830260927871, 35.0000000000000, 35.1950483150029,
45.3693334946985, 45.3333333333333, 45.7507764050038,
57.3273883125771 57.0000000000000, 57.6884705062547

2.2 Circles

On a circle graph with n vertices, Cn, the minimum degree of an alive divisor is n. If
degD ≥ n+ 1, then by pigeonhole principle D is always alive.

Theorem 9. The number of dead divisors of degree n on Cn is the number of n-subsets
{a1, a2, ..., an} of the set {1, 2, ..., 2n− 1} such that

∑n
i=1 ai ≡ 0 (mod n).
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Proof. Present a divisor D as a unique sequence of n chips and (n− 1) dividers in
the following way. Let the number of chips between two adjacent dividers, say the
ith and the (i+ 1)st, be the number of chips on the vertex vi+1 for 1 ≤ i ≤ n − 2.
The number of chips before the first divider is v1 and that after the last divider is
vn. Call the ith divider the left divider of vi+1 and the (i+ 1)st divider the right
divider of vi+1 for 1 ≤ i ≤ n − 2. Let the first divider be the right divider of
v1 and the last divider the left divider of vn. So the sequence representation of a
divisor has length n + (n+ 1) − 2 = 2n − 1. For a divisor of degree n, let the ith
chip be at the aith position in its sequence representation. For example, on C7, the
sequence representation of D = (1, 1, 0, 1, 2, 1, 1) is illustrated below. The top row is
the sequence representation of D; the bottom row is the position index. The symbol
“pi” denotes the ith chip and the symbol “|” denotes a divider.

p1 | p2 | | p3 | p4 p5 | p6 | p7

1

OO

2

OO

3

OO

4

OO

5

OO

6

OO

7

OO

8

OO

9

OO

10

OO

11

OO

12

OO

13

OO

The corresponding set {ai} is {1, 3, 6, 8, 9, 11, 13} with the ith chip pi occupying the
aith position for i = 1, 2, ..., 7. The set of divider positions is {2, 4, 5, 7, 10, 12}, which
is the complement set of {ai}.

Since
∑2n−1

i=1 i ≡ 0 (mod n), if a subset of {1, 2, ..., 2n− 1} has a sum divisible by
n, so does its complement set. Now consider the complement set of {a1, a2, ..., an}
containing positions of the n− 1 dividers in the sequence.

The only stable divisor of degree n on Cn is (1, 1, ..., 1). It is easy to check that∑n
i=1 ai ≡ 0 (mod n). Hence the sum of divider positions for divisor (1, 1, ..., 1) is also

divisible by n. Starting from (1, 1, ..., 1), consider the reverse operation of a firing,
that is, the vertex being reverse-fired obtains one chip from each of its neighbors. All
the vertices being reverse-fired are divided into three cases for consideration: v1 being
reverse-fired, vn being reverse-fired and any other vertex being reverse-fired. For the
last case, reverse-firing vi (i 6= 1, n) changes the sequence representation of a divisor by
moving vi’s left divider one position to the left and its right divider one position to the
right. Hence the sum of divider positions remains unchanged in this case. In the first
case, a reverse-firing of v1 moves the first divider, which is the right divider of v1, by
two positions to the right and all other dividers by one position to the right. Together
the reverse-firing increases the sum of divider positions by n. In a similar situation,
reverse-firing vn decreases the sum of divider positions by n. For all cases of reverse-
firing, the sum of divider positions remains divisible by n. Therefore, if any divisor
stabilizes to (1, 1, ..., 1), the sum of divider positions in its sequence representation
must be divisible by n. Thus each dead divisor of degree n corresponds to an n-subset
{a1, a2, ..., an} of the set {1, 2, ..., 2n− 1} such that

∑n
i=1 ai ≡ 0 (mod n).

On the other side, any alive divisor of degree n can fire to one of the following two
forms up to rotation: (0, 2, 0, 2, ...) or a concatenation of (0, 2, 1, 1, ..., 1)’s of various
lengths [Dall’Asta, 2006]. Starting with a divisor A in either of the two forms, choose
the minimal k such that A (vk) = 2. Fire vk. Choose and fire in the same way as many
times as needed until a permutation of (2, 0, 1, 1, ..., 1) is obtained. Rotate the vertices
to make v1 have two chips and call the resulting divisor D. Then up to rotation, every
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alive divisor can fire to D via a legal firing sequence. Let D = (D1, D2, ..., Dn) where
D1 = 2, Di = 0 for some i 6= 1 and Dk = 1 for k 6= 1, i. Notice that the ith divider
in the sequence representation of D is at position

∑i
j=1 (Dj + 1). Hence the sum of

divider positions (call it S),

S =
n∑
i=1

(
i∑

j=1

(Dj + 1)

)
,

=
n∑
j=1

(n+ 1− j)Dj + (1 + 2 + 3 + ...+ n) ,

= n+ (1 + 2 + 3 + ...+ n)− (n+ 1− i) + (1 + 2 + 3 + ...+ n) ,

= n+ n (n+ 1)− (n+ 1− i) ,
≡ n+ 1− i (mod n) ,

6= 0 (mod n) ,

since i 6= 1. The calculation shows that the sum of divider positions of D is not
divisible by n. I showed reverse-firing of any vertex does not change the sum of
divider positions mod n. Notice that a rotation of vertices does not change the sum
of divider positions either. Therefore, the sum of divider positions for any alive divisor
of degree n is not divisible by n. Thus, the sum of divider positions is divisible by
n if and only if the corresponding divisor is dead. Considering the complement set
of the set of divider positions, we have that the sum of chip positions is divisible by
n if and only if the corresponding divisor is dead. Since divisors have a one-to-one
correspondence to the sets of chip positions {a1, a2, ..., an}, the number of n-subsets
{a1, a2, ..., an} of the set {1, 2, ..., 2n− 1} such that

∑n
i=1 ai ≡ 0 (mod n) is the number

of dead divisors of degree n on graph Cn.

2.3 Trees

For a tree on n vertices, divisors with degree greater than or equal to |E| = n− 1 are
always alive. This is simply because∑

v∈G

(dv − 1) + 1 = 2|E| − n+ 1 = |E|.

A study by Bitar and Goles on the cycle structures of trees shows that all non-
trivial cycles on trees are of period two [Bitar and Goles, 1992].





Appendix A

Probability Table for Complete
Graphs

Dropping k chips onto vertices of Kn one by one without firing, each vertex has the
same probability of getting the chip being dropped. Start firing after all k chips
have been dropped. The following table lists the probabilities that a resulting divisor
of degree k is alive for n(n−1)

2
≤ k ≤ n (n− 2). For k < n(n−1)

2
, the probability is

always 0; for k > n (n− 2), the probability is always 1.

n = 4 n = 5 n = 6 n = 7
0.3515625 0.154828800000000, 0.0579414845086284, 0.0185271824152743,
0.73828125 0.430848000000000, 0.204665264856933, 0.0803359215284532,

0.9345703125 0.684288000000000, 0.399805010509890, 0.188907915661729,
0.862750720000000, 0.596909230019520, 0.331346817876961,
0.953753600000000, 0.757896547772922, 0.484450374325662,

0.99075072 0.872360631037167, 0.629184483955316,
0.942032563813919, 0.751775649062990,
0.977842531447553, 0.845724421852806,
0.993596060731446, 0.911787858814649,
0.99893267678857 0.954068109352954,

0.978498897970897,
0.991167029107214,
0.996994700502023,
0.999240115054074,
0.99989144500772
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n = 8 n = 9 n = 10
0.00506763052292704, 0.00118497872206685, 0.000236567222540293,
0.0262755081655314, 0.00719522148040845, 0.00165411995946712,
0.0729276414094939, 0.0231749689238607, 0.00609434033072679,
0.148501289722390, 0.0541171778922327, 0.0161352805700888,
0.248575096748981, 0.102834114247736, 0.0344966521695637,
0.364556240854447, 0.169515404236564, 0.0635041059780071,
0.485761091713079, 0.251613492317011, 0.104553033278314,
0.602028714899604, 0.344475826599487, 0.157782766632050,
0.706002143094565, 0.442602890939955, 0.222135902727840,
0.793066517161597, 0.540345262689234, 0.295472241243248,
0.861502029998555, 0.632666881404964, 0.374858223066575,
0.912145953233039, 0.715774730223783, 0.456997235887567,
0.947463311720624, 0.787328911865324, 0.538619981372679,
0.970564065728625, 0.846314978339156, 0.616752414989677,
0.984667295434990, 0.892900373869423, 0.688959788325807,
0.992662806419971, 0.928168362664896, 0.753509212111594,
0.996840285222755, 0.953759481321762, 0.809406169981370,
0.998818999676057, 0.971530400413598, 0.856330271739209,
0.999638593698881, 0.983304496018087, 0.894523279542401,
0.999918837143807, 0.990723015400760, 0.924664116817278,
0.99998985464298 0.995151202251594, 0.947723891312782,

0.997641977709434, 0.964819119890667,
0.998950558618244, 0.977086821474233,
0.999582985745504, 0.985594219860808,
0.999857327550492, 0.991283344805823,
0.999960373411558, 0.994943173692117,
0.999991999399893, 0.997201402690843,
0.99999911104443 0.998532596085867,

0.999277936935217,
0.999670888465787,
0.999863506240416,
0.999949749038306,
0.999984167487470,
0.999995976861225,
0.999999262395794,
0.99999992623958
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Probability Plots for Complete
Graphs

The following plots are based on the probability table for complete graphs:

n = 4:

6 7 8 9
Number of chips

0.2

0.4

0.6

0.8

1.0

P

n = 5:

10 11 12 13 14 15 16
Number of chips

0.2

0.4

0.6

0.8

1.0

P
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n = 6:

16 18 20 22 24
Number of chips

0.2

0.4

0.6

0.8

1.0

P

n = 7:

25 30 35
Number of chips

0.2

0.4

0.6

0.8

1.0

P

n = 8:

30 35 40 45
Number of chips

0.2

0.4

0.6

0.8

1.0

P
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n = 9:

40 45 50 55 60
Number of chips

0.2

0.4

0.6

0.8

1.0

P

n = 10:

50 55 60 65 70 75 80
Number of chips

0.2

0.4

0.6

0.8

1.0

P
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