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Abstract

This thesis examines the relationship between the abelian sandpile model and M-
matrices. Equivalent conditions for M-matrices are examined using chip firing tech-
niques.





To the memory of Suzanne Shafer. ♥





Introduction

Originally introduced by Bak, Tang and Wiesenfeld [1] in the context of self-organized
criticality and the abelian sandpile model by Dhar [5], chip-firing games are well
known in the field of combinatorics. Similarly, originally introduced by Ostrowski [13],
M-matrices have played pivotal roles in many different disciplines including Eco-
nomics, Statistics, and Physics. In [9], Gabrielov showed the firing rules of the abelian
sandpile model are modeled by M-matrices. Building upon Gabrielov’s work, Guzmán
and Klivans [10] further explored chip-firing on M-matrices, extending the concept of
energy minimizing configurations to M-matrices.

Interest in M-matrices arose during the thesis process in an attempt to better
understand the abelian sandpile model on a hexagonal lattice with triangular bound-
ary – presented in the final chapter of this thesis. During that effort we built upon
the theory developed by Gabrielov [9] and Guzmán and Klivans [10]. This thesis is
primarily focused on reframing some of the conditions of M-matrices into the language
of chip-firing games.

In the first section we define configurations, script firing, and the graph associated
with a given Z-matrix. We walk through the process of stabilization for configurations
on Z-matrices and show that they are not necessarily avalanche finite. In the second
section we introduce M-matrices, a subclass of Z-matrices. We show that nonsingu-
lar real M-matrices can stabilize any configuration. The third section presents the
algebraic structure of recurrent configurations on graphs described by M-matrices. In
the second chapter we explore symmetric configurations on M-matrices and present
a conjecture for the all-ones configuration on the hexagonal lattice with triangular
boundary.

Before we begin, it is important to have some intuition regarding chip-firing on
graphs. We will quickly introduce the abelian sandpile model. Let G = (V,E) be a
connected directed graph with finite vertex set V and edge multiset E. The weight
function on edges is defined as

wt(u, v) = # of edges from u to v,

for (u, v) ∈ E. If (u, v) /∈ E, then wt(u, v) = 0. The indegree and outdegree of a
vertex play an important role in our study of chip-firing games. They are found as
follows:

indegree(v) =
∑
w

wt(w, v),
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outdegree(v) =
∑
w

wt(v, w).

Let us consider a chip-firing game played on G. Suppose exactly one vertex has
outdegree equal to 0 and assume all vertices have a directed path to this vertex. We
refer to this vertex as the sink. To play the chip firing game, assume each non-sink
vertex has a nonnegative number of chips resting on it. If a given vertex has more
chips than its outdegree we say it is legal to fire that vertex. When a vertex v fires,
it loses as many chips as its outdegree, while its neighbors gain a chip for each edge
coming from v. By restricting the sink so that it never fires, we can guarantee that
this system will eventually stabilize, meaning that no vertex can fire.

Example 0.1. Figure 1 shows the process of chip firing on the house graph. Note
that the final configuration of chips has no vertices that can legally fire.
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Figure 1: Chip-firing on the house graph with sink vs.



Chapter 1

Chip-firing Systems

1.1 Z-Matrices

Definition 1.1. An n × n real matrix A is called an Z-matrix if A has nonpositive
off-diagonals.

Example 1.2. Let

A =

(
a b
c d

)
,

with a, b, c, d ∈ R. Then A is a Z-matrix if b, c ≤ 0.

The directed graph Γ(A) associated to a Z-matrix A is the graph with vertex set
[n] ∪ {s} where s is disjoint from [n] and is called the sink vertex. The graph Γ(A)
has directed edges: (a) (i, j) if Aji 6= 0 and i 6= j and (b) (j, s) if

∑
iAij 6= 0. The

weight of an edge (i, j) in case (a) is defined to be wt(i, j) = −Aji ≥ 0 and the weight
of an edge (j, s) in case (b) is wt(j, s) =

∑
iAij, which may be negative. For clarity,

we will sometimes denote vertex i by vi.
A configuration c on Γ(A) is a vector in Rn. We denote the i -th component of c

by ci. A configuration’s degree is deg(c) =
∑

i ci. We think of ci as the number
of chips on vertex i and deg(c) as the total number of chips on [n]. Note that
we allow configurations with both positive and negative amounts of chips that can
be non-integer valued, though we will mostly be imagining configurations that have
nonnegative integer components. We say a configuration is unstable at a vertex v ∈ [n]
if cv ≥ Avv and stable otherwise. If a configuration is unstable at any vertex, it is
called unstable; otherwise it is called stable.

If c ∈ Rn and v ∈ [n] we can fire or topple v to obtain a new configuration
c̃ = c − Aev, where ev is the v-th standard basis vector. To denote the process of
toppling we write c

v−→ c̃. The toppling is legal if cv is unstable. The process of
consecutive legal topplings of vertices is called an avalanche.

Suppose c̃ and c are configurations and σ ∈ Zn≥0 such that c̃ = c− Aσ. We call σ

a firing script taking c to c̃ and write c
σ−→ c̃. We say σ is a legal firing script if

there exists a sequence v1, v2, . . . , vk of legal vertex firings with σ =
∑

i evi . If c is a
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configuration and there exists a legal firing script σ such that c− Aσ is stable, then
we say c is stabilizable with stabilization

c◦ := c− Aσ.

Note that, for configurations c and d on some Γ(A), if d ≥ c componentwise and
d is stablizable then c is as well. The Z-matrix A is called avalanche finite if every
configuration on Γ(A) is stabilizable. It is important to note that not all Z-matrices
are avalanche finite. The following examples illustrates this point.

Example 1.3. Let

A =

(
1 −4
−2 1

)
.

Then Γ(A) is

vs

v1v2

2

4

−1−3

Consider the unstable configuration c = (1, 0) on Γ(A), firing the first vertex yields
the unstable configuration (0,2) and firing the second vertex yields (4,1). In general
firing v1 or v2 will only add more chips to v2 and v1 respectively, at a faster rate than
either vertex can get rid of them. So (1, 0) will never stabilize; similarly, (0, 1) is not
stabilizable. The configuration (a, b) is stabilizable if and only if a ≤ 0 and b ≤ 0.
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21
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1

1
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Figure 1.1: Directed graph Γ(A) for Example 1.4.
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Example 1.4. Let

A =

 2 −1 −1
−2 4 −1
−1 −2 3

 .

Then the directed graph represented by A appears in Figure 1.1. We will now step
through the stabilization process of the configuration c = (3, 2, 0) on Γ(A).

c = (3, 2, 0)
v1−→ (1, 4, 1)

v2−→ (2, 0, 3)
v3−→ (3, 1, 0)

v1−→ (1, 3, 1) = c◦.

The corresponding firing script is σ = (2, 1, 1) since we fired v1 twice and vertices two
and three once. So we have c◦ = c− Aσ.

Definition 1.5. The Laplacian L of a graph G is an (n + 1) × (n + 1) matrix that
describes G. We number the vertices from 1 to n+ 1; it is convention to number the
sink vertex n+ 1. Then we define the Laplacian to be

Lij =

{
outdegree(vi) i = j,
−wt(vj, vi) i 6= j.

The reduced Laplacian of the graph with respect to n+ 1 is obtained by deleting
the row and column corresponding to n+ 1.

v1

v2 v3

v4vs

1

1

1

1
1

1

2

2

1

Figure 1.2: The graph G for Example 1.6.

Example 1.6. Consider the graph in Figure 1.2, the Laplacian of G is

L =



v1 v2 v3 v4 vs
v1 3 −1 0 −1 0
v2 −1 2 −2 0 0
v3 0 −1 4 −1 0
v4 −1 0 −2 2 0
vs −1 0 0 0 0

.
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It is clear that L is a Z-matrix since the off-diagonals are negative or zero. To obtain
the reduced Laplacian with respect to vs we delete the row and column corresponding
to vs. Then

L̃ =


v1 v2 v3 v4

v1 3 −1 0 −1
v2 −1 2 −2 0
v3 0 −1 4 −1
v4 −1 0 −2 2

.
This is a Z-matrix and we see that Γ(L̃) = G.

1.2 Avalanche Finiteness

Let c, d ∈ Rn. Then if ci ≥ 0 for all i ∈ [n] we say c ≥ 0. Similarly we say c > 0
if ci > 0 for all i. If we have di ≥ ci or di > ci for all i ∈ [n] we say d ≥ c or d > c,
respectively. Now consider A ∈ Rn×n; we say A ≥ 0 and call A a nonnegative matrix
if for all i, j ∈ [n], Aij ≥ 0.

Theorem 1.7 (Least Action Principle). Let c be an arbitrary configuration and
let τ ≥ 0 be an integer vector such that d = c − Aτ is stable. Then for any finite
sequence of legal firings starting at c with script firing vector σ, we have τ ≥ σ.

The least action principle is a powerful theorem that will be very useful in future
proofs. It was originally proved by Diaconis and Fulton [6].

Proof. We will prove this by induction on the degree of the firing script, deg(σ) =
∑
σi.

For deg(σ) = 0 the statement is trivial. Assume that the result holds for all firing
scripts of degree at most k − 1 for some k ≥ 1. Let i1, i2, i3, . . . , ik be a legal firing
sequence with script σ. Since i1 is unstable in c and d = c − Aτ is stable we know
that τi1 ≥ 1. Let c ′ = c−Aei1 , τ ′ = τ − ei1 , and σ ′ = σ− ei1 . Then i2, i3, . . . , ik is a
legal firing sequence for c ′ with script σ ′ and d = c−Aτ = c ′ −Aτ ′ is stable. So by
induction τ ′ ≥ σ ′. Hence τ ≥ σ.

Remark 1.8. Note that the least action principle implies that if c−Aτ ≥ 0 is stable
for any firing script τ ≥ 0, then c is stabilizable by a legal firing script σ, where τ ≥ σ.

Corollary 1.9. If a configuration c is stabilizable then every avalanche starting at c
is finite. Furthermore, every avalanche stabilizing c has the same firing script. Hence
if c ′ and c ′′ are stable and can be reached from c by a legal firing script then c ′ = c ′′.

Proof. This is immediate from the least action principle.

We are now ready to introduce a specific subclass of Z-matrices that have a in-
triguing relationship to avalanche finitness.

Definition 1.10. Let A be an n× n matrix. Then the spectral radius of A is

ρ(A) = max{|λ| : λ an eigenvalue of A}.
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Definition 1.11. An n × n matrix A is called an M-matrix if A = sI − B where B
is a nonnegative matrix and s is some real number such that s ≥ ρ(B).

Much of the advancement of the theory of M-matrices was due to Perron’s [14] and
Frobenius’ [8] seminal works regarding nonnegative matrices. The following theorem
is a well-known result of those works.

Theorem 1.12 (Perron-Frobenius). Let B be a nonnegative matrix. Then there
is a nonnegative real number λpf , called the Perron root or the Perron-Frobenius
eigenvalue, such that λpf ≥ |λ| for any eigenvalue λ of B. Furthermore, there exists
a eigenvector for λpf with nonnegative components.

Theorem 1.13 (Jordan Form). Let A ∈ Rn×n be a matrix. Then there exists an
invertible matrix P such that P−1AP has the form

J1 0 0 · · · 0
0 J2 0 · · · 0
...

...
...

. . .
...

0 0 0 · · · 0
0 0 0 · · · Jk

 .

Where each Ji is a Jordan Block having the form
λ 1 · · · 0
...

...
. . .

...
0 0 · · · 1
0 0 · · · λ

 ,

where λ is an eigenvalue of A.

Remark 1.14. Theorem 1.13 tells us that since any Z-matrix A can be represented
as A = sI − B with B ≥ 0, then for any A there exists a invertible matrix P such
that P−1BP is in Jordan form. Then P−1AP = sI−P−1BP , which is a block matrix
with each block of the form

s− λ −1 0 · · · 0
0 s− λ −1 · · · 0
...

...
...

. . .
...

0 0 0 · · · −1
0 0 0 · · · s− λ

 ,

where λ is an eigenvalue of B.

Note that P−1AP is not the Jordan Form for A; however, −P−1AP is the Jordan
Form for −A with eigenvalues λ− s, where λ ranges over the eigenvalues of B. Then
we can conclude that A has eigenvalues s− λ.

We get the following result.
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Proposition 1.15. Let A be an M-matrix. Writing A = sI − B with B ≥ 0 and
s ≥ ρ(B), we have A is nonsingular if and only if s > ρ(B).

Definition 1.16. An n× n matrix A is said to be convergent if limm→∞A
m = 0n×n.

Theorem 1.17. An n× n matrix A is convergent if and only if ρ(A) < 1.

Proof. Without loss of generality we may assume A is in Jordan Form, in which case
the result is straightforward.

Corollary 1.18. If ρ(A) < 1, then I− A is nonsingular with inverse
∑∞

m=0A
m.

Proof. Let ρ(A) < 1, then A is convergent. For each m ≥ 0 we have

(I− A)(I+ A+ · · ·+ Am) = (I− Am+1).

Taking the limit as m → ∞ of I − Am+1 we obtain I, so it follows that (1 − A)−1

exists and is equal to
∑∞

m Am.

1.2.1 Structure of M-matrices

Plemmons [15] complied a list of 40 different characterizations of nonsingular M-
matrices. Below we present proofs for the equivalence of four characterizations and
in future sections will show the equivalence of two more. Of most importance from
the point of view of this thesis, Gabrielov [9] has shown that a Z-matrix is avalanche
finite if and only if it is a nonsingular M-matrix. That result appears as Theorem
1.22, below.

Theorem 1.19. Let A be a Z-matrix. Then the following are equivalent:

1. A is a nonsingular M-matrix;

2. The real part of A’s eigenvalues are positive;

3. A−1 exists and its entries are nonnegative.

4. Aσ ≥ 0 implies σ ≥ 0, i.e., A is monotone.

Remark 1.20. If A is a nonsingular M-matrix then At is an nonsingular M-matrix
as well. At is a Z-matrix with spectrum equal to that of A.

Proof. (1⇔ 2) (⇒) Let A be an n× n nonsingular M-matrix and write A = sI− B
with B ≥ 0 and s > ρ(B). From Remark 1.14 we know that A has eigenvalues of the
form s− λ, where λ ranges over the eigenvalues of B. Since s > ρ(B), Re(s− λ) > 0
for all λ of B.
(⇐) Suppose the eigenvalues of A have positive real parts and write A = sI−B, where
B ≥ 0. Let λpf be the Perron root of B. Then λpf is real and λpf ≥ |λ| ≥ Re(λ) for
every eigenvalue λ of B. Then since A has eigenvalues of the form s−λ where s ∈ R,
with positive real part, we must have s > ρ(B).
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(1⇔ 3) (⇒) (As in Horn [12]) Let A = sI−B, where B ≥ 0 and s > ρ(B). Consider
1
s
A = I− 1

s
B. Since s > ρ(B) we have that 0 ≤ ρ

(
1
s
B
)
< 1. Then by Theorem 1.17,∑∞

m=0
1
s
B
m

converges, which implies
(
I− 1

s
B
)−1

exists. Since B ≥ 0, we must have(
1
s
A
)−1 ≥ 0. Hence A−1 exists and is nonnegative.

(⇐) Suppose A−1 ≥ 0, and write A = sI − B with B ≥ 0. Let λpf be the Perron-
Frobenious eigenvalue of B with corresponding eigenvector σ  0. Then

Aσ = (s− λpf )σ ⇒ σ = (s− λpf )A−1σ.
Since A−1σ  0, it follows that s > λpf = ρ(B). So A is a nonsingular M-matrix.

(3 ⇔ 4) (⇒) Assume Aσ = τ ≥ 0 for some σ ∈ Rn. Then A−1Aσ = A−1τ , and
since τ and A−1 are both nonnegative, A−1τ = σ ≥ 0.
(⇐) Let Aσ ≥ 0 imply σ ≥ 0. We want to show that ker(A) = 0, hence A−1 exists.
Suppose Au = 0. Then u ≥ 0. However, we also have A(−u) = 0; thus it must be
the case that −u ≥ 0. Therefore we must have that u = 0. To see that A−1 ≥ 0
consider its j-th column A−1ej for each j ∈ [n]. We have A(A−1ej) = ej ≥ 0, so by
assumption A−1ej ≥ 0.

Remark 1.21. Let A be a nonsingular M-matrix and A = B − C a splitting of A’s
diagonal and off-diagonal elements. Then C ≥ 0. We have

I = (B − C)A−1 = BA−1 − CA−1.
Since CA−1 ≥ 0 we must have B > 0. That is, all diagonal elements of a nonsingular
M-matrix are positive.

Theorem 1.22. A Z-matrix A is avalanche finite if and only if A is a nonsingular
M-matrix.

Proof. (⇒)(Due to Gabrielov [9]) Now assume A is an avalanche finite Z-matrix
and c ∈ Rn≥0. For each k = 1, 2, 3, . . . , let σk be the legal firing script stabilizing kc.
Let τk = σk/k. Then we have

kσ − Aσk = (kσ)◦ ⇒ Aτk = σ − (kσ)◦

k
.

Each τk lies in a compact ball with respect to the L1-norm on Rn. To see this, let
ω be the legal firing script stabilizing cmax + 1. Necessarily we have Aω > 0. Let
N = maxi ci, then c − NAω ≤ 0 and since k is positive kc − kNAω ≤ 0, so by the
least action principle σk ≤ Nω. This implies 0 ≤ τk ≤ Nω, thus |τk| ≤ |Nω|. So τk is
bounded in a compact set as k varies. Now since τk is in a compact set there exists
a subsequence τki such that τki → τ for some τ ∈ Rn≥0. So

Aτ = lim
i→∞

Aτki

= lim
i→∞

σ − (kiσ)◦

ki
= σ.
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Note that (kσ)◦

k
converges to 0 because (kσ)◦ stays bounded as k gets large. We have

shown that for each σ ≥ 0 there exists a τ ≥ 0 such that Aτ = σ. Applying this
result with σ = ei for each standard basis vector ei in turn shows that A−1 exists and
is nonnegative.

(⇐) Let A be a nonsingular M-matrix and c a configuration on Γ(A). Then by
Theorem 1.19, A−1 ≥ 0. Let σ be a configuration such that σ > c and σ ≥ 0.
Define τ = A−1σ ≥ 0. Then c − Aτ is stable. So by the least action principle, c is
stabilizable.

1.3 Recurrents and Superstables

This section extends the group structure of the abelian sandpile model, to our class
of graphs Γ(A) where A is a nonsingular matrix. Many of the proofs follow directly
from Perkinson and Corry’s forthcoming textbook [4].

1.3.1 Recurrent Configurations

Definition 1.23. A stable configuration c is recurrent if for every configuration a,
there exists a configuration b ≥ 0, such that c = (a+ b)◦.

The only recurrent configuration that can always be found with ease is the maxi-
mal stable configuration, which we now define.

Definition 1.24. For an n×n Z-matrix A the maximal stable configuration on Γ(A)
is denoted cmax and is found by

(cmax)v = Avv − 1,

for all v ∈ [n].

Theorem 1.25. For any Γ(A), cmax is recurrent.

Proof. Let a ≥ 0 be any configuration on Γ(A), and b = cmax − a◦. Say σ is a
legal firing script that stabilizes a. Then σ is a legal firing script for a + b, thus
(a + b)

σ→ (a◦ + b) = cmax. Since cmax is stable this means that cmax = (a + b)◦,
thus cmax is recurrent.

In fact cmax can be beneficial at determining other recurrent configurations.

Theorem 1.26. A configuration c is recurrent if and only if there exists a configu-
ration b ≥ 0, such that c = (cmax + b)◦.

Proof. (⇒) Let c be a recurrent configuration. Then by definition of recurrent, c is
stable and there exists a configuration b ≥ 0 such that c = (cmax + b)◦.
(⇐) Suppose there exists a b ≥ 0 such that c = (cmax+b)◦. Let a be any configuration
such that σa stabilizes a and say b ′ = cmax − a◦ + b ≥ 0. Then

a+ b ′
σa−→ a◦ + b ′ = cmax + b.

So (a+ b ′)◦ = c.
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Example 1.27. Let

A =

 2 −1 −1
−2 4 −1
−1 −2 3

 .

Then cmax = (1, 3, 2). There are 7 other recurrent configurations on Γ(A): (1, 2, 2),
(1, 1, 2), (1, 0, 2), (0, 2, 2), (1, 3, 0), (0, 3, 2), (0, 3, 1), (1, 3, 1), (0, 3, 0). The configura-
tion (0, 3, 1) is a recurrent since

cmax + (0, 0, 1) = (1, 3, 3)
v3−→ (2, 4, 0)

v1−→ (0, 6, 1)
v2−→ . . . −→ (0, 3, 1)

In the stabilization of (1, 3, 3) we have that site 1 fires four times, site two fires 3
times and site 3 fires 4 times. The firing script that stabilizes (1, 3, 3) is σ = (4, 3, 4),
so (0, 3, 1) = (1, 3, 3)− Aσ.

Definition 1.28. The stable addition of configurations a and b is defined to be

a~ b = (a+ b)◦.

One can quickly see that stable addition must be commutative with the all zero
configuration being its identity element. Similarly, one can see that since a sequence
of legal fires for configurations a+ b is legal for a+ b+ c as well, stable addition must
be associative. The set of stable configurations under stable addition does not form
a group in general due to the lack of inverses. However, as shown below, restricting
to the subset of recurrents a group is formed under stable addition.

Notation 1.29. We denote all linear integer combinations of the columns of a non-
singular M-matrix A by A. That is

A = ImZ(A).

Theorem 1.30. Let A be an n × n nonsingular M-matrix. Then the recurrent con-
figurations S(A) form a group under stable addition, and

S(A)→ Rn/A

c 7→ c+ A

is an isomorphism of groups.

Remark 1.31. If we restrict A to the integers we recover the well-known mapping
from the abelian sandpile model. That is

S(A) ∩ Zn → Zn/A.

Proof. Let c be any configuration on Γ(A). We can quickly see that the above mapping
respects addition. Now define

~1 the all ones configuration on Γ(A),



12 Chapter 1. Chip-firing Systems

cbig = cmax +~1,

czero = cbig − (cbig)
◦.

We then have czero = cbig−(cbig−Aσ) for some legal firing script σ, so czero = 0 mod A.
Furthermore, since cbig is unstable at every vertex, czero ≥ ~1.

We first show that if c is recurrent (c + czero)
◦ = c. Let c be recurrent; then

(cbig + a)
τ−→ c for some configuration a and legal firing script τ . And let σ be a

legal firing script stabilizing cbig. Then

cbig + a+ czero = cbig + a+ cbig − c◦big
σ−→ a+ cbig + c◦big − c◦big

= a+ cbig
τ−→ c.

Clearly we also have cbig + a+ czero
τ−→ c+ czero. So by Corollary 1.9 (c+ czero)

◦ = c.

Let k � 0 such that c+ kczero ≥ cmax, then we know

(c+ kczero)
◦ = c mod A.

Then, since (c + kczero)
◦ = ((c + kczero − cmax) + cmax)

◦, c must be recurrent by
Theorem 1.26. So we know that the elements of Rn/A are represented by recurrent
configurations, hence the mapping is surjective. We would now like to show that
these representatives are unique.

Let c ′ = c ′′ mod A where c ′ and c ′′ are recurrent configurations on Γ(A). Then
c ′ = c ′′ − Aτ for some τ ∈ Zn. Let

τ− =

{
τi for τi < 0,
0 else,

τ+ =

{
τi for τi > 0,
0 else.

Then define c = c ′ + Aτ+ = c′′ + Aτ and let k � 0 such that

c+ kczero ≥
∑
v∈[n]

τ+vAvvv −
∑
v∈[n]

τ−vAvvv.

Then, through legal firings,

c+ kczero = c ′ + Aτ+ + kczero → c ′ + kczero → c ,′

and
c+ kczero = c ′′ + Aτ− + kczero → c ′′ + kczero → c ′′.

Thus by Corollary 1.9 we have that c ′ = c ′′.
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Figure 1.3: Spanning trees of Γ(A) in Example 1.34

A spanning tree of a directed graph Γ(A) rooted at vs is a directed subgraph that
contains [n], and each v ∈ [n] has one outgoing edge while vs has no outgoing edges.
The weight of a spanning tree is the product of its edge weights, where the weight of
an edge is the same as for Γ(A).

Theorem 1.32. Let A be a nonsingular integer M-matrix and Γ(A) its graph. Then
the determinant of A equals the sum of the weights of all spanning trees directed into
the sink vertex.

Proof. The above Theorem follows directly from Kirchhoff’s Matrix tree theorem.

Corollary 1.33. If A is an integer M-matrix, the order of S(A) ∩ Zn is equal to the
determinant of A and the sum of the weights of the spanning trees on Γ(A).

Proof. This follows directly from Theorem 1.32 and Theorem 1.30.

Example 1.34. Consider

A =

 2 −1 −1
−2 4 −1
−1 −2 3

 .

In Figure 1.3 we see the spanning trees of Γ(A). Starting in the top left corner
and traversing across the weights of the trees are 1, 4, 1, 2, -1, -2 respectively. In
accordance with Corollary 1.33 these weights sum to det(A) = 5.
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1.3.2 Burning Configuration

The support of a configuration c on Γ(A), i.e., of a vector c ∈ Rn is

supp(c) = {v ∈ [n] : cv 6= 0}.

The closure of the support of c, denoted supp(c), is the set of j ∈ [n] such that there
exists a directed path in Γ(A) to j from some vertex i ∈ supp(c).

Definition 1.35. A configuration b ≥ 0 on Γ(A) is called a burning configuration if

1. b = 0 mod A,

2. supp(b) = [n].

Definition 1.36. If b is a burning configuration for A, then σb = A−1b is the burning
script.

Remark 1.37. If b is a burning configuration on Γ(A) and k � 0 then there exists
a legal firing script σ such that kb

σ→ c with c ≥ cmax. This follows since b ≥ 0
and supp(b) = [n].

Theorem 1.38. Let A be a Z-matrix, then the following are equivalent:

1. A is avalanche finite;

2. Γ(A) has a burning configuration;

3. There exists a σ > 0 such that Aσ > 0, i.e. A is semi-positive.

Proof. (1⇒ 2) Let A be avalanche finite and c = cmax−A~1 a configuration on Γ(A).
Let σ ≥ 0 be the legal firing script stabilizing cmax − A~1, that is(

cmax − A~1
)◦

= cmax − A
(
~1 + σ

)
.

Let b = A
(
~1 + σ

)
. Then b ≥ 0 and b mod A = 0. Assume supp(b) 6= [n], and

define W = [n] \ supp(b). For any subset X ⊆ [n], define AX to be the submatrix of
A formed from the rows and columns corresponding to elements of X. By permuting
vertices, we may assume W = [m] for some m < n. Hence, A has the form

A =

(
AW 0
∗ Asupp(b)

)
.

Let σW be the first m elements of σ. Since any path from W to supp(b) now goes
directly to the sink, we can see that AW must be avalanche finite. Hence AW

−1 exists.
Since the elements in W are not in supp(b) it must be the case that bW = 0. Then
we have AWσW = 0, which only occurs if σW = 0, but σW ≥ 1. By contradiction
supp(b) = [n] and Γ(A) has a burning configuration.
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(2 ⇒ 3) Let b be a burning configuration with burning script σb = A−1b > 0, then
there exists a τ such that for all sufficiently large k > 0 , τ is a legal firing script
for kb such that kb→ c for some c > 0. That is

kb− Aτ = A (kσb − τ) > 0.

Then since τ and k are independent of one another, for a large enough k ′ > k, we
have k ′σb − τ > 0. Let σ = k ′σb − τ , then σ > 0 and Aσ > 0.

(3 ⇒ 1) Let A be a Z-matrix such that there exists a σ > 0 with Aσ > 0. Let c be
an unstable configuration on Γ(A). Then there exists a k > 0 and legal firing script
τ such that kσ − Aτ = d > c. Then

c ′ = c− A (kσ − τ) < 0.

So by Theorem 1.7 there exists a legal firing script φ such that φ < (kσ−τ) and c−Aφ
is stable.

Remark 1.39. We construct the b and corresponding σb with a greedy algorithm.
Start with σ1 = ~1 and b1 = Aσ1. If there is a index i such that b1i < 0, define
σ2 = σ1 + ei and b2 = Aσ2. Continue in this manner until bj ≥ 0, then let b = bj.
Note that this is the same burning configuration found in the proof of Theorem 1.38.
The key idea is that for any configuration c, we have that cmax − c is unstable at
vertex v if and only if cv < 0.

Remark 1.40. Let b be the burning configuration constructed in Remark 1.39 and
b ′ be any other burning configuration on Γ(A). Then b is the minimal burning
configuration on Γ(A), that is b ≥ b ′. To see this we need to show σb ′ ≥ σb.
Let σb = ~1 + σ where σ is the legal firing script stabilizing cmax − A~1. Consider
(cmax−A~1)−A(σb ′−~1) = cmax−Aσb ′ . Since b ′ ≥ 0 this is stable, though the firings
may not be legal. And cmax +A~1

σ−→ (cmax +A~1)◦ is a legal script, thus by the least
action principle σ ≤ σb ′ −~1. That is σb ≤ σb ′ and b ≤ b ′.

Example 1.41. Let us find the burning configuration for

A =

 3 −1 −3
−1 4 −1
−1 −1 3

 .

We have b1 = (−1, 2, 1), so we set σ2 = (2, 1, 1). This gives b2 = (2, 1, 0) ≥ 0, so
b = b2.

Theorem 1.42. Let b be a burning configuration for a nonsingular M-matrix A, with
burning script σb. Let e be the identity of S(A). Then

1. (kb)◦ = e for some k � 0.

2. A configuration c ≥ 0 is recurrent if and only if (b + c)◦ = c.
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3. A configuration c ≥ 0 is recurrent if and only if (b + c)
σb−→ (b + c)◦.

4. σb ≥ ~1.

5. Suppose c is a stable configuration and σ a legal firing script such that
(b + c)

σ→ (b + c)◦. Then σ ≤ σb.

Proof.

1. For large enough k, by repeatedly firing i ∈ supp(b), and legally firing the cor-
responding path to elements not in supp(b), we can obtain kb→ c+ cmax for
some configuration c ≥ 0, so (kb)◦ is recurrent. Since b is a burning configura-
tion, we have

kb mod A = k(b mod A) = 0 mod A.

Then since the mapping S(A) → Rn/A is an isomorphism, (kb)◦ must be the
identity element of S(A).

2. (⇒) Suppose c ≥ 0 is a recurrent configuration, then (b + c)◦ is recurrent as
well. Then we must have (b + c)◦ = c since b = 0 mod A.
(⇐) Suppose (b + c)◦ = c. Fix an integer k � 0 such that the stabilization of
kb is e. Then c = (kb + c)◦ → (e + c)◦. Since e is recurrent c must be so as
well.

3. Let c ≥ 0 be a configuration and σ be the legal firing script stabilizing b + c.
By part (2) c is recurrent if and only if c = (c + b)◦ = b + c − Aσ. Whence,
Aσ = b. So σ = A−1b = σb.

4. This follows directly from construction of the minimal burning configuration
and the fact that A−1 is nonnegative. Independent of the minimal burning
configuration we can show this as follows; since cmax is recurrent we have
(b + cmax)

◦ σb−→ cmax. Let j ∈ [n]. Since supp(b) = [n] there exists an vi ∈ supp(b)
and a path vi, vi1 , vi2 , . . . , vj so that vi, vi1 , vi2 , . . . , vj is a legal firing sequence
for b + cmax. This sequence is legal since (cmax + b)vi > cmaxvi , and firing vi
causes vi1 to be unstable were it not already. This process continues until hitting
vj. Then, since vj is arbitrary, every vertex must fire at least once and σb ≥ ~1.

5. Suppose c is a stable configuration and σ is the legal firing script stabilizing
b + c. Then c ≤ cmax so σ is also legal for cmax + b. Since cmax is recurrent by
(3), we must have σb ≥ σ.

1.3.3 Superstables and Duality

Definition 1.43. We say a configuration c on Γ(A) is superstable if there exists
no σ  0 such that c− Aσ ≥ 0.
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The following example demonstrates that c being a stable configuration does not
necessarily mean that c is superstable.

Example 1.44. Let

A =

 2 −1 −1
−2 4 −1
−1 −2 3

 .

Consider the stable configuration (1, 1, 1) on Γ(A). We check if there is a τ  0 such
that Aτ ≤ (1, 1, 1). Note that τ = (1, 1, 1) gives1

1
1

− A
1

1
1

 =

1
1
1

−
0

1
0

 =

1
0
1

 ,

so (1, 1, 1) is not a superstable configuration.

There is an interesting duality between superstables and recurrent configurations.

Theorem 1.45. c is a recurrent configuration on Γ(A) if and only if cmax − c is a
superstable configuration.

Proof. (⇒) Let A be an M-matrix with recurrent configuration c, and say cmax− c is
not a superstable configuration. Then there exists a σ ≥ 0 such that cmax−c−Aσ ≥ 0.
Since c is recurrent there exists some clarge > cmax such that (clarge)

◦ = c by some legal
firing script σ ′. Rewriting we get

cmax − c− Aσ = cmax − (clarge − Aσ ′)− Aσ = cmax − clarge − A(σ − σ ′) ≥ 0.

Which clearly implies A(σ − σ ′) ≤ 0. Hence by Remark 1.8, we have σ ≤ σ ′. Fur-
thermore, cmax ≥ clarge−A(−σ+ σ ′), so (−σ+ σ ′) is a legal firing script terminating
in a stable configuration; by construction we know −σ+σ ′ ≤ σ ′, but that says σ ≤ 0.
By contradiction we have cmax − c is a superstable configuration.

(⇐) Let cmax−c be a superstable configuration and c not be a recurrent configuration.
Furthermore, let σ ≥ 0. Then for at least one vertex v ∈ [n] we have

(cmax − c− Aσ)v < 0⇒ (cmax)v < (c+ Aσ)v.

So c+Aσ must be unstable. Let b be the burning configuration for A, and σ the legal
firing script stabilizing (c+ b). Define τ = σb − σ, then τ ≥ 0, and by Theorem 1.42
we have τ ≤ σb, so c+ Aτ is unstable. But we also have

(c+ b)◦ = c+ Aσb − Aσ = c+ Aτ,

which is stable. Thus c must be recurrent.
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Example 1.46. Let

A =

 2 −1 −1
−2 4 −1
−1 −2 3

 .

Earlier we showed that (0, 3, 1) is a recurrent configuration on Γ(A). Theorem 1.45
tells us that (1, 3, 2)− (0, 3, 1) = (1, 0, 1) is a superstable configuration. Note that we
now have a quicker method to determining if a configuration is superstable. Taking
our earlier non-superstable configuration (1, 1, 1), we observe that there is no element c
in the set of recurrents such that cmax − c = (1, 1, 1).



Chapter 2

Symmetric Configurations

Florescu, et. al. [7] showed that when considering graphs with at least one axis of
symmetry the reduced Laplacian could be modified in such a way as to only consider
the configurations and firings on a representative fraction of the graph. However,
the modified matrix that is obtained is not always the reduced Laplacian of a graph;
thankfully, we observe that the augmented matrix is always an M-matrix. Hence,
from section 1.1 of this thesis, we now have a beneficial way of visualizing these
representations. The propositions in this section follow directly from Florescu, et.
al., [7]. The proofs are omitted as they straightforwardly extend to nonsingular real
M-matrices. For this section, let A ∈ Rn×n be a nonsingular M-matrix.

Definition 2.1. Let G be a finite group. An action of G on Γ(A) is an action
on [n] ∪ {s}. In detail, we have a function

G× ([n] ∪ {s}) −→ [n] ∪ {s},

with the following properties:

1. For the identity e of G, ev = v for all v ∈ [n] ∪ s;

2. The actions G is associative, that is (gh)v = g(hv) for g, h ∈ G and v ∈ [n]∪{s};

3. If g ∈ G, then gs = s, that is the sink is fixed by G;

4. Edge weights of Γ(A) are preserved under G, that is for u, v ∈ [n] ∪ {s} and
g ∈ G we have wt(u, v) = wt(gu, gv).

From now on, let G be a finite graph acting on Γ(A). By linearity the action
extends to an action on Rn after identifying each vertex i with the standard basis
vector ei. Hence, G acts on configurations on Γ(A). We say a configuration c ∈ Rn
on Γ(A) is symmetric if for every g ∈ G and v ∈ [n], we have cv = (gc)v.

Proposition 2.2. The action G is commutes with stabilization. That is for a con-
figuration c on Γ(A), g(c◦) = (gc)◦.

Definition 2.3. The set orbits of Γ(A) under G are O = {Gv : v ∈ [n]}.
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The symmetrization under G, denoted AG, is the matrix obtained as follows.

Definition 2.4. Let O1, . . . ,Om be the orbits of Γ(A) under G and choose ωi ∈ Oi
for i ∈ [m]. So ωi ∈ [n] for each i. Let the n × m matrix K be defined by
Kej =

∑
k∈Oj

Aek. Then define the m×m matrix AG whose i-th row is the ωi-th row
of K.

Let c ∈ Rn be a symmetric configuration on Γ(A) such that cv is unstable. Then
since c is symmetric it must be the case that every vertex in the orbit of v is unstable,
that is (gc)v is unstable for all g ∈ G. By firing gv we represent firing all vertices in
the orbit of v, which we know to be legal for Γ(A). We have the mappings,

(Rn)G → Rm and Rm → (Rn)G

a 7→ (aωi
) b 7→ bG

where a is a symmetric configuration on Γ(A) and b a configuration on Γ(AG) where
bGi = bωi

if v ∈ Oωi
.

Remark 2.5. Since AG is obtained by summing the columns of A that correspond to
distinct orbits of Γ(A) and then picking the rows that corresponds to the chosen orbit
representatives, it is clear that A having nonpositive off-diagonals implies that AG

will as well. Note that since g(c◦) = (gc)◦, if A is avalanche finite AG must be so as
well. Hence, AG is a nonsingular M-matrix.

Corollary 2.6. If c is recurrent on Γ(A) then gc is recurrent on Γ(AG).

Corollary 2.7. If c is a symmetric configuration then its stabilization is symmetric
as well.

Proposition 2.8. The set of symmetric recurrent configurations S(A)G form a sub-
group of S(A).

Proposition 2.9. Let ω1, ω2, . . . , ωm be representatives of the orbits of Γ(A) under
G. Then

S(A)G → Rm/ImZ(AG)

c 7→ (cωi
)i=1,...,m

is an isomorphism; additionally, if A is an integer matrix,

S(A)G ∩ Zm → Zm/ImZ(AG)

c 7→ (cωi
)i=1,...,m

is an isomorphism.

Corollary 2.10. If A is an integer matrix then the number of integer symmetric
recurrents on Γ(A) is det(AG).
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Example 2.11. Let

A =


3 −1 −1 0
−1 3 0 −1
−1 0 2 −1

0 −1 −1 2

 .

Note that det(A) = 11. So there are eleven recurrent configurations on Γ(A):
(2, 2, 1, 1), (2, 2, 0, 1), (1, 2, 1, 0), (2, 0, 1, 1), (0, 2, 1, 1), (2, 1, 1, 0), (1, 2, 0, 1), (2, 1, 0, 1),
(2, 2, 1, 0), (1, 2, 1, 1), (2, 1, 1, 1). Figure 2.1 shows Γ(A) with its axis of symmetry in
red. Let G ≈ Z/2Z, be the group generated by flipping around this axis. The
symmetrization of A is

AG =

(
2 −1
−1 1

)
.

Consider the unstable symmetric configuration c = (2, 2, 2, 2), then the corre-
sponding element on Γ(AG) is cG = (2, 2). The stabilization process is as follows.

(2, 2, 2, 2)
v3,v4−→ (3, 3, 1, 1)

v1,v2−→ (1, 1, 2, 2)
v3,v4−→ (2, 2, 1, 1) = cmax

(2, 2)
gv3−→ (3, 1)

gv1−→ (1, 2)
gv3−→ (2, 1) = gcmax

Since det(AG) = 1, we know that Γ(A) has one symmetric recurrent configuration.
Specifically, cmax is the only symmetric recurrent configuration on Γ(A).

vs

v3

v1

v4

v2

gvs

gv3

gv1

Figure 2.1: Γ(A) and Γ(AG) for Example 2.11.

2.1 Hexagonal Lattice with Triangular Boundary

We turn now to the original motivation for this thesis: the stabilization of the all-ones
configuration on the hexagonal lattice with triangular boundary, Tn. Each vertex of Tn
has an outdegree of 6 and there are

∑n
k=1 k =

(
n+1
2

)
vertices. Consider Figure 2.1, we

have an equilateral triangle with five vertices on each side; the three corner vertices
have a path to the sink of weight four (represented by four dashed lines), while all
other vertices on the edge have an edge of weight two to the sink. In general Tn will
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have 3(n− 2) vertices with edges to the sink of weight two and 3 vertices with edges
to the sink of weight 4. The reduced Laplacian A for Tn is a nonsingular M-matrix.
Throughout this section, we restrict our attention to integer configurations. The
order of an integer configuration c on Tn, denoted order(c), is the smallest possible
integer k ≥ 1 such that there exists a σ ∈ Zn≥0 with kc = Aσ. Additionally, if c is
recurrent, order(c) is the first stabilization of an integer multiple of c for which we
see the identity of S(A). Furthermore, k must divide the order of S(A) ∩ Zn and
S(A)G ∩ Zn, that is k must divide det(A) and det(AG).

Conjecture 2.12. The order of the all-ones configuration on Tn is:

order(~1) =

{
2n+ 4 n odd,

n+ 2 n even.

Figure 2.2 shows the stabilization of k · ~1 on T28 for k = 1, 2, . . . , 30. We observe
that for k = 30 we see the identity element of S(A), hence order(~1) = 30 as expected.

1 ·~1 2 ·~1 3 ·~1 4 ·~1

5 ·~1 6 ·~1 7 ·~1 8 ·~1

9 ·~1 10 ·~1 11 ·~1 12 ·~1
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13 ·~1 14 ·~1 15 ·~1 16 ·~1

17 ·~1 18 ·~1 19 ·~1 20 ·~1

21 ·~1 22 ·~1 23 ·~1 24 ·~1

25 ·~1 26 ·~1 27 ·~1 28 ·~1

29 ·~1 30 ·~1

Figure 2.2: Stabilization of k ·~1 on T28 for k = 1, 2, . . . , 30.
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We now walk through the steps of showing ~1 on T5 has order 14. Since T5 has
15 vertices excluding the sink, and ~1 is symmetric, we will work AG, where A is the
reduced Laplacian of T5.

Figure 2.3: T5: Hexagonal Lattice with Boundary of 5.

AG =


gv1 gv4 gv5 gv6

gv1 4 0 −2 −2
gv4 0 6 −2 0
gv5 −1 −1 5 −1
gv6 −2 0 −2 6

.
Conjecture 2.12 tells us that ~14 should be in the image of AG. Consider

σ =


12
5
8
9

 .

Then AGσ = ~14. The determinant of AG is 392 which has prime factoriza-
tion 23 × 72. Since A is an M-matrix, quickly computing (AG)−1(k~2) for k = 2, 4, 7, 8
gives non-integer σ’s. Hence order(~1) = 14.
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v1
v6v14

v3 v2
v7v13

v8

v9v10v11

v12

v5v15

v4

v1 v6

v5

v4

Figure 2.4: Symmetries of T5.
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