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Abstract

This thesis examines the connections between the abelian sandpile model and the
dimer model. Several original theorems are presented in the chapter investigating
grid graphs with Klein Four group symmetry relating the number of symmetric re-
current configurations on grid graphs to the number of domino tilings on different
checkerboards. A new proof for the number of tilings on a checkerboard is presented,
as well as a partial new proof for the number of tilings on a Möbius checkerboard.
The next chapter consists of a number of other theorems concerning specific graphs
as well as recurrent configurations on grid graphs without symmetry. In the chapter
exploring grid graphs with dihedral symmetry we find a relation between the number
of symmetric configurations and weighted domino tilings on a class of graphs studied
in [Pac97].





Introduction

“Who could ever calculate the path of a molecule? How do we know that

the creations of worlds are not determined by falling grains of sand?” - Victor Hugo,

Les Miserables

Mandelbrot noticed that many naturally occurring systems can be thought of as
fractals, which means that some correlation functions show non-trivial power law be-
havior. For example, the height profile of mountain ranges can be characterized by
the dependence on R of the difference of height, ∆h(R), between two points sepa-
rated by a distance R. It has been found that ∆h(R)2 ∼ Rx. Similarly, river networks,
earthquakes, brain activity, models of forest fires, biological evolution, and magnetism
in metals can be described using power laws.

Bak, Tang and Wiesenfeld invented the idea of “self-organized criticality” in
[BTW88] and argued that the dynamics which describe the power-law dependen-
cies seen in non-equilibrium steady states in nature must not involve any fine-tuning
of parameters. Such systems are driven to a state at the boundary between the stable
and unstable states.

They also observed that if one builds a sandpile by dropping grains of sand on
a flat circular table, one obtains a cone of sand. This system is invariably driven
towards its critical states: it exhibits self-organized criticality.

The interest of this paper in the mathematics of the sandpile model and cellular
automata thus arises from the physical phenomena mentioned. This project started
with my adviser’s collaboration with Reed College graduate Daniela Morar which
resulted in [MP08], continued with Harvey Mudd College graduate Natalie Durgin as
presented in [Dur09], who has investigated symmetry in sandpiles, and further with
his research with Reed College students Julia Porcino, Nick Salter and Tianyuan Xu.

This paper is mainly concerned with the connection between the recurrent states
of the sandpile model and the dimer model. Even though this paper does not present
the physical implications of the findings, there might be a connection between the
dimer model and viral tiling theory, specifically the Caspar-Klug series, which asserts
that viruses follow the structure of dominoes or polyominoes in the organization of
their protein coats. This is presented in [TR06].

Chapter 1 presents the theory of the Abelian Sandpile Model and the chip-firing
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game. Important concepts such as the Laplacian, the reduced Laplacian, and the
sandpile group are introduced.

Chapter 2 describes the specifics of the model for symmetric recurrents. The
actions of the symmetric recurrents are described through several propositions and
corollaries. The important Matrix-Tree Theorem which is employed in several of our
new theorems is introduced. Here we also introduce the theory of matchings, trees
and dual trees. This process, which we refer to as KPW throughout this paper, due
to Kenyon, Propp and Wilson [KPW], will be important for many of the constructive
proofs.

Chapter 3 is the first original chapter. It consists of a series of theorems relating
the number of Klein Four group - symmetric recurrents and tilings on grid graphs.
Of interest is the new proof for Kasteleyn’s formula for the number of domino tilings
of an m× n grid graph.

The next chapter presents a similar theorem for grid graphs with dihedral sym-
metry. An important class of graphs, which we refer to as Ciucu graphs, is also
introduced.

The last chapter presents several new theorems for sandpile graphs without sym-
metry.



Chapter 1

The Abelian Sandpile Model

A reference for all the results in this section is [HLM].
This section will cover basic sandpile theory, setting up the stage for the next

chapters.
Let Γ be a finite, weighted, directed graph with vertices V and edges E. The

weight function is defined as

wt(v, w) = the number of edges between v and w, where v, w ∈ V .

Then, the outdegree and indegree for v ∈ V are defined as:

dv = outdeg(v) =
∑
w∈V

wt(v, w)

indeg(v) =
∑
w∈V

wt(w, v)

Now we can define the sink of a graph: a vertex s ∈ V is a sink if ds = 0. We call
s a global sink if there is a directed path from each vertex to s. A global sink, if it
exists, is unique. The graph Γ is undirected if outdeg(v) = indeg(v) for all v ∈ V .

Definition 1.0.1 A sandpile graph is a finite, directed graph with a global sink.

Let X be a finite set. Then ZX ={
∑
x∈X

axx : ax ∈ Z,∀x ∈ X} is the free abelian

group on X.

Definition 1.0.2 The Laplacian of Γ is the operator ∆ : ZV → ZV defined by

∆φ(v) =
∑

(w,v)∈E

(φ(v)− φ(w)) for φ ∈ ZV and v ∈ V .

The standard basis for ZV is {v∗}v∈V where

v∗(w)=δ(v, w) =

{
1 if v = w
0 if v 6= w

We have
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∆v∗ = dvv
∗ −

∑
w∈V

wt(w, v)w∗.

We can get an isomorphism by fixing an ordering v1, ..., vn on the vertices:

ZV ∼→ Zn
v∗i → ei

where ei is the i-th standard basis vector. Then, ∆ is a matrix given by:

∆ij =

{
dvi − wt(vi, vi) if i = j
−wt(vi, vj) if i 6= j.

Now, take D = diag(dv1, ..., dvn) and the adjacency matrix, A, where Aij = wt(vi, vj).
Now,

∆ = D − A.

Let Ṽ denote the nonsink vertices of Γ. We can define two natural maps between
ZV and ZṼ , a restriction map

ρ : ZV → ZṼ
φ → φ|Ṽ

and an extension map

i : ZṼ → ZV

where

i(φ)(v) =

{
φ(v) if v ∈ Ṽ
0 otherwise.

Definition 1.0.3 The reduced Laplacian of Γ is the operator ∆̃ : ZṼ → ZṼ such
that ∆̃ = ρ ◦∆ ◦ i.

Thus, the matrix representing ∆̃ is obtained from the matrix representing ∆ by
removing the rows and columns corresponding to sinks. A useful operation will be to
take the transpose of the reduced Laplacian, the mapping

∆̃t : ZṼ → ZṼ

obtained by dualizing ∆̃. Thus, for v ∈ ZṼ ,

∆̃tv = dvv −
∑
w∈Ṽ

wt(v, w)w.

Restricting ∆ to ZṼ and setting s = 0, gives the reduced Laplacian, ∆̃ : ZṼ → ZṼ .
If v is an unstable vertex in a configuration c, firing v gives the new configuration

c− ∆̃v.

There is a well-known isomorphism

S(Γ)→ ZṼ /image(∆̃) (1.1)

c 7→ c.
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1.0.1 The Sandpile Group

Definition 1.0.4 A sandpile or configuration on Γ is an element of NṼ . A configu-
ration c =

∑
w∈Ṽ

cvv is stable at a vertex v ∈ Ṽ if cv < dv. Otherwise it is unstable. A

sandpile is stable if it is stable at each v ∈ Ṽ .

If c is unstable at v, we can fire or topple c at v to get a new configuration c̃
defined by

c̃ =

{
cv − dv + wt(v, v) if w = v
cw + wt(v, w) otherwise.

for each w ∈ Ṽ . Thus, c̃ = c − ∆̃tv. If we can get a configuration b starting from a
configuration a, we write a → b. Stabilization is independent of the order of firings,
thus the name abelian sandpile model.

Notation 1.0.5 If the configuration a has a stabilization, this is denoted a◦.

Lemma 1.0.6 If Γ is a sandpile graph, then every configuration on Γ has a stabi-
lization.

Note that the set of stable configurations on Γ is a commutative monoid under
stable addition

(a+ b) = (a+ b)◦.

This means that the operation is addition in NṼ followed by stabilization. The
identity is the zero configuration.

Definition 1.0.7 A configuration r is accessible if for each configuration s, there
exists a configuration t such that t+ s→ r. If r is stable, then r is recurrent.

Recurrent elements, which play an important role in this paper, should be defined
in more detail.

Definition 1.0.8 The maximal stable configuration on Γ is the configuration

cmax =
∑
v∈Ṽ

(dv − 1)v

Proposition 1.0.9 A configuration r is recurrent if and only if there exists a config-
uration s such that

r = (s+ cmax)
◦.

Theorem 1.0.10 The collection of recurrent elements of Γ forms a group under
stable addition, denoted S(Γ) and called the sandpile group of Γ.

Proposition 1.0.11 The following are equivalent:
(1) the zero configuration is recurrent
(2) every stable configuration is recurrent
(3) Γ is acyclic.





Chapter 2

Symmetric sandpiles

A few of these results can also be found in [Dur09].

2.0.2 Sandpile Group Actions

Let G be a finite group. By an action of G on Γ with sink s, we mean a mapping

G× V → V

(g, v) 7→ gv

satisfying

1. if e is the identity of G, then ev = v for all v ∈ V ;

2. g(hv) = (gh)v for all g, h ∈ G and v ∈ V ;

3. gs = s for all g ∈ G;

4. if (v, w) ∈ E, then (gv, gw) ∈ E and both edges have the same weight.

From now on, let G be a group acting on Γ with sink s.
By linearity, the action of G extends to an action on NV and ZV , and since G fixes

the sink, it acts on configurations and each element of G induces a self-isomorphism
of S(Γ).

Notation 2.0.12 Configuration c is symmetric (with respect to the action by G) if
gc = c for all g ∈ G.

Proposition 2.0.13 The action of G commutes with stabilization. That is, if c is
any configuration on Γ, then g(c◦) = (gc)◦.

Proof. Stabilizing c consists of firing a sequence of vertices, say v1, . . . , vt. Then

c◦ = c−
t∑
i=1

∆̃vi.
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At the k-th step in the stabilization process, c has relaxed to the configuration c′ :=
c −

∑k
i=1 ∆̃vi. A vertex v is unstable in c′ if and only if gv is unstable in gc′ =

gc−
∑k

i=1 ∆̃(gvi). Thus, we can fire the sequence of vertices gv1, . . . , gvt in gc, resulting
in the stable configuration

(gc)◦ = gc−
t∑
i=1

∆̃(gvi).

2

Corollary 2.0.14 The action of G preserves recurrent configurations, i.e., for each
recurrent configuration c and each g ∈ Γ, it follows that gc is recurrent.

Proof. If c is recurrent, we can find a configuration b such that c = (b+cmax)
◦. Then,

gc = g(b+ cmax)
◦

= (gb+ gcmax)
◦

= (gb+ cmax)
◦.

Hence, gc is recurrent. 2

Corollary 2.0.15 If c is a symmetric configuration, then so is its stabilization.

Proof. For all g ∈ G, if gc = c, then gc◦ = (gc)◦ = c◦. 2

Proposition 2.0.16 The collection of symmetric recurrent configurations forms a
subgroup of the sandpile group, S(Γ).

Proof. Since the group action respects addition in NṼ and stabilization, the sum of
two symmetric recurrent configurations is again symmetric and recurrent. There is at
least one symmetric recurrent configuration, namely, cmax. Since the sandpile group
is finite, it follows that these configurations for a subgroup. 2

We will denote the subgroup of recurrent configurations of S(Γ) by S(Γ)G.

For convenience, we now assume that the action of G is faithful, meaning that if
g ∈ G and gv = v for all v ∈ V , then g is the identity. For each v ∈ V , the orbit of v
under G is

Gv = {gv : g ∈ G}.
Let O = O(Γ, G) = {Gv : v ∈ tV } denote the set of orbits of the nonsink vertices of

G under Γ. For v ∈ Ṽ , let [v] ∈ O denote the corresponding orbit. Let

∆̃G : ZO → ZO

be the Z-linear mapping defined on orbits [v] by

∆̃G([v]) :=
∑
w∈[v]

∆̃(w).
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Proposition 2.0.17 Let r : ZṼ /image(∆̃)→ S(Γ) denote the inverse of the isomor-
phism in (1.1). There is an isomorphism of groups defined by

φ : ZO/image(∆̃G)→ S(Γ)G

[v] 7→ r(
∑

w∈[v]w)

for each v ∈ Ṽ .

Proof. Consider the homomorphism ZO → ZṼ /image(∆̃) determined by [v] 7→∑
w∈[v]w for v ∈ Ṽ . From the definition of ∆̃G it is clear that image(∆̃G) is in the

kernel, and thus there is an induced mapping,

ψ : ZO/image(∆̃G)→ ZṼ /image(∆̃).

Even though ψ([v]) is G-symmetric, it is not immediately clear that the same can

be said of r(ψ[v]). To see this, consider the configuration |S(Γ)|cmax ∈ ZṼ . It is

equivalent to ~0 modulo the image of ∆̃ given the isomorphism in (1.1). It is symmetric
and can evidently be obtained by adding sand to cmax. Therefore,

φ([v]) = r(ψ([v]) = ( |S(Γ)|cmax + ψ([v]) )◦

is symmetric.
It is clear that φ is surjective, so it remains to show that φ is injective. Suppose

a = ∆̃b and that a is symmetric. It suffices to show that b is symmetric. Fix g ∈ G,
and consider the isomorphism g : ZṼ → ZṼ determined by the action of G on vertices.
We then have

∆̃b = a = ga = g∆̃b = (g∆̃g−1)(gb) = ∆̃(gb).

It follows that b = gb for all g ∈ G, as required. 2

Corollary 2.0.18 The number of recurrent configuration is

|S(Γ)G| = det ∆̃G.

2.0.3 Matchings and trees

In order to make the connection between the sandpile model and the dimer model on
graphs, we need to introduce the concepts of spanning trees, dual tree, and an impor-
tant process for this paper, which we will call KPW , after Kenyon, Propp and Wilson.

A directed spanning tree of Γ rooted at s is a directed subgraph containing all the
vertices, having no directed cycles, and for which s has no out-going edges and every
other vertex has exactly one outgoing edge. The weights of the edges of a directed
spanning tree are the same as they are for Γ, and the weight of a spanning tree is the
product of the weights of its edges.

Theorem 2.0.19 (Matrix-Tree Theorem) The determinant of the reduced Lapla-

cian, ∆̃, defined in 1.0.3, is equal to the number of spanning trees.
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The proof of this can be found in many graph theory texts, so we omit it.

By the matrix-tree theorem, the sum of the weights of the set of all directed span-
ning trees of Γ rooted at s is equal to the determinant of det ∆̃. By using the fact
that S(Γ)→ ZṼ /image(∆̃), and by taking the Smith normal form of ∆̃, we conclude
that the number of elements of the sandpile group is also the sum of the weights of
the directed spanning trees rooted at s.

Now we can outline the generalized Temperley bijection, due to [KPW], between
directed spanning trees of Γ rooted at s and perfect matchings of a related weighted
undirected graph, H(Γ). Suppose that Γ is embedded in the plane. For each edge
(u, v) of Γ, if (v, u) is also an edge, we assume Γ is embedded so that the two edges
coincide. To create H(Γ), overlay the dual of Γ on top of Γ in the plane. The dual
tree is constructed by drawing a vertex in the plane inside each face of Γ, including
the unbounded face, then connecting these new vertices by edges if the corresponding
faces of Γ which they represent are adjacent. Where these newly-added edges cross
edges of Γ, add new vertices (these are drawn in white in Figure 2.1). Thus, every
edge of Γ and its dual acquires a new vertex which we will call a bisecting vertex. Let
` denote one of these bisecting vertices, and say it lies on the intersection of the edge
(u, v) of Γ and the edge (f, g) of the dual graph. In H, the edge (u, `) will now have
weight wt(u, v), and (`, v) weight wt(v, u), and (f, `) and (g, `) weight 1. Processing
each of the bisecting vertices in this way, we thus arrive at an undirected weighted
graph. Remove any edges of weight 0 to arrive at the graph we will call Γ∪Γ∗. Finally,
pick any face, fs, containing the sink vertex, s of Γ (In our applications, fs will always
turn out to be the unbounded face.) Remove the vertices of Γ ∪ Γ∗ corresponding to
fs and any incident edges of Γ ∪ Γ∗. The remaining graph is H(Γ).

Figure 2.1 depicts a graph Γ with 6 vertices, embedded in the plane. Each edge
denotes a pair of directed edges, with weights as indicated. However, the special
weight of 0 denotes an absence of an edge in the indicated direction. Thus, from the
vertex on the top left, there is an edge of weight 1 to a vertex directly below it, with
no edge in the opposite direction.

Figure 2.1: Construction of H(Γ).

For ease of display, we have omitted the vertex corresponding to the unbounded
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face and have only partially drawn the edges connecting to that vertex in the picture
of Γ ∪ Γ∗.

A perfect matching of the graph H(Γ) is a collection of its edges such that each
vertex is incident with exactly one of the edges. The weight of a perfect matching
is the product of the weights of its edges. We now describe the weight-preserving
bijection between perfect matchings of H(Γ) and directed spanning trees of Γ rooted

at s due to [KPW]. Let T be a directed spanning tree of Γ rooted at s, and let T̃ be
the corresponding directed spanning tree of Γ∗, the dual of Γ, rooted at fs (where fs
is the special face chosen in the construction of H(Γ)). For each vertex v of T except
s, there is a unique out-going edge, ev. In the construction of H(Γ), a bisecting vertex
is added to the edge ev. Call this vertex v′. In this way, we get an edge (v, v′) of

H(Γ) for each nonsink vertex v ∈ T . Similarly, the vertices of T̃ not equal to fs give

rise to edges of H(Γ). The collection of all edges arising this way from T and T̃ gives
the perfect matching of H(Γ) corresponding to T .

The process of constructing H(Γ) and the bijection between spanning trees of Γ
and perfect matchings of H(Γ) will be called KPW .

Remark 2.0.20 (Perfect matchings and tilings)

For the proofs and theorems following, we need to make the distinction between per-
fect matchings on grid graphs and domino tilings on checkerboards. An edge e in a
perfect matching corresponds to a domino in a domino tiling covering the two squares
whose centers are the vertices of e.

For example, consider the picture below:

Figure 2.2: On the left a perfect matching of weight 8 of a 2 × 2 grid, and on the
right a tiling of weight 8 on the 2 × 2 checkerboard.

We note that the edges of weights 4 and 2 respectively, constituting the perfect
matching on the 2 × 2 grid, correspond to the red and blue domino tilings on the
squares shown.
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Remark 2.0.21 (Sandpile grids and regular grids)

Throughout this thesis, it must be noted that when we refer to the grid, we mean
the ordinary grid graph, whose perfect matchings we identify with domino tilings of
a corresponding checkerboard. It must be not be confused with the sandpile grid,
which we define below.

Definition 2.0.22 An m×n sandpile grid is a grid graph with the edge elements
connected to the sink and firing one grain of sand, except for the corner vertices
which fire 2.



Chapter 3

Grid graphs with Klein Four
Group symmetry

Definition 3.0.23 The Klein Four group is the group Z2 × Z2, the direct product of
two copies of the cyclic group of order 2.

First, we give an example of how the Klein Four Group symmetry looks on a grid
graph.

Figure 3.1: The graph on the right is invariant under the Klein Four group.

This section consists of a few theorems related to the dimer model, or domino
tilings. These numbers can be found by expressing them as the Pfaffian of an antisym-
metric matrix. This technique is applied for example in the classical, 2-dimensional
computation of the dimer-dimer correlator function in statistical mechanics. It should
be also noted that the number of tilings of a region is dependent on boundary condi-
tions.
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This section presents theorems relating the number of symmetric or non-symmetric
recurrents to number of dimers on other structures, specifically Möbius strips or dif-
ferent grid graphs. A technique of computing the determinant of block tridiagonal
matrices, presented in Appendix B, is used to give closed formulas in terms of Cheby-
shev polynomials, which are briefly described in Appendix A.

The theorem below shows that the domino tilings on an even by even grid graph
are in bijection with the number of Z2×Z2 symmetric recurrents on the same graph.
This theorem also presents a new proof of the number of domino tilings on an even
by even grid graph through symmetric configurations in the abelian sandpile model.

Theorem 3.0.24 The following are equal:

(i) The number of domino tilings of a 2m × 2n checkerboard, NG2m,2n.

(ii) the number of Z2×Z2 symmetric recurrents on a 2m × 2n sandpile grid, H2m,2n.

(iii)
n∏
k=1

U2m

(
i cos

(
kπ

2n+ 1

))
.

(iv)
2m∏
h=1

2n∏
k=1

(
4 cos2

hπ

2m+ 1
+ 4 cos2

kπ

2n+ 1

)
from [Kas63].

Proof.
First, we know that (i) is equal to (ii) by the process we called KPW. Next, (ii) is

equal to (iii) by computation of the determinant of the reduced Laplacian. Finally,
(iii) and (iv) are equal by algebra.

First we show (ii) is equal to (iii). Let ∆sym be the Laplacian of the graph Gsym

obtained by folding the 2m × 2n grid along its symmetries as described above. By
Theorem 2.0.18, H2m,2n can be identified with S(Gsym), so by the Matrix-Tree Theo-
rem it suffices to show the equality of det ∆sym and NG2m,2n. Recall that a tridiagonal
matrix A = {ai,j} has ai,j = 0 for |i − j| > 1, so that A has zero entries everywhere
except possibly on the diagonal and immediately above and below. The structure
of the grid graph gives ∆sym a block-tridiagonal form, relative to the ordering of the
vertices that proceeds as one reads in English, from the top left corner across the
rows to the bottom right. We first provide a formula for det ∆sym by exploiting this
structure. Let In be the n×n identity matrix and An be the n×n matrix with entries
given by:

ai,j =


4 if i = j

−1 if |i− j| = 1, i 6= n

3 if i = n, j = n,

0 if |i− j|≥ 2

.
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Relative to the aforementioned ordering of the vertices, ∆sym is a mn × mn block-
tridiagonal matrix of the form:

∆sym =



An −In · · · 0
−In An −In

. . . . . . . . .
...

−In An −In
...

. . . . . . . . .

−In An −In
0 · · · −In Bn


with Bn = An − In. Hence, by Theorem 2 in [Mol08] ,

det ∆sym = (−1)n detT11 (3.1)

where T11 is the upper-left block of size n× n of the matrix

T =

[
−Bn In
In 0

] [
An −In
In 0

]m−2 [
An In
In 0

]
.

Set S0 = In, and for all positive integers k, define

Sk =

([
An −In
In 0

]k−1 [
An In
In 0

])
11

and

S ′k =

([
An −In
In 0

]k−1 [
An In
In 0

])
21

,

where the subscript 21 denotes taking the lower left block of size n× n of the paren-
thesized matrix. It follows that

S0 = In, S1 = An, and Sk = AnSk−1 − Sk−2 for all k ≥ 2 (3.2)

and
S ′k = Sk−1 for all k ≥ 1.

By (3.2), Sk = Uk(
1
2
An), where Uk(x) is the k-th Chebyshev polynomial of the second

kind. This gives an expression for T11 in terms of Chebyshev polynomials:

T11 = −BnSm−1 + S ′m−1
= −(An − In)Sm−1 + Sm−2

= Sm−1 − (AnSm−1 − Sm−2)

= Um−1

(
An
2

)
− Um

(
An
2

)
.
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Using the fact that the Chebyshev polynomials of the second kind satisfy

Un(cos θ) =
sin((n+ 1)θ)

sin θ

it is easy to check that the polynomial

p(x) := Um

(x
2

)
− Um−1

(x
2

)
is a monic polynomial of degree m with zeros at x = 2 cos

(2k + 1)π

2m+ 1
for all integers

0 ≤ k ≤ m− 1. Thus,

T11 = −p(A) = −
m−1∏
k=0

(
An − 2 cos

(2k + 1)π

2m+ 1
In

)
.

Therefore, by (3.1), the determinant of ∆sym is given by

det ∆sym = (−1)n det

(
−

m−1∏
k=0

(
An − 2 cos

(2k + 1)π

2m+ 1
In

))

=
m−1∏
k=0

det

(
An − 2 cos

(2k + 1)π

2m+ 1
In

)
.

Letting χn denote the characteristic polynomial ofAn and setting tm,k := 2 cos
(2k + 1)π

2m+ 1
,

the above result rewrites as

det ∆sym =
m−1∏
k=0

χn(tm,k) . (3.3)

We next show that the product expression in the above formula also counts the
number of tilings of the 2m× 2n checkerboard, as obtained in [Kas63]. Let NG2m,2n

denote the number of domino tilings of the 2m× 2n checkerboard, given by:

NG2m,2n = 22mn

2m∏
j=1

2n∏
k=1

∣∣∣∣cos2
jπ

2m+ 1
+ cos2

kπ

2n+ 1

∣∣∣∣
As shown in [ES10] Erica Shannon’s Reed College thesis,

NG2m,2n = 22mn

2m∏
j=1

2n∏
k=1

∣∣∣∣cos2
jπ

2m+ 1
+ cos2

kπ

2n+ 1

∣∣∣∣
=

∣∣∣∣∣
2m∏
j=1

2n∏
k=1

(
2 cos

jπ

2m+ 1
+ 2i cos

kπ

2n+ 1

)∣∣∣∣∣
1/2

.

Then,
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∣∣∣∣∣
2m∏
j=1

2n∏
k=1

(
2 cos

jπ

2m+ 1
+ 2i cos

kπ

2n+ 1

)∣∣∣∣∣
1/2

=∣∣∣∣∣
2m∏
j=1

2n∏
k=1

(
−2 cos

jπ

2m+ 1
− 2i cos

kπ

2n+ 1

)∣∣∣∣∣
1/2

Define xk and s2m,j as follows:

xk = 2i cos
kπ

2n+ 1

s2m,j =
2m∏
j=1

(
xk − 2 cos

jπ

2m+ 1

)
,

so thatNG2m,2n =
2m∏
j=1

s2m,j. We notice cos jπ
2m+1

is a root of the Chebyshev polynomial

of the second kind, hence

s2m,j =
2m∏
j=1

(
xk − 2 cos

jπ

2m+ 1

)
= U2m

(xk
2

)
,

where U2m(x) is the m-th Chebyshev polynomial of the second kind. To establish the
equality of det ∆sym and NG2m,2n, we show by induction on n that for all 0 ≤ k ≤
m− 1,

χn(tm,k) = sn,m−k. (3.4)

The base cases where n is equal to 1 and 2 can be easily verified. Recall the definition

χn(x) = det (An − xIn) .

Expanding the right-hand side of the above expression along the first row gives the
recurrence

χn(x) = (4− x)χn−1(x)− χn−2(x) for all n ≥ 2.

Specializing to x = tm,k then gives

χn(tm,k) = (4− tm,k)χn−1(tm,k)− χn−2(tm,k) for all n ≥ 2.

Thus it suffices to show that sn,m−k = U2m

(xm−k

2

)
has this same recursion, i.e.,

U2m

(xm−k
2

)
= (4− tm,k)U2m−1

(xm−k
2

)
− U2m−2

(xm−k
2

)
.

From the relation 4− tm,k = xm−k, the above equation follows immediately from the
definition of the Chebyshev polynomials of the first kind via Un(x) := 2xUn−1(x) −
Un−2(x) for all n ≥ 2. 2

We write the following as a corollary as a quick reference for the interested reader.
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Corollary 3.0.25 The number of domino tilings on any m×n checkerboard is given
by

NGm,n =

m/2∏
k=1

n/2∏
j=1

(
4 cos2

kπ

m+ 1
+ 4 cos2

jπ

n+ 1

)
=

n/2∏
k=1

Um

(
i cos

(
kπ

n+ 1

))
,

where i2 = −1.

Proof. The proof follows directly from Theorem 3.0.24. 2

After investigating the even by even grid, a natural question arises about the even
by odd grid. We give its properties below, relating its number of Z2 × Z2 symmetric
recurrents to tilings of the even by even Möbius checkerboard and weighted tilings of
the even by even grid. This constitutes a partial new proof of the number of domino
tilings on the Möbius strip with the omission of the bijection between weighted domino
tilings on the even by even grid and the number of domino tilings on an even by even
Möbius checkerboard.

We show below an example of a tiling of the 4 × 4 Möbius grid:

Figure 3.2: A tiling of the 4 × 4 Möbius checkerboard.

Theorem 3.0.26 The following are equal:

(i) The number of domino tilings of a 2m × 2n Möbius checkerboard, N2m,2n.

(ii) The number of Z2 × Z2 symmetric recurrents on a 2m × (2n-1) sandpile grid,
H2m,2n−1.

(iii) 2m
m∏
k=1

T2n

(
1 + 2 cos

(
kπ

2m+ 1

))
.

(iv)
m∏
h=1

n∏
k=1

(
4 cos2

hπ

2m+ 1
+ 4 sin2 (4k − 1)π

4n

)
from [LW03].

(v) the number of weighted domino tilings of a 2m × 2n checkerboard, as shown
below:
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Figure 3.3: A 9 × 9 checkerboard with tilings of weight 2, shown in red.

Proof. The proof is similar to the proof for the 2m × 2n sandpile grid with Klein
Four Group symmetry.

First, (i) and (ii) are equal by KPW, (ii) and (iii) are equal by computation of
the determinant of the reduced Laplacian matrix, (iii) and (iv) are equal by algebra
and (ii) and (v) are again equal by KPW.

By Theorem 2.0.18, H2m,2n−1 can be identified with S(Gsym), where Gsym is ob-
tained by folding the 2m×(2n−1) grid along its symmetries. Then by the Matrix-Tree
Theorem it suffices to show the equality of det ∆sym and N2m,2n. Recall that a tridi-
agonal matrix A = {ai,j} has ai,j = 0 for |i − j| > 1, so that A has zero entries
everywhere except possibly on the diagonal and immediately above and below. The
structure of the grid graph gives ∆sym a block-tridiagonal form, relative to the or-
dering of the vertices that proceeds as one reads in English, from the top left corner
across the rows to the bottom right. We first provide a formula for det ∆sym by ex-
ploiting this structure. Let In be the n × n identity matrix and An be the n × n
matrix with entries given by:

ai,j =


4 if i = j

−1 if |i− j| = 1, i 6= n

−2 if i = n, j = n− 1

0 if |i− j|≥ 2

.

Relative to the aforementioned ordering of the vertices, ∆sym is a mn × mn block-
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tridiagonal matrix of the form:

∆sym =



An −In · · · 0
−In An −In

. . . . . . . . .
...

−In An −In
...

. . . . . . . . .

−In An −In
0 · · · −In Bn


with Bn = An − In. Hence, by Theorem 2 in [Mol08],

det ∆sym = (−1)n detT11 (3.5)

where T11 is the upper-left block of size n× n of the matrix

T =

[
−Bn In
In 0

] [
An −In
In 0

]m−2 [
An In
In 0

]
.

Set S0 = In, and for all positive integer k, define

Sk =

([
An −In
In 0

]k−1 [
An In
In 0

])
11

and

S ′k =

([
An −In
In 0

]k−1 [
An In
In 0

])
21

,

where the subscript 21 denotes taking the lower left block of size n× n of the paren-
thesized matrix. It follows that

S0 = In, S1 = An, and Sk = AnSk−1 − Sk−2 for all k ≥ 2 (3.6)

and
S ′k = Sk−1 for all k ≥ 1.

By (3.6), Sk = Uk(
1
2
An), where Uk(x) is the k-th Chebyshev polynomial of the second

kind. This gives an expression for T11 in terms of Chebyshev polynomials:

T11 = −BnSm−1 + S ′m−1
= −(An − In)Sm−1 + Sm−2

= Sm−1 − (AnSm−1 − Sm−2)

= Um−1

(
An
2

)
− Um

(
An
2

)
.

Using the fact that the Chebyshev polynomials of the second kind satisfy

Un(cos θ) =
sin((n+ 1)θ)

sin θ
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it is easy to check that the polynomial

p(x) := Um

(x
2

)
− Um−1

(x
2

)
is a monic polynomial of degree m with zeros at x = 2 cos

(2k + 1)π

2m+ 1
for all integers

0 ≤ k ≤ m− 1. This is different from the proof of the previous theorem, because our
An matrices are not the same. Thus,

T11 = −p(A) = −
m−1∏
k=0

(
An − 2 cos

(2k + 1)π

2m+ 1
In

)
.

Therefore, by (3.5), the determinant of ∆sym is given by

det ∆sym = (−1)n det

(
−

m−1∏
k=0

(
An − 2 cos

(2k + 1)π

2m+ 1
In

))

=
m−1∏
k=0

det

(
An − 2 cos

(2k + 1)π

2m+ 1
In

)
.

Letting χn denote the characteristic polynomial ofAn and setting tm,k := 2 cos
(2k + 1)π

2m+ 1
,

the above result rewrites as

det ∆sym =
m−1∏
k=0

χn(tm,k) . (3.7)

We next show that the product expression in the above formula also counts the
number of tilings of the 2m × 2n Möbius strip, as obtained in [LW03]. Let N2m,2n

denote the number of domino tilings of the 2m× 2n Möbius strip, given by:

N2m,2n =
m∏
i=1

n∏
j=1

(
4 cos2

iπ

2m+ 1
+ 4 sin2 (4j − 1)π

4n

)

=
m∏
i=1

n∏
j=1

((
4 cos2

iπ

2m+ 1
+ 2

)
− 2 cos

(4j − 1)π

2n

)
.

Define xi and sn,i as follows:

xi = 4 cos2
iπ

2m+ 1
+ 2

sn,i =
n∏
j=1

(
xi − 2 cos

(4j − 1)π

2n

)
,
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so that N2m,2n =
∏m

i=1 sn,i. As j varies from 1 to n, cos (4j−1)π
2n

and cos (2j−1)π
2n

take
the same values with equal multiplicities, hence

sn,i =
n∏
j=1

(
xi − 2 cos

(2j − 1)π

2n

)
= 2Tn

(xi
2

)
,

where Tn(x) is the n-th Chebyshev polynomial of the first kind. To establish the
equality of det ∆sym and N2m,2n, we show by induction on n that for all 0 ≤ k ≤ m−1,

χn(tm,k) = sn,m−k. (3.8)

The base cases where n is equal to 1 and 2 can be easily verified. Recall the definition

χn(x) = det (An − xIn) .

Expanding the right-hand side of the above expression along the first row gives the
recurrence

χn(x) = (4− x)χn−1(x)− χn−2(x) for all n ≥ 2.

Specializing to x = tm,k then gives

χn(tm,k) = (4− tm,k)χn−1(tm,k)− χn−2(tm,k) for all n ≥ 2.

Thus it suffices to show that sn,m−k = 2Tn
(xm−k

2

)
has this same recursion, i.e.,

Tn

(xm−k
2

)
= (4− tm,k)Tn−1

(xm−k
2

)
− Tn−2

(xm−k
2

)
.

From the relation 4− tm,k = xm−k, the above equation follows immediately from the
definition of the Chebyshev polynomials of the first kind via Tn(x) := 2xTn−1(x) −
Tn−2(x) for all n ≥ 2. Everything else is similar to the proof in Theorem 3.0.24, so
we can associate (ii) and (iii).

In order to prove that the number of symmetric recurrents on an even by odd
sandpile grid graph is also the number of weighted tilings on an even by even checker-
board, we look at the reduced Laplacian, which encodes the firings of another graph.
Applying KPW to this graph gives the connection with the weighted checkerboard.

2



Chapter 4

Grid graphs with dihedral
symmetry

In this section, we explore the abelian sandpile model on the sandpile grid graph with
dihedral symmetry. The equivalence classes for the 5 × 5 sandpile grid graph are
shown in the picture below:

Figure 4.1: The graph on the right is invariant under the dihedral group D4.

We will show that the number of recurrents on this kind of graph equals the
number of perfect matchings of the Ciucu graphs Hn, as defined in [Pac97].

An interesting result involving these graphs is Lemma 2 in [Pac97].

Theorem 4.0.27 Let NHn be the number of domino tilings of Hn. The number of
domino tilings of the square checkerboard is given by
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N(2n, 2n) = 2n(NHn)2.

The combinatorial proof of the theorem can be found in the same paper.

The graphs Hn are presented below:

Figure 4.2: The Ciucu graphs H1, H2, H3, H4.

Let Pn be defined as below:

Figure 4.3: The graph Pn.

A result concerning the numbers an is given in [MP08]:

Theorem 4.0.28 The order of the sandpile group of the graph Pn is an.
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Proof. The result is immediate by applying KPW and then appealing to [Pac97]. 2

Now, to formulate the main theorem of this chapter:

Theorem 4.0.29 Let NHn−1 denote the weighted tilings on the Ciucu graph Hn−1 as
shown below for the cases when n is odd or even. Let NG2m,2n denote the number of
recurrents of the 2m× 2n sandpile grid graph with dihedral symmetry. Then, NHn−1
=NG2m,2n.

Figure 4.4: The H4 checkerboard with tilings of weight 2, shown in red, corresponding
to the 9× 9 and 10× 10 grid graph with dihedral symmetry.

Proof.
We can arrive at this result by performing the same operations as described for

the other proofs of this paper.
By first computing the Laplacian of the sandpile grid graph with dihedral sym-

metry, we get a special tridiagonal block matrix, with blocks of decreasing size. This
Laplacian matrix is of the following form



An−5 −In−6 · · · 0
−I ′n−6 An−6 −In−7

. . . . . . . . .
...

−I ′k Ak −Ik−1
...

. . . . . . . . .

−I ′2 A2 −I1
0 · · · −I ′1 2


,
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where the An matrices are of the following form:

4 −2 · · · 0
−1 4 −1

. . . . . . . . .
...

−1 4 −1
...

. . . . . . . . .

−1 4 −1
0 · · · −1 3


,

and the I
′
n matrices are the identity matrices with a -2 in the position corresponding

to the first row and the first column.
Next, we create the graph Γ from the transpose of the Laplacian matrix. This graph,
and its dual are shown below:

Figure 4.5: The resulting graph Γ and its dual for a 9 × 9 or 10 × 10 grid graph.

Overlaying the dual on top of the graph, and removing the edges of weight 0 from the
sink, which correspond to all the curved black and blue, lines we arrive at the Ciucu
graphs Hn as shown in Figure 5.2.

Now, by KPW, we can associate to each symmetric recurrent a weighted domino
tiling as in the statement of the proof. 2



Chapter 5

Other connections between the
sandpile model and the dimer
model

The theorems presented in this chapter are similar in content to the ones presented
before. The difference is that they do not involve sandpile grid graphs with symmetry.

Theorem 5.0.30 The number of domino tilings on a 3 × 2n checkerboard is the
number of domino tilings on a 2n× 2 Möbius strip, for n ≥ 1.

Proof.
Let an denote the number of ways to tile a 3 × 2n grid of squares using domino

tilings. Examining cases, we derive the recurrence:

an = 3an−1 + 2an−2 + 2an−3 + · · ·+ 2a1 + 2a0.

Then we note that

an − an−1 = 3an−1 − an−2
So then,

an = 4an−1 − an−2
for n ≥ 2, with initial conditions a0 = 1 and a1 = 3.

We can prove in a similar fashion that A(2n), the number of tilings on a 2n × 2
Möbius strip, satisfies the following recursion: A(2n) = 4A(2n−1)−A(2n−2). Then
the result follows from the fact that the two sequences satisfy the same recursion.

2

Theorem 5.0.31 The number of recurrent configurations on the m×n sandpile grid
graph with one vertex designated as the sink is the number of spanning trees on the
m× n grid graph. These are also counted by

Dm,n =
m−1∏
h=1

n−1∏
k=1

(
4 sin2 hπ

2m
+ 4 sin2 kπ

2n

)
=

m−1∏
h=1

Un−1

(
2− cos

hπ

m

)
,
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where we know the first equality by [KG78].

Proof.

Using the fact that cos
kπ

n
is a root of the second kind of Chebyshev polynomials,

and the fact that cos(2θ) = 1− 2 sin2(θ),

Dm,n =
m−1∏
h=1

n−1∏
k=1

(
4 sin2 hπ

2m
+ 4 sin2 kπ

2n

)

=
m−1∏
h=1

n−1∏
k=1

(
4− 2 cos

hπ

m
− 2 cos

kπ

n

)

=
m−1∏
h=1

Un−1

(
2− cos

hπ

m

)
.

2

Next, we further investigate the number of recurrents on any grid graph and relate
it to the tilings on the even by odd grid graph again.

Theorem 5.0.32 Let H2m,2n+1 denote the tilings on a 2m × (2n + 1) checkerboard.
Let NGm,n denote the number of recurrents of the m × n sandpile grid graph with
the right corner elements modified to fire 1 instead of 2 to the sink and the right edge
elements, except for the corner elements, modified to fire 0 instead of 1 to the sink.

Then, |H2m,2n+1|=NGm,n. In addition, these are counted by the following Cheby-

shev polynomial formula:
n∏
k=1

U2m

(
i cos

(
kπ

2n+ 2

))
.

Proof.
The reduced Laplacian matrix of this grid graph with special firings is

∆ =



An −In · · · 0
−In An −In

. . . . . . . . .
...

−In An −In
...

. . . . . . . . .

−In An −In
0 · · · −In An


where In is the n× n identity matrix and An is the n× n matrix with entries given
by

ai,j =


4 if i = j

−1 if |i− j| = 1, i 6= n

3 if i = n, j = n,

0 if |i− j|≥ 2

.
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Then the determinant is computed by similar methods as in the other theorems. By
theorem 2 in [Mol08],

det ∆ = (−1)n detT11 (5.1)

where T11 is the upper-left block of size n× n of the matrix

T =

[
−An In
In 0

] [
An −In
In 0

]m−2 [
An In
In 0

]
.

Set S0 = In, and for all positive integer k, define

Sk =

([
An −In
In 0

]k−1 [
An In
In 0

])
11

and

S ′k =

([
An −In
In 0

]k−1 [
An In
In 0

])
21

,

where the subscript 21 denotes taking the lower left block of size n× n of the paren-
thesized matrix. It follows that

S0 = In, S1 = An, and Sk = AnSk−1 − Sk−2 for all k ≥ 2 (5.2)

and
S ′k = Sk−1 for all k ≥ 1.

By (5.2), Sk = Uk(
1
2
An), where Uk(x) is the k-th Chebyshev polynomial of the second

kind. This gives an expression for T11 in terms of Chebyshev polynomials:

T11 = −AnSm−1 + S ′m−1
= −AnSm−1 + Sm−2

= Um

(
An
2

)
.

The polynomial p(x) = Um(
x

2
) has zeros at x = 2 cos kπ

n+1
for all integers 0 ≤ k ≤

m− 1. Thus,

T11 = −p(A) = −
m−1∏
k=0

(
An − 2 cos

kπ

n+ 1
In

)
.

Therefore, by (5.1), the determinant of ∆ is given by

det ∆ = (−1)n det

(
−

m−1∏
k=0

(
An − 2 cos

kπ

n+ 1
In

))

=
m−1∏
k=0

det

(
An − 2 cos

kπ

n+ 1
In

)
.
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Letting χn denote the characteristic polynomial of An and setting tm,k := 2 cos
kπ

n+ 1
,

the above result rewrites as

det ∆ =
m−1∏
k=0

χn(tm,k) . (5.3)

We next show that the product expression in the above formula also counts the
number of tilings of the 2m× (2n+1) checkerboard. Let N2m,2n+1 denote the number
of domino tilings of the 2m× (2n+ 1) checkerboard, given by:

N2m,2n+1 = 22mn

2m∏
j=1

2n+1∏
k=1

∣∣∣∣cos2
jπ

2m+ 1
+ cos2

kπ

2n+ 2

∣∣∣∣ .
As shown in [ES10],

N2m,2n+1 = 22mn

2m∏
j=1

2n+1∏
k=1

∣∣∣∣cos2
jπ

2m+ 1
+ cos2

kπ

2n+ 2

∣∣∣∣
=

∣∣∣∣∣
2m∏
j=1

2n+1∏
k=1

(
2 cos

jπ

2m+ 1
+ 2i cos

kπ

2n+ 2

)∣∣∣∣∣
1/2

.

Then, ∣∣∣∣∣
2m∏
j=1

2n+1∏
k=1

(
2 cos

jπ

2m+ 1
+ 2i cos

kπ

2n+ 2

)∣∣∣∣∣
1/2

=∣∣∣∣∣
2m∏
j=1

2n+1∏
k=1

(
−2 cos

jπ

2m+ 1
− 2i cos

kπ

2n+ 2

)∣∣∣∣∣
1/2

Define xk and s2m,j as follows:

xk = 2i cos
kπ

2n+ 2

s2m,j =
2m∏
j=1

(
xk − 2 cos

jπ

2m+ 1

)
,

so thatN2m,2n+1 =
2m∏
j=1

s2m,j. We notice cos jπ
2m+1

is a root of the Chebyshev polynomial

of the second kind, hence

s2m,j =
2m∏
j=1

(
xk − 2 cos

jπ

2m+ 1

)
= U2m

(xk
2

)
,
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where U2m(x) is the 2m-th Chebyshev polynomial of the second kind. To establish the
equality of det ∆ and N2m,2n+1, we show by induction on n that for all 0 ≤ k ≤ m−1,

χn(tm,k) = sn,m−k. (5.4)

The base cases where n is equal to 1 and 2 can be easily verified. Recall the definition

χn(x) = det (An − xIn) .

Expanding the right-hand side of the above expression along the first row gives the
recurrence

χn(x) = (4− x)χn−1(x)− χn−2(x) for all n ≥ 2.

Specializing to x = tm,k then gives

χn(tm,k) = (4− tm,k)χn−1(tm,k)− χn−2(tm,k) for all n ≥ 2.

Thus it suffices to show that sn,m−k = U2m

(xm−k

2

)
has this same recursion, i.e.,

U2m

(xm−k
2

)
= (4− tm,k)U2m−1

(xm−k
2

)
− U2m−2

(xm−k
2

)
.

From the relation 4− tm,k = xm−k, the above equation follows immediately from the
definition of the Chebyshev polynomials of the first kind via Un(x) := 2xUn−1(x) −
Un−2(x) for all n ≥ 2. 2

Next, we find another relation between the recurrents on any grid graph and
domino tilings on a bigger graph with an internal cell removed. By an internal cell
removed, we mean one that is not a corner cell.

Theorem 5.0.33 The following numbers are equal, for m and n both ≥ 2:

(i) the number of recurrents on an m × n sandpile grid graph = the number of
spanning trees on the m × n sandpile grid graph

(ii) the number of spanning trees on the (m+1) × (n+1) grid graph

(iii) the number of domino tilings on a (2m+1) × (2n+1) checkerboard with an
internal edge cell removed

(iv) the number of domino tilings on a (2m+1) × (2n+1) checkerboard with the left
corner cell removed (from [OEIS]).

When n=2, we get the number of domino tilings on the 2m × 5 checkerboard with
weighted tilings on the lower left and right corner tilings, as shown below, while when
m=2 we get the number of domino tilings on the 5 × (2n+1) checkerboard with the
three last cells in the last row and a rightmost weighted tiling on the row before last
removed as shown in Figure 5.2:

Furthermore, these numbers are equal to
m−1∏
h=1

n−1∏
k=1

(
4 sin2 hπ

2m
+ 4 sin2 kπ

2n

)
.
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Figure 5.1: On the left example when n=2 and on the right example when m=2.

Figure 5.2: Applying KPW for our two base cases.

Proof. First, let’s deal with the base cases. We give the constructive, visual proof
for the cases first when m = 3, n = 2 and second when m = 2, n = 3 in Figure 5.1.
This generalizes for when m varies in the first case and then n varies in the second
case.

We will first show that (i) and (ii) are equal by proving that the determinant of
the reduced Laplacian for the m×n sandpile grid graph is equal to the formula above
for the number of spanning trees on the (m+ 1)× (n+ 1) grid graph.

We will use the same argument as in the proofs above referencing Molinari’s proof
in [Mol08]. We first provide a formula for ∆ by exploiting this structure. Let In be
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the n× n identity matrix and An be the n× n matrix with entries given by:

ai,j =


4 if i = j

−1 if |i− j| = 1, i 6= n

0 if |i− j|≥ 2

.

Relative to the aforementioned ordering of the vertices, ∆ is a mn × mn block-
tridiagonal matrix of the form:

∆ =



An −In · · · 0
−In An −In

. . . . . . . . .
...

−In An −In
...

. . . . . . . . .

−In An −In
0 · · · −In An


.

Hence, by Theorem 2 in [Mol08],

det ∆ = (−1)n detT11 (5.5)

where T11 is the upper-left block of size n× n of the matrix

T =

[
−An In
In 0

] [
An −In
In 0

]m−2 [
An In
In 0

]
.

Set S0 = In, and for all positive integer k, define

Sk =

([
An −In
In 0

]k−1 [
An In
In 0

])
11

and

S ′k =

([
An −In
In 0

]k−1 [
An In
In 0

])
21

,

where the subscript 21 denotes taking the lower left block of size n× n of the paren-
thesized matrix. It follows that

S0 = In, S1 = An, and Sk = AnSk−1 − Sk−2 for all k ≥ 2 (5.6)

and

S ′k = Sk−1 for all k ≥ 1.

By (5.6), Sk = Uk(
1
2
An), where Uk(x) is the k-th Chebyshev polynomial of the second

kind. This gives an expression for T11 in terms of Chebyshev polynomials:
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T11 = −AnSm−1 + S ′m−1
= −AnSm−1 + Sm−2

= Um−1

(
An
2

)
.

Using the fact that the Chebyshev polynomials of the second kind satisfy

Un(cos θ) =
sin((n+ 1)θ)

sin θ

it is easy to check that the polynomial

p(x) := Um

(x
2

)
is a monic polynomial of degree m with zeros at x = 2 cos

kπ

m+ 1
for all integers

0 ≤ k ≤ m− 1. Thus,

T11 = −p(A) = −
m−1∏
k=0

(
An − 2 cos

kπ

m+ 1
In

)
.

Therefore, by (5.5), the determinant of ∆ is given by

det ∆ = (−1)n det

(
−

m∏
k=0

(
An − 2 cos

kπ

m+ 1
In

))

=
m−1∏
k=0

det

(
An − 2 cos

kπ

m+ 1
In

)
.

Letting χn denote the characteristic polynomial of An and setting tm,k := 2 cos
kπ

m+ 1
,

the above result rewrites as

det ∆ =
m−1∏
k=0

χn(tm,k) . (5.7)

We already know that the formula for the number of spanning trees is

m−1∏
h=1

n−1∏
k=1

(
4 sin2 hπ

2m
+ 4 sin2 kπ

2n

)
=

m−1∏
h=1

Un−1

(
2− cos

hπ

m

)
from Theorem 5.0.31.
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To establish the equality of det ∆ and the number of spanning trees on the sandpile
grid graph, we show by induction on n that for all 0 ≤ k ≤ m− 1,

χn(tm,k) = sn,m−k, (5.8)

where sn,m−k = Un−1
(xm−k

2

)
.

The base cases where n is equal to 1 and 2 can be easily verified. Recall the
definition

χn(x) = det (An − xIn) .

Expanding the right-hand side of the above expression along the first row gives the
recurrence

χn(x) = (4− x)χn−1(x)− χn−2(x) for all n ≥ 2.

Specializing to x = tm,k then gives

χn(tm,k) = (4− tm,k)χn−1(tm,k)− χn−2(tm,k) for all n ≥ 2.

Thus it suffices to show that sn,m−k = Un−1
(xm−k

2

)
has this same recursion, i.e.,

Un−1

(xm−k
2

)
= (4− tm,k)Un−2

(xm−k
2

)
− Un−3

(xm−k
2

)
.

From the relation 4− tm,k = xm−k, the above equation follows immediately from the
definition of the Chebyshev polynomials of the first kind via Un(x) := 2xUn−1(x) −
Un−2(x) for all n ≥ 2.

Thus we have shown (i) is equal to (ii).

The number of recurrent configurations is equal to the determinant of the reduced
Laplacian, which by the Matrix-Tree Theorem is equal to the number of spanning
trees. We computed this number in 5.0.31.

Now, by performing the KPW process on an m×n grid, we get a (2m+1)×(2n+1)
checkerboard with an internal edge removed (and its adjacent edges) as shown in
Figure 5.3. Thus we have shown (i) and (iii) are equal. (ii) and (iv) are equal by the
sequence in [OEIS]. 2

Remark 5.0.34 (Tilings of odd by odd checkerboards)

Even though there are no ways of tiling an odd by odd checkerboard, it is possible
with a missing internal cell. This result is interesting because it gives us a way of
counting the number of tilings on an odd by odd checkerboard with a square removed.

We give an example of a tiling of a 9 × 9 checkerboard with a square removed
in Figure 5.4:
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Figure 5.3: Overlaying the dual of the graph we arrive at a graph with a cell removed.

Figure 5.4: Tiling of a 9 × 9 checkerboard with a square removed.



Conclusion and Open questions

We have investigated the Klein Four group and dihedral symmetry on sandpile grid
graphs and related the symmetric recurrents to domino tilings. The main process we
applied can be summarized as follows:

• Construct the reduced Laplacian for the sandpile graph. In some cases, this
meant the symmetric reduced Laplacian. Furthermore, we know that the de-
terminant of the reduced Laplacian is the number of symmetric recurrents.

• By taking the symmetric reduced Laplacian or transposing it, we get the or-
dinary reduced Laplacian of another graph, whose number of spanning trees is
equal to the determinant of the reduced Laplacian.

• Furthermore, by the process we called KPW, we can associate spanning trees
to perfect matchings, and perfect matchings to domino tilings.

Thus, we have seen how Möbius strip tilings and Ciucu graph weighted tilings
arise from counting the number of symmetric recurrents on grid graphs.
Our main new theorems relate:

(i) The number of Z2×Z2 symmetric recurrents on an even by even grid graph and
the number of domino tilings on the even by even checkerboard.

(ii) The number of Z2×Z2 symmetric recurrents on an even by odd grid graph and
the number of domino tilings on the even by even Möbius checkerboard, as well
as the number of weighted domino tilings on an even by even checkerboard.

(iii) The number of spanning trees on any m×n sandpile grid graph and the number
of spanning trees on the (m+ 1)× (n+ 1) grid graph.

(iv) Further, the number of recurrents on any grid graph and the number of domino
tilings on an odd by odd checkerboard with an internal edge (and the adjacent
edges) removed, with different base cases.

(v) The number of recurrents on any m × n grid graph with modified firings and
the number of domino tilings on the (2m+ 1)× (2n+ 1) checkerboard.

(vi) The number of dihedral symmetric recurrents on an even by even grid graph to
the weighted domino tilings on the Ciucu checkerboard.
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For most of these, we were able to also give closed formulas involving Chebyshev
polynomials.

We have three main questions unanswered.

Question 6.0.35 Is there a combinatorial bijection between tilings on the Möbius
strip and weighted tilings on the checkerboard as in Theorem 3.0.26?

In order to have a complete new proof of the number of tilings on the Möbius strip,
we need to find a bijection between (i) and (v) in Theorem 3.0.26.

Question 6.0.36 The bijections between recurrent elements, spanning trees, and
domino tilings induce an addition of domino tilings. Can one easily describe this
addition of domino tilings?

There are several known bijections between recurrent configurations and spanning
trees, the most famous of which is the Dhar burning algorithm, as described in [DD90].
However, none of these bijections seem to help us better understand the tiling law.

Question 6.0.37 It would be interesting to have a closed formula of the number
of weighted domino tilings on the Ciucu graphs. This would involve calculating the
determinant of block tridiagonal matrices with blocks of decreasing size. Molinari’s
technique cannot be applied in this case, because the blocks are not of the same size.
Is there a way to calculate that determinant?

For example, the reduced Laplacian matrix for a 10× 10 sandpile grid graph with
dihedral symmetry looks like:

4 −2 0 0 0 0 0 0 0 0 0 0 0 0 0
−1 4 −1 0 0 −1 0 0 0 0 0 0 0 0 0
0 −1 4 −1 0 0 −1 0 0 0 0 0 0 0 0
0 0 −1 4 −1 0 0 −1 0 0 0 0 0 0 0
0 0 0 −1 −3 0 0 0 −1 0 0 0 0 0 0
0 −2 0 0 0 4 −2 0 0 0 0 0 0 0 0
0 0 −1 0 0 −1 4 −1 0 −1 0 0 0 0 0
0 0 0 −1 0 0 −1 4 −1 0 −1 0 0 0 0
0 0 0 0 −1 0 0 −1 3 0 0 −1 0 0 0
0 0 0 0 0 0 −2 0 0 4 −2 0 0 0 0
0 0 0 0 0 0 0 −1 0 −1 4 −1 −1 0 0
0 0 0 0 0 0 0 0 −1 0 −1 3 0 −1 0
0 0 0 0 0 0 0 0 0 0 −2 0 4 −2 0
0 0 0 0 0 0 0 0 0 0 0 −1 −1 3 −1
0 0 0 0 0 0 0 0 0 0 0 0 0 −2 2


You can notice the block matrices on the diagonal having size 5×5, 4×4, 3×3, 2×2
and 1.



Appendix A

Chebyshev Polynomials

The following is a vignette of Chebyshev polynomials, the tools for finding several
closed formulas in this paper.

The Chebyshev polynomials of the first kind, Tn, are defined by the recurrence
relation:

T0(x) = 1
T1(x) = x

Tn+1(x) = 2xTn(x)− Tn−1(x).

They arise in the computation of the determinant of the following matrix:

Tn(x)= det


x 1
1 2x 1

1 2x
. . . . . .

1 2x

.

The Chebyshev polynomials of the second kind, Un, are defined by the recurrence
relation:

U0(x) = 1
U1(x) = 2x

Un+1(x) = 2xUn(x)− Un−1(x).

They arise in the computation of the determinant of the following matrix:

Un(x)= det


2x 1
1 2x 1

1 2x
. . . . . .

1 2x

.

The two kinds of Chebyshev polynomials are related by the following equations:
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Tn(x) = 1
2
(Un(x)− Un−2(x))

Tn(x) = Un(x)− xUn−1(x)

The roots of Tn are xk=cos (2k−1)π
2n

, k = 1, · · · , n.

Similarly, the roots of Un are xk = cos kπ
n+1

, k = 1, · · · , n.



Appendix B

Determinants of Block Tridiagonal
Matrices

The theorems in chapter 3 make use of a special way of computing the determinant
of block tridiagonal matrices. We introduce a theorem from [Mol08] which will be
helpful for our proofs.

First, let M (0) be 
A1 B1 0

C1
. . . . . .
. . . . . . Bn−1

0 Cn−1 An

 .

Theorem B.0.38 det M (0) = (−1)nm det
[
T

(0)
11

]
det [B1 · · ·Bn − 1],

where T
(0)
11 is the upper left block of size m × m of the transfer matrix

T (0) =

[
−An −Cn−1
Im 0

] [
−B−1n−1An−1 −B−1n−1Cn−2

Im 0

]
· · ·
[
−B−11 A1 −B−11

Im 0

]
.

(B.1)

Proof. The linear system M (0)Ψ = 0 can be solved through the transfer matrix
technique, by taking:[

ψn
−C−1n−1Anψn

]
=

[
−B−1n−1An−1 −B−1n−1Cn−2

Im 0

]
· · ·
[
−B−12 A2 −B−12 C1

Im 0

] [
−B−11 A1ψ1

ψ1

]
.

(B.2)
Now if we multiply on the right by the nonsingular matrix

[
−An −Cn−1
Im 0

]
and we rewrite the right-hand vector as the product



42 Appendix B. Determinants of Block Tridiagonal Matrices

[
−B−11 A1 −B−11

Im 0

] [
ψ1

0

]
,

we can transform B.2 into an equation for the transfer matrix T (0), connecting the
boundary components with ψn+1 = 0 and ψ0 = 0 :[

0
ψn

]
= T (0)

[
ψ1

0

]
. (B.3)

Equation B.3 implies that det T
(0)
11 = 0, which is dual to det M (0) = 0. This

can be transformed into an identity by introducing a parameter λ and comparing
the polynomials det[λInm −M (0)] and det T (0)(λ), which are obtained by replacing
the blocks Ai with Ai − λIm. The polynomials are proportional because both are
polynomials in λ of degree nm and with the same roots. The constant is fixed by
their behavior for large λ. 2
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