
A GPU approach to the Abelian sandpile model

A Thesis

Presented to

The Division of Mathematics and Natural Sciences

Reed College

In Partial Fulfillment

of the Requirements for the Degree

Bachelor of Arts

Cameron Alexander Fish

May 2017

Approved for the Division
(Mathematics)

David Perkinson

Acknowledgements

I am extremely grateful for the guidance and support of David Perkinson throughout
this project. His insights prompted most of mine. I give thanks also to Jim Fix,
who believed in me and taught me most of what I know about programming. I
am grateful also to Ray Mayer, Joel Franklin, Albyn Jones and John Lind, all of
whom showed interest in this project and provided invaluable suggestions and insight.
Thank you also to Zhenya Bershtein and Lucas Illing who (along with David and
John) heard my oral examination and asked lots of good questions! I would also
like to thank Christopher Wellons, whose Game of Life implementation in WebGL
provided inspiration and structure for my own WebGL implementation of sandpiles.
Thanks also to Wesley Pegden and Lionel Levine for their interest and useful advice.
I was also delighted to see some of our images in Luis Garcia and Brady Haran’s
informational video on sandpiles–thanks for spreading the word!

I am also extremely thankful for the love and support of my family and friends
throughout this year and every year. Without them, I could never have stuck with a
project like this for so long.

Lastly, thanks to Reed College and to all my professors, each of whom taught me
much and gave me the chances I needed.

Table of Contents

Introduction . 1

Chapter 1: Sandpile Groups . 7
1.1 Stabilization . 7
1.2 Recurrents . 9

Chapter 2: GPU Computation . 13
2.1 WebGL sandpiles . 14
2.2 Empirical methods . 15

Chapter 3: Results . 27

Conclusion . 31

Appendix: Code . 33

Further Reading . 61

List of Figures

1 The identity on a 4000 × 4000 grid viii
2 Expanding diamond . 1
3 A recurrent configuration . 2
4 The identity on a 400 × 400 grid. 3
5 The identity on a triangular grid. 4
6 The identity on a ring grid. 4
7 The identity on a “hyperbola” grid. 5
8 The stabilization of all 3s plus some random grains. 5
9 The stabilization of a large number of grains placed in the center. . . 6

1.1 A single toppling . 8
1.2 Reduced Laplacian examples . 8
1.3 A random stable configuration . 10
1.4 Recurrents experiment . 10
1.5 One path to the identity . 12
1.6 Another path . 12

2.1 Number of sink firings . 15
2.2 Predicted number of sink firings . 16
2.3 Time to compute stab(kb). 17
2.4 The identity at various grid sizes . 17
2.5 A 3D firing vector . 18
2.6 Approaching the identity 1 . 20
2.7 Approaching the identity 2 . 20
2.8 Distance to the identity . 21
2.9 Two ways to approximate a firing vector. 23
2.10 h values . 24
2.11 c values . 24
2.12 s values . 25
2.13 Predicted error . 25
2.14 1000 × 1000 estimated identity firing vector and its stabilization . . . 26

3.1 Distance to identity with new method 28
3.2 Runtime Comparison Log . 30
3.3 Runtime Comparison . 30

Abstract

The Abelian sandpile model provides examples of groups with highly “non-trivial”
identity elements. These elements are, at least in the case of sandpile groups on
grid graphs, visually stunning. An appreciation of these visuals can be more than
an aesthetic one, as they also serve to guide intuition and suggest further routes of
study. However, these elements are in general difficult to compute, especially when
the underlying graph becomes large. We make use of GPU computation to develop a
new framework for the simulation and display of sandpiles, as well as suggest several
methods for more efficient calculation of the identity sandpile on grid graphs.

Figure 1: The identity element of the Sandpile group on a 4000 × 4000 grid graph.

Introduction

Imagine trickling sand onto a tabletop, one grain at a time. A small pile grows. New
grains tumble down the sides of the pile, perhaps knocking down others along the
way. Eventually, the grains will settle down. Some will come to rest where they are
and some will slip off the table entirely. The Abelian sandpile model may be thought
of as an attempt to capture some of this behavior, and happily we discover that this
simple model produces some impressive visuals and some interesting mathematics,
both of which are the subject of this thesis.

To formalize the above image, consider a grid of cells into each of which we may
drop any number of grains of sand. Whenever a cell contains four or more grains,
it is unstable and will topple, dispensing a single grain to each of its four neighbors.
Should subsequent cells also contain four or more grains, they too will topple, and so
on. We can see that these rules easily allow for a cascade of toppling. Consider a grid
with each cell containing three grains of sand. None are unstable, yet the addition of
a single grain somewhere on the grid creates an expanding diamond of unstable cells
(Figure 2).

Figure 2: This color scheme will be used throughout—dark blue for 0 grains, yellow
for 1 grain, light blue for 2 grains, and brown for 3 grains. Consider how the grain
placed (in the epicenter of this diamond) causes its immediate neighbors to become
unstable, which then destabilizes their neighbors, and so on.

2 Introduction

While it is possible to consider this process on infinite grids, we here restrict
ourselves to finite grids, meaning that such a propagation cannot continue forever.
To capture the table analogy, we give this grid a boundary where sand falls off. Cells
on the boundary of the grid will send grains into the void, removing them from the
grid entirely. What happens when this expanding diamond reaches the boundary
(Figure 3)?

Figure 3: The stabilization of the all 3s sandpile with one grain added. Notice the
triangles of brown height 3 cells at the top and left–these are the result of the first
“rebound” where the expanding diamond reaches the boundary.

After several “rebounds” like this, every cell has become stable. We call this entire
process stabilization.

As long as at least one cell is a boundary cell, any initial configuration of sand
will stabilize. Without such a boundary, some initial configurations will stabilize and
some will not, depending on the number of initial grains. Although the grid passes
through numerous states on the way to a stable one, we are primarily concerned with
stable configurations, and in particular a subset of the stable configurations which are
recurrent. We will more carefully define recurrent configurations later, but for now
we can say that every stabilization of the kind just illustrated is recurrent (the all 3s
configuration with any grains added to any of its cells). It turns out that if we add
any two recurrent configurations (each cells grains are added together) and then carry
out this stabilization process, the resulting stable configuration is itself recurrent. In
fact, these recurrent configurations with this add then stabilize operation actually
form a group!

What is the identity of this group? The obvious candidate of the empty configu-
ration is unfortunately not recurrent. We shall see that finding the identity element
in general is difficult. The following image perhaps illustrates the complexity of the
problem (Figure 4).

The identity element turns out to be strikingly complex. Why is there a square
in the middle? Why the fractal appearance? Why these strange lines in the corners?
Even more interesting, perhaps, is the consistency with which such features appear as
we vary the size of the grid (Figures 5-7). Such features even appear regularly without
directly invoking the identity. Consider some of the following images (Figures 8-9).

Introduction 3

Figure 4: The identity on a 400 × 400 grid.

It seems plausible that a proper explanation of these features would provide a
deeper understanding of the structure and dynamics of the sandpile model as a whole.
To that end, it would be very useful to be able to produce identity elements on grids
of any size or shape. The identity elements on larger grids in particular have much
detail and reveal more of their structure.

However, previous approaches to producing these identities have been computa-
tionally intensive. As such, our goal with this project has been to find more efficient
methods. We have found significant improvements through highly parallelized GPU
computation, and have also developed some empirical methods for quickly computing
the identity.

4 Introduction

Figure 5: The identity on a triangular grid.

Figure 6: The identity on a ring grid.

Introduction 5

Figure 7: The identity on a “hyperbola” grid.

Figure 8: The stabilization of all 3s plus some random grains.

6 Introduction

Figure 9: The stabilization of a large number of grains placed in the center.

Chapter 1

Sandpile Groups

Here we shall take the time to more formally define these sandpile configurations.
While a lot of interesting mathematics is associated with the theory of sandpiles, we
will here focus on the basic definitions and concepts which are necessary to discuss
our aims and our results.

1.1 Stabilization

In the above discussion, we referred only to sand grains placed onto a grid. While this
scenario is our main focus, sandpiles are typically defined on more general graphs.
Consider a connected undirected graph G = (V,E) with vertices v1, v2, . . . , vn+1 and
edges E. As mentioned above, we would like every configuration to stabilize, so we
designate vertex vn+1 as the “sink” vertex. We will usually imagine that sand landing
on this vertex disappears.

The degree deg(v) of a vertex v is the number of edges connected to v. For the
n×n grid graph, for example, there are n2 vertices (i, j) with 1 ≤ i, j ≤ n and a sink
vertex s with one edge to each border vertex and two edges to every corner. Every
non-sink vertex in this graph has degree 4.

A configuration on G is an integer vector c = (c1, c2, . . . , cn) which assigns an
integer ci to each vertex vi. We will think of these integers as representing the amount
of sand present at each node. Such a configuration is a sandpile if each ci ≥ 0.

If any node contains too much sand, it fires (or topples), sending some of its own
grains to its neighboring nodes. Above, we specified a threshold of four grains, but
this was for the special case of grid graphs where each node has four neighbors. For
graphs in general we let a node topple when it has exactly as many grains of sand
as neighbors. This choice of threshold is somewhat arbitrary, but is motivated by a
desire for the toppling of a node to send a grain to each one of its neighbors. Below
is an example of this firing (Figure 1.1).

To formally capture this firing process, we define the reduced Laplacian matrix L
for G. Let D be the n × n diagonal matrix whose ith diagonal entry is deg(vi) and
let A be the adjacency matrix for G whose (i, j)th entry is the number of edges
connecting vi to vj. The reduced Laplacian L is then D − A. Note that the sink

8 Chapter 1. Sandpile Groups

Figure 1.1: The 3 × 3 grid with 4 grains in the middle, followed by its stabilization.

vertex vn+1 is not explicitly part of the construction of L.
Identify vi with the ith standard basis vector for Zn. Then if c and c′ are config-

urations where c′ is obtained by firing from c by firing some vertex v, we have:

c′ = c− Lv

Thus the result of firing a vertex vi a total of σi times for i = 1, . . . , n is c′ = c−Lσ
where σ = (σ1, . . . , σn). We call σthefiring vector(orfiring script)takingctoc’.Bythematrix−
treetheorem, thedeterminantofListhenumberofspanningtreesofG, andhencethedeterminantofLisnon−
zero.Inparticular,Lisinvertibleandsothefiringvectorisunique.

For example, suppose c = (0, 4, 0, 0) and L is the reduced Laplacian for the 2 × 2
grid graph (Figure 1.2). Let v be the firing script v = (0, 1, 0, 0) (we are going to fire
the second vertex). Then:

c′ = c− Lv = (0, 4, 0, 0) − (−1, 4, 0,−1) = (1, 0, 0, 1).

Figure 1.2: The reduced Laplacian for the 2 × 2, 3 × 3, and 4 × 4 grid graphs.

We can use the reduced Laplacian to describe stabilization in the following way. A
vertex vi in the configuration c is stable if ci < deg(vi). We say c as a whole is stable
if each (non-sink) vertex is stable. Since every vertex is connected by a sequence of
edges to the sink, every configuration can be stabilized by firing a sequence of unstable

1.2. Recurrents 9

vertices (note c can be stable regardless of the amount of sand on the sink). We denote
the stabilization of c by stab(c). It is a well-known result that the stabilization is
unique (and independent of the order of the vertex-firings).

While c and stab(c) may be different configurations of sand, we would like to be
able to say they are equivalent in the sense that c “collapses” into stab(c) simply by
firing unstable vertices until it is stable. Note that c−stab(c) = c−c+Lv = Lv, that
is that they differ only in that some vertices have been fired, as opposed to completely
new grains of sand being added, for example. Thus we can say two configurations are
linearly equivalent if they are equivalent modulo the image of the reduced Laplacian,
as im(L) is the set of all possible ways a configuration may change after some cells
have been fired. More simply, c and c are linearly equivalent when there exists some
v such that c = c− Lv.

1.2 Recurrents

On any of these graphs, it is clear that there are an enormous number of stable
configurations. For example, on a 10 × 10 grid, every cell in a stable configuration
can have 0, 1, 2, or 3 grains, so there are 4100 ≈ 1.6 · 1060 stable configurations. In
general, the number of stable configurations is

∏
vi

deg(vi), a staggering number for
all but the smallest graphs. However, many of these stable configurations seem little
more than noise (Figure 1.3).

If we imagined dropping a number of grains into random cells, it seems vanishingly
likely that any particular one of these noisy configurations would be reached. One
may wonder if any particular configurations are likely to be reached at all. We
can test this theory explicitly (Figure 1.4). It turns out that there is indeed a set
of stable configurations which are seen much more commonly than others during
this experiment. Moreover, once one configuration in this set is reached, all further
configurations are also in this set (the set is closed under adding a random grain and
stabilizing). We call this set of stable configurations the recurrent configurations.
These configurations appear with probability approaching 1 as the number of grains
dropped approaches infinity. Figure 1.4 shows the result of 10 trials of an experiment
in which 100 grains of sand are randomly dropped on vertices of the diamond graph.
After a grain is dropped, the sandpile is stabilized. The table records how many times
each stable configuration is reached. It turns out there are eight recurrent sandpiles
on this graph, consistent with the results of this experiment1

1For more details, see Perkinson (2016).

10 Chapter 1. Sandpile Groups

Figure 1.3: A random stable configuration

Figure 1.4: Frequency across 10 trials of sandpile occurence when dropping 100 ran-
dom grains.

1.2. Recurrents 11

We now define these recurrent configurations explicitly. A configuration c on a
graph is recurrent if:

• c ≥ 0

• c is stable

• For every configuration a, there exists a configuration b ≥ 0 such that c =
stab(a+ b).

We mentioned previously that the stabilization of the all 3’s configuration plus any
other configuration is recurrent. With this definition, we can see that the maximal
stable configuration cmax (all 3’s in the grid graph case) is recurrent. The first two
conditions are clear, and for the third consider that for any stable configuration a,
there exists a configuration b ≥ 0 such that a+ b = cmax. So for all a, there exists a b
such that stab(a+ b) = stab(a) + stab(b) = cmax. It follows that any configuration c
is recurrent if there is a configuration b ≥ 0 such that c = stab(cmax + b).

Let S(G) denote the set of recurrents on G. It turns out these recurrent config-
urations form a group (called the Sandpile group on a graph), under the operation
a⊕ b := stab(a+ b). It is well-known that each configuration is linearly equivalent to
some unique recurrent, thus giving the group isomorphism:

S(G) ≈ Zn/im(L).

As we have seen (Figure 4), the identity of the Sandpile group S(G) is non-
trivial. However, since the equivalence class of 0 in Zn/im(L) is the identity and
group homomorphisms preserve the identity, we do know that id = Lσid for a unique
firing script σid. This means that the identity is the unique configuration which is
both recurrent and linearly equivalent to zero. So one way to find the identity is to
compute:

stab((cmax − stab(2 · cmax)) + cmax)

Another straightforward method involves a special configuration called the burning
configuration, defined as the the configuration b = L1 where 1 is the all-ones vector.
This is the configuration obtained by starting with the all-zeroes configuration and
firing the sink (Figure 1.6). Note that any multiple of b is linearly equivalent to 0.
Consider the stabilization of kb for some large integer k. By selectively firing vertices,
we can obtain a configuration which is cmax +a for some a. We know the stabilization
of this configuration is recurrent. Hence stab(kb) = id for large k.

We can use this fact to compute the identity on a grid graph. Simply fire the sink
and stabilize repeatedly until the configuration does not change further.

These methods allow us to calculate the identity on any graph. However, actually
carrying out these calculations by hand is implausible for all but the smallest of
graphs. For this reason we turn to computation.

12 Chapter 1. Sandpile Groups

Figure 1.5: The stabilization of 2 · cmax, then cmax − stab(2 · cmax), then stab((cmax −
stab(2 · cmax)) + cmax).

Figure 1.6: The stabilization of kb on the 100 × 100 grid graph for k = 1, k = 100,
k = 200, k = 300, k = 400, and k = 500.

Chapter 2

GPU Computation

Storing grid configurations and adding them together is as straightforward as storing
and adding arrays. The difficulty comes in carrying out the stabilization process.
One approach is to loop through each cell to check which are unstable, fire each
(subtract 4 and give 1 to each neighbor), then repeat until no unstable cells are
found. As discussed previously, the firing order doesn’t matter, so this method could
be implemented in a number of ways which all work. One could fire all unstable cells
at once for example (thinking of this as one “frame” of an animation of the firing
process), or fire all the unstable cells in one region first, or fire the first unstable cell
found, etc. These approaches all suffer from unnecessary looping. It is difficult to
know what effect a single firing will have on the sandpile as a whole, so finding some
optimal firing order (to minimize the number of loops) is impractical, and possibly
even more difficult than simply carrying out the computation.

One useful insight is that when considering a single “frame” of stabilization (that
is, the simultaneous firing of each unstable cell), every firing can at most affect only
5 cells (the firing cell itself and its four neighbors). This means that on a frame-by-
frame basis, each cell only needs information about itself and its neighbors in order
to be able to compute its next value. Viewing each cell autonomously in this way
suggests treating the simulation of a sandpile much like a cellular automata. Every
frame, each cell does:

• check if it itself is unstable

• check how many of its neighbors are unstable

• gain a grain for each unstable neighbor and lose 4 grains if it itself was unstable.

Such a view also suggests GPU computation, a technique that has been gain-
ing ground in recent years due to its applicability to highly parallelizable problems.
Creating and displaying 3D graphics typically involves a large number of small in-
dependent calculations. In particular, computation needs to be done for each pixel
on a display (i.e., what color should a pixel be). As such, graphics cards have been
developed to handle many small independent calculations very quickly (this can be
done by including many small processors on a single card, for example). This ability

14 Chapter 2. GPU Computation

allows graphics cards to be useful in problems beyond rendering computer graphics.
In general, any problem in which many small computations can be performed inde-
pendently may lend itself to parallelization with GPUs. We have ourselves such a
problem in the computation of the stabilizations of sandpiles.

2.1 WebGL sandpiles

The basic principle behind converting the sandpile model to a GPU computation is
the translation of sand height into color data in a texture. As images are stored
as arrays of color data, we can cast sand heights (and other properties) as color
data and instruct the GPU to perform some operations on this data which it can do
very quickly when the operations per pixel are independent. This method allows for
efficient computation as well as a straightforward way to visualize stabilization.

In the interest of harnessing as much GPU power as possible, we chose to imple-
ment the sandpile model using WebGL. WebGL is a derivative of OpenGL—a widely
used framework for developing computer graphics—that is designed to render graph-
ics inside a web browser. WebGL makes use of the graphics card of the client (i.e.,
the computer of the user visiting the website) rather than the server, meaning that
as long as web browsers exist supporting WebGL, any computer (and so any existing
graphics card) can visit a site using WebGL and run the computations. Improving the
speed of a WebGL application is then simply a matter of connecting with a computer
containing a more powerful graphics card, as opposed to upgrading the GPU of the
server.

The website we created allows the user to simulate the sandpile model using
WebGL. For simplicity we focused on simulating the bounded grid graphs discussed
above. Various grid sizes can be chosen, and arbitrary amounts of sand can be added
to the grid. Configurations can be stabilized and visualized, and the identity can be
generated in several ways. The website remains in development and can be found
as of this publishing at http://people.reed.edu/~davidp/web_sandpiles/. The
current source code of the website can be found in the appendix.

We took a “frame-by-frame” approach to stabilization as it is straightforward
and leads to interesting visuals. A sandpile configuration is initialized as a texture
containing color data for each pixel, representing sand heights, and then is updated
and displayed many times per second. In each frame rendered, the GPU applies the
rules described above to each cell. This results in animations where all unstable cells
in a frame are fired1.

Useful data besides sand height can also be stored as colors, including whether a
cell is a sink, how many times a cell has fired, whether it fired on the previous frame,
and so on. This allows for visualization of a variety of aspects of the sandpile model.
Of particular interest as we will discuss below is the visualization of the firing vectors

1We actually keep two textures, one to represent the next frame to be displayed, and one to
represent the current frame. This allows the current configuration to be read and then the new
configuration (after applying the firing rule to each cell) to be written to the “next frame” texture.
The textures and then swapped and the new “current frame” is displayed.

2.2. Empirical methods 15

of stabilizations.
This framework for simulating the sandpile model is flexible and allows for inves-

tigation of a number of properties. For example, it is simple to alter the boundary of
the grid graph, or to alter the graph by connecting its edges (as on a torus or sphere),
or to introduce cells which continually produce new sand (“sources”), or to carry out
certain algorithms (such as dropping grains in random locations, as in the experiment
mentioned above that reveals the recurrent configurations). While many avenues like
these are open for investigation, we chose to focus on the particular problem of quickly
generating the identity of a square grid graph.

2.2 Empirical methods

We first implemented generation of the identity by computing the stabilization of kb,
where b is the burning configuration, as previously described. Despite the improve-
ments garnered through use of WebGL, we found this method too slow to be practical
for larger grids. These experiments however did provide some useful results on how
high we should expect k to be given the grid size (Figure 2.1). Fitting a degree 2
polynomial to these data gives us a rough estimate of k for larger grid sizes (Figure
2.2).

Figure 2.1: Grid size here refers to side length of square grids.

16 Chapter 2. GPU Computation

Figure 2.2: The polynomial ax2 + bx + c was fitted from the red points, and the
black points are actual further collected values. The coefficients were a: 0.16574, b:
0.10774, and c: -0.28865.

Estimating this k is useful in two ways. Firstly, stabilizing the configuration kb
once is a faster computation in our framework than adding single instances of b,
stabilizing, and repeating. Although the same number of total firings occur, the first
computation has fewer frames of animation (more cells are fired per frame). Secondly,
having an estimate of k gives some idea of how long a computation of the identity
may take before attempting it. As Figure 2.3 illustrates, we found it impractical to
use this method for grids larger than 500 × 500.

The basic issue with computing the identity exactly in this way is that, despite
whatever improvements in computational speed are made, a large number of calcu-
lations still need to be carried out—many frames still need to be stepped through to
compute the stabilization. What if we had a way to predict or guess at the identity?
Seeing as the identity seems to be scale invariant2, we have a decent idea of what it
“should” look like at different scales (Figure 2.4). However, given the complexity of
these images it seems unlikely3 to be able to predict the patterns for larger grid sizes
directly.

Prompted by a suggestion from Wesley Pegden4, we found an alternative approach
through consideration of the previously discussed firing vectors.

2It is known that the sandpile model exhibits scale invariance in certain circumstances, and a
weak limit exists for the identity (Levine, personal communication).

3Surely it is not impossible to characterize complex objects like these, but an attempt to do so
is beyond our scope.

4Personal communication.

2.2. Empirical methods 17

Figure 2.3: Time to compute stab(kb).

Figure 2.4: The identity on grids of size 10, 20, 50, and 100.

18 Chapter 2. GPU Computation

Recall that the identity is equal to Lσid for some unique firing vector σid. We also
know that if b is the burning configuration, then id = stab(kb) = kb − Lτ for some
firing script τ ≥ 0. Therefore, σid = k · 1 − τ .

Thus to empirically compute σid, repeatedly fire the sink until the identity is
reached and keep track of which cells fired. In doing this for a variety of grid sizes,
we noticed that the firing vectors σid all had very similar shapes (Figure 2.5).

Figure 2.5: The firing vector that gives the identity on a 40×40 grid. This is a plot of
the triples (i, j, p) where p is the component of the firing vector with index (i ·40+ j).
The (i, j) coordinates have been shifted so that the center is (0, 0) and the values of
p have been scaled to lie between 0 and 1.

These surfaces are strikingly simple, especially compared to the complexity of the
identity itself! In particular, they exhibit an eight-fold symmetry and resemble a
paraboloid or perhaps a multivariate bell curve. We modeled this shape with surfaces
exhibiting the same eight-fold symmetry.

2.2. Empirical methods 19

In particular, following a suggestion from Ray Mayer, we considered polynomial
surfaces of the form f(x, y) = A+B · (x2 + y2) +C · (x2y2). Even more particularly,
we used the following surface, which passes through the points (0, 0, h), (0, 1, s), and
(1, 1, c), representing the highest point of the surface, the peak of the side-arcs, and
the corners.

f(x, y) = h+ (s− h) · (x2 + y2) + (c+ h− 2s) · (x2y2)

Every firing vector we generated can be characterized by these three points (Table
2.1).

Table 2.1: Empirically determined coefficients

Grid size h c s

2 1 1 1
5 4 2 3
10 19 3 7
15 35 3 10
20 71 4 15
25 103 4 18
30 156 4 23
35 198 4 26
40 276 5 31
45 334 5 34
50 430 5 39
100 1684 6 78
150 3796 6 34
200 6738 7 157
250 10506 7 197
300 15128 8 236
400 26886 8 316
500 41960 9 395
600 60376 9 474
750 94333 9 592
800 107259 9 632
1000 167642 10 790
1200 241378 10 949
1400 328427 10 1107

20 Chapter 2. GPU Computation

If such a function accurately describes a firing vector with given h, c, and s, then
predicting larger vectors is reduced to predicting these three parameters as a function
of the grid size. Testing this requires a suitable notion of “accuracy”. As our goal
is no more than generating the identity, we chose a certain kind of closeness to the
identity as a measure of accuracy of a firing vector. Consider the result of firing a
vector generated from the above surface using actual h, c, and s parameters taken
from the true firing vector on the 40 × 40 grid (Figure 2.6).

Figure 2.6: The immediate result of firing the vector, followed by its stabilization.

These images are clearly not the identity. However, when we fire the sink, we can
see these configurations transition very quickly to the identity:

Figure 2.7: Beginning with the configuration from Figure 2.6, fire the sink thrice,
then repeat twice (total of 9 sink firings).

Since Lσ is linearly equivalent to 0, we know that some amount of sink firings bring
these estimated identities to the actual identity, and we have noted experimentally
that when the estimated firing vector is very close to the true firing vector, this
amount will be small (Figure 2.7).

Since the required amount of additional sink firings is easy to determine experi-
mentally, and is useful in that minimizing it minimizes computation, we can use it
to measure the fitness of an estimated firing vector. Below is a table showing this
value for the surfaces generated from actual h, c, and s values (Table 2.2). We can
see that this surface is fairly effective for approximating firing vectors in that it can
bring us closer to the identity (i.e. make k smaller). In particular, there is massive
improvement from the naive method of firing the sink from the empty configuration
without approximating the firing vector.

2.2. Empirical methods 21

Table 2.2: k0 is the number of sink firings needed to reach the identity (from the
empty configuration). k1 is the number of additional sink firings needed after firing
the vector estimated using the polynomial surface with coefficients from Table 2.1.
k2 is the number of extra firings needed after firing the least squares fitted surface.

Grid size k0 k1 k2

2 0 0 0
5 4 0 0
10 19 1 0
15 19 3 1
20 71 3 2
25 103 8 3
30 156 9 3
35 198 15 5
40 276 17 7
45 334 25 11

Figure 2.8: Graph of the data from Table 2.2. k0 is in blue, k1 is in red, and k2 is in
green.

22 Chapter 2. GPU Computation

This surface approximation of the firing vector passes exactly through the h, c,
and s points as mentioned. However, it is unclear if that restriction is most useful
with respect to this additional sink-firing measure. Consider Figure 2.9. The second
surface is the result of fitting the f(x, y) = h+ (s−h) · (x2 + y2) + (c+h−2s) · (x2y2)
model to the firing vector data directly using a least squares regression. Although
this surface does not pass exactly through the h, c, and s points, it more closely
approximates the overall shape of the vector. We can use our closeness measure to
test which of these two approaches is actually more effective for generating the identity
(Table 2.2). Both perform much better than the naive method, and the regression
method performs better at least on these particular grid sizes (however the regression
method does not at first glance appear “asymptotically” better).

One possibility for exploring the trade-off between the surface passing through
particular points and having a better overall fit is to include an additional ’shape’
coefficient in the surface function. The following surface passes through the same h,
c, and s points when d = 0 and features the same eight-fold symmetry:

f(x, y) = h+ (s− h) · (x2 + y2) + (c+ h− 2s− 2d) · (x2y2) + d · (x2y4 + x4y2)

In any case, we would like to predict these coefficients for larger grid sizes. Below
are graphs of actual h, c, and s values as a function of grid size (Figures 2.10 – 2.12),
along with fitted curves. We can use these predicted coefficients to estimate new
firing vectors and then determine their closeness to the identity as above.

Figure 2.13 shows the predicted amount of additional sink firings required after
firing the estimated vector obtained from the polynomial surface. We can also take
these values into account to further improve our estimate.

In sum, the following improved algorithm computes the identity on an n×n grid:

• Estimate the coefficients h, c, and s as functions of the grid size using the models
shown in Figures 2.10 – 2.12.

• Construct a firing vector σest by evaluating f(x, y) = h + (s − h) · (x2 + y2) +
(c+ h− 2s) · (x2y2) at integer points with appropriate shifting and scaling5.

• Fire σest and stabilize.

• Estimate the number of additional sink firings k3 using the model shown in
Figure 2.13, then fire the sink that many times and stabilize.

• Fire the sink until reaching the identity (a small number of times).

Estimating the firing vector in this way allows us to drastically reduce the number
of additional sink-firings needed to reach the identity (compared to beginning with
the all 0s configuration).

5In particular, we want to create a vector whose (i · n + j)th entry contains p(i, j) where
p(i, j) = f(x−m

m , y−m
m) with m = n−1

2 (i.e., we shift and stretch the surface so that p(m,m) = h and
p(0, 0) = c).

2.2. Empirical methods 23

Figure 2.9: The top surface uses exact h, c, and s values collected from σid for the
45 × 45 grid. The lower surface was fitted to σid with least squares. The blue dots
are the actual vector σid.

24 Chapter 2. GPU Computation

Figure 2.10: h values were modeled as ax2+bx+c with fitted coefficients a = 0.16744,
b = 0.18971, and c = −2.7978.

Figure 2.11: c values were modeled as a+b·log(n) with fitted coefficients a = −0.83617
and b = 1.4848.

2.2. Empirical methods 25

Figure 2.12: s values were modeled as an+ b with fitted coefficients a = 0.79154 and
b = 0.79154.

Figure 2.13: k3 modeled in red as ax2 + bx + c with fitted coefficients a = 0.012857,
b = −0.14120, and c = 3.9165.

26 Chapter 2. GPU Computation

Figure 2.14: The initial firing of an estimated σid using the polynomial method after
estimating h, c, and s, and then its stabilization.

Chapter 3

Results

By estimating coefficients h, c, and s, we generate a firing vector from the surface
f(x, y) = h + (s − h) · (x2 + y2) + (c + h − 2s) · (x2y2), then estimate the required
number of additional sink firings, k. Using this method, we were able to achieve
extreme closeness to the identity.

Table 3.1: k0 is the number of sink firings needed to reach the identity (from the empty
configuration). The the number of additional sink firings needed after firing the vector
estimated using the polynomial surface with predicted coefficients of Figures 2.10 –
2.12 is k3. The number of further sink firings needed after using the surface method
and then predicting and firing k3 is k4.

Grid size k0 k3 k4

10 19 3 0
20 71 5 0
30 156 10 0
40 276 19 0
50 430 30 1
60 615 41 0
70 841 63 6
80 1082 71 0
90 1378 101 6
100 1684 112 0
125 2604 188 1
150 3796 270 0
200 6738 494 4
300 15128 1119 0
500 41960 3146 0
1000 167642 12721 0

There appears to be nearly constant excess required sink firings across grid sizes

28 Chapter 3. Results

Figure 3.1: Graph of the data from Table 3.1. In blue is k0, k3 is in red, and k4 is in
green.

using this method. This is especially nice since we found that one of the most time-
intensive operations was repeatedly firing the sink until the identity is reached1. If
these excess firings k4 are indeed constant, then in the algorithm we can replace the
final “fire the sink until reaching the identity” step with “fire an additional k4 times”.
For example, all the k4s collected above are less than 15, so we can run our algorithm
with an extra 15 sink firings. “Overshooting” the identity, while not ideal in terms
of optimization, is acceptable, and preferred over the expensive “fire the sink until
reaching the identity” step.

While this “closeness to the identity” metric makes sense theoretically, it would
be useful to determine if closer estimates indeed translate to faster generation of the
identity by computer. We generated the identity for a number of grid sizes using four
different methods, and timed their performance.

1Because each time, we need to both stabilize, and check if we’ve reached the identity; a much
more expensive operation in total than stabilizing the result of firing the sink k times.

29

The four methods were:

• Naive method, that is to calculate stab((cmax − stab(2 · cmax)) + cmax).

• stab(kb), with exact k known from previous data

• stab(kb), with k estimated from modeling previous data, followed by firing the
sink until the identity is reached.

• “Surface” method, that is estimate h, c and s, generate a vector, then estimate
further required sink firings (k3 above) and fire, and lastly fire the sink until the
identity is reached (about k4 more firings).

Note that method 2 is “cheating” in that none of the other methods know k
beforehand. So it is not a true method to calculate the identity on any (not previously
computed) grid size, but it instead serves as a benchmark for the other methods. If
our “surface method” was faster than stab(kb) even with exact k known, then that
would be highly indicative of its usefulness.

Indeed, we see this is the case (Figures 3.2 and 3.3). The “surface” method per-
forms better than any other at every tested grid size. Moreover, the runtime for both
the naive and burning configuration methods appears to be growing very quickly,
while the surface method has a much gentler slope. We also noted during the per-
formance of these tests that when attempting even higher grid sizes with the surface
method, memory became an issue before runtime did. That is, the limiting factor
became the space to store the grid, rather than the time to execute computations on
the grid. This is in contrast to, for example, the naive method, which quickly be-
comes temporally infeasible above grids of around size 1000 in addition to the memory
issues.

30 Chapter 3. Results

Figure 3.2: Runtime of the naive method (blue), the exact k method (purple), the
estimate k method (red) and the surface method (green). The milliseconds axis is
plotted on a log scale. These tests were performed using a NVIDIA GeForce GTX
950 GPU (2 GB memory, 768 cores).

Figure 3.3: Runtime of the naive method (blue), the exact k method (purple), the
estimate k method (red) and the surface method (green). The extremely large value
(4,580,229) for the “estimate k” method at grid size 1000 is omitted for scale.

Conclusion

In this project we focused on developing faster methods of computing large sandpiles.
We used GPU computing as a new framework for performing the computations in the
first place, as well as developed methods of quickly computing the identity element
on grid graphs.

Overall, we found the methods of computing stab((cmax − stab(2 · cmax)) + cmax)
and of computing stab(kb) for large k to be inadequate for grid graphs larger than
around 500 × 500. In addition, we found estimating the firing vector σid (such that
Lσid = id) to be a fruitful approach, with drastic improvements in both runtime and
distance to the identity.

This general approach could be altered and possibly improved by using different
particular approximations of σid. We chose to use a polynomial surface with eight-fold
symmetry which passes through a particular set of points, but a better approximation
likely exists, involving perhaps more parameters or a different type of surface. Other
routes to the identity are possible as well. For example, given that Lσid = id for
some firing vector σid, one could determine σid by computing L−1id, which may be
easier than finding or estimating σid directly. Another option would be to attempt
to predict τ where stab(kb) = (kb)−Lτ , which again may turn out to be easier than
predicting σid.

The framework and methods developed in this project can be easily adapted to
a number of future interesting problems. In particular, it would be interesting to
investigate the behavior of the sandpile model on non-square grids (we previously
noted that the identity even on non-square grid exhibits some of the familiar fractal
features), or the effects of the addition of different kinds of cells (one could introduce
“source” cells which constantly produce sand, for example), or the effects of connect-
ing certain non-adjacent cells (i.e., changing the graph. We can run the simulation
on a torus, for example.).

It would also be useful to further develop the graphical representation of the
sandpiles. WebGL provides tools to create general computer graphics (in particular,
3D graphics), and so the sandpiles could be visualized in 3D, or run on polyhedra,
etc. Since any graph can be embedded in R3, one interesting possibility is to display
any given graph in 3D space, and run the sandpile simulation with nodes colored by
sand heights. However, any such generalization of the GPU computation method to
more general (non-grid) graphs would require major restructuring of the application.

The study of the dynamics of sandpiles is another area in which our application
may be useful. While most of our focus has been on manipulating and computing

32 Conclusion

particular stable configurations, our application naturally allows us to display anima-
tions of any number of operations, such as stabilization. It is difficult not to imagine
waves or avalanches when viewing these animations, and we feel the playful nature
of the application (being able to click around and draw, adding sand anywhere) is
especially conducive to exploration of sandpile dynamics. This in part motivated
our choice to develop an online application, so that many may view it and explore
sandpiles for themselves.

As mentioned, the WebGL application remains in development, but we have in-
cluded full code of the current iteration in the appendix. Our aim going forward is to
further improve the methods developed here and to explore new possibilities afforded
by the power of GPU computing. We also hope to continue creating these intricate
sandpiles and in so doing perhaps assist in illuminating their structure and behavior.

Appendix: Code

The code of the sandpile simulation website is divided into three main pieces: the
HTML for the webpage itself, the Javascript code that is run by the HTML, and the
shader code written in GLSL which is run by Javascript in order to carry out WebGL
instructions.

The first files are sand.frag, draw.frag, copy.frag, and quad.vert. sand.frag gives the
core automata firing rules, and is run on the back texture once per frame, advancing
the simulation. The color values in the cells of the back texture are only data.
draw.frag reads the back texture and displays actual colors on the front texture to
the viewer, and allows for customization of the display. Included in draw.frag are a
variety of options for color schemes, one of which (named “Wesley” in honor of Wesley
Pegden who we first saw use these colors) is used in the images provided throughout
this thesis.

copy.frag has minor use, allowing one texture to be copied to another.
quad.vert is a vertex shader establishing the geometry to which the fragment

shaders are applied. In our case the geometry is just a flat plane, but it can be
transformed if we wish with projection matrices. We do not make much use of this
in the project, so it is an area of possible exploration.

1 // sand.frag

2 #ifdef GL_ES

3 precision highp float;

4 #endif

5

6 uniform sampler2D state;

7

8 uniform vec2 scale;

9 uniform vec2 res;

10

11 int max = 1048576 - 1;

12 vec2 center = vec2(.5, .5);

13

14 // data is stored in RBGA float channels

15 // r : sand height

16 // g : cell type, 0 = node, 1 = sink, 2 = source, 3 = wall

17 // b : two bits for "fired last round?" and "negative or positive sand?"

18 // a : total firings at this cell so far (since last reset)

19

20 // below are just some helper functions

21

22 // decode and encode color data and sand heights

23 ivec4 decode (vec4 data){

24 return ivec4(floor(.5 + float(max) * data.r), floor(.5 + float(max) * data.g), floor(.5 +

float(max) * data.b), floor(.5 + float(max) * data.a));

25 }

26

34 Appendix: Code

27 vec4 encode (ivec4 data){

28 return vec4(float(data.r)/float(max), float(data.g)/float(max), float(data.b)/float(max),

float(data.a)/float(max));

29 }

30

31 ivec4 get(int x, int y){ //lookup at current spot with some pixel offset

32 return decode(texture2D(state, (gl_FragCoord.xy + vec2(x, y)) / scale));

33 }

34

35 int tens(int n){

36 return int(floor(float(n)/float(10)));

37 }

38

39 int ones(int n){

40 return n - 10*tens(n);

41 }

42

43 // main is executed for each pixel in the state texture once per frame (once per call of sand.step()

in the javascript).

44

45 void main() {

46 vec2 position = gl_FragCoord.xy;

47 float x = position.x;

48 float y = position.y;

49

50 int N, E, W, S, C, F;

51 int deg = 4; //this is just for walls, I subtract from this when adjacent to a wall

52 ivec4 cell = get(0,0);

53 ivec4 cellN = get(0,1);

54 ivec4 cellE = get(1,0);

55 ivec4 cellW = get(-1,0);

56 ivec4 cellS = get(0,-1);

57 vec4 result;

58

59 if (cell.g == 0){

60 result = encode(ivec4(0,0,0,0));

61 } else if (cell.g == 3){

62 result = encode(ivec4(0,3,0,0));

63 } else {

64 // determine outdegree (I’m treating walls as the edge to that node being deleted)

65 if (cellN.g == 3){deg--;}

66 if (cellE.g == 3){deg--;}

67 if (cellS.g == 3){deg--;}

68 if (cellW.g == 3){deg--;}

69

70 // checking if a neighbor fired last round (or if a neighbor is a source), in which

case we get one

71

72 if (tens(cellN.b) == 1 || cellN.g == 2){N = 1;} else {N = 0;}

73 if (tens(cellE.b) == 1 || cellE.g == 2){E = 1;} else {E = 0;}

74 if (tens(cellS.b) == 1 || cellS.g == 2){S = 1;} else {S = 0;}

75 if (tens(cellW.b) == 1 || cellW.g == 2){W = 1;} else {W = 0;}

76

77 // these two parts below are the core of the cellular automata loop described in the

computation section of the paper

78

79 // if I will fire

80 if (cell.r >= deg) {C = -deg; F = 1;} else {C = 0; F = 0;}

81

82 // how much sand I get from neighbors

83 if (ones(cell.b) == 1){

84 if (N + E + S + W + C - cell.r >= 0){

85 cell.r = (N + E + S + W + C) - cell.r;

86 cell.b = tens(cell.b);

87 } else {

88 cell.r = -1*(N + E + S + W + C - cell.r);

89 cell.b = tens(cell.b) + 1;

90 }

Appendix: Code 35

91 } else {

92 cell.r = (N + E + S + W + C) + cell.r;

93 }

94

95 cell.a += F; // total firings

96 cell.b = ones(cell.b) + 10*F; // fired this time?

97

98 result = encode(cell);

99 }

100

101

102 gl_FragColor = result;

103 }

1 // draw.frag

2 #ifdef GL_ES

3 precision highp float;

4 #endif

5

6 uniform vec2 scale;

7 uniform vec2 shift;

8 uniform sampler2D state;

9 uniform float color;

10

11 int max = 1048576 - 1;

12

13 int color_choice = int(color);

14

15 ivec4 decode (vec4 data){

16 return ivec4(floor(.5 + float(max) * data.r), floor(.5 + float(max) * data.g), floor(.5 +

float(max) * data.b), floor(.5 + float(max) * data.a));

17 }

18

19 vec4 encode (ivec4 data){

20 return vec4(float(data.r)/float(255), float(data.g)/float(255), float(data.b)/float(255),

float(data.a)/float(255));

21 }

22

23 ivec4 get(int x, int y){ //lookup at current spot with some pixel offset

24 return decode(texture2D(state, (gl_FragCoord.xy + vec2(x, y) + shift) / scale));

25 }

26

27 int hundreds(int n, int base){

28 return int(floor(float(n)/float(base*base)));

29 }

30

31 int tens(int n, int base){

32 return int(floor(float(n)/float(base)));

33 }

34

35 int ones(int n, int base){

36 return n - 10*tens(n, base);

37 }

38

39 vec4 color_select(ivec4 cell, int select, int sinks, int sources){

40 ivec4 result;

41

42 if (select == 0){

43 int size = int(abs(float(cell.r)));

44

45 //wesley colors

46

47 if (size == 0){

48 result = ivec4(0,0,255,0); //dark blue

49 } else if (size == 1){

50 result = ivec4(255,255,0,0); //yellow

36 Appendix: Code

51 } else if (size == 2){

52 result = ivec4(51,255,255,0); //light blue

53 } else if (size == 3){

54 result = ivec4(153,76,0,0); //brown

55 } else if (size >= 4){

56 result = ivec4(255,255,255,0); //white

57 }

58

59 if (cell.r < 0) {

60 result = ivec4(100) - result;

61 }

62

63 } else if (select == 1){

64 int size = int(abs(float(cell.r)));

65

66 //this scheme for the numberphile video

67

68 if (size == 0){

69 result = ivec4(10,10,100,0); //black

70 } else if (size == 1){

71 result = ivec4(255,255,0,0); //yellow

72 } else if (size == 2){

73 result = ivec4(0,0,255,0); // blue

74 } else if (size == 3){

75 result = ivec4(255,0,0,0); //red

76 } else if (size >= 4){

77 result = ivec4(255,255,255,0); //white

78 }

79

80 result = ivec4(result.r, result.g, result.b, 0);

81

82 if (cell.r < 0) {

83 result = ivec4(255) - result;

84 }

85

86 } else if (select == 2){

87

88 // shows if something fired last time

89

90 if (cell.b == 0){

91 result = ivec4(50,50,50,0);

92 } else {

93 result = ivec4(255,255,255,0);

94 }

95

96

97 } else if (select == 3){

98

99 //this scheme shows unstable vertices

100

101 if (cell.r == 4) {

102 result = ivec4(255,255,255,0);

103 } else {

104 result = ivec4(50,50,50,0);

105 }

106

107 } else if (select == 4){

108

109 //shows how many times a cell has fired (256^3 colors)

110 int size = int(abs(float(cell.a)));

111 int base = 10; //must be 0 < base < 256

112

113 result = ivec4(ones(size, base)*(300/base), tens(size, base)*(255/base),

hundreds(size, base)*(255/base), 0);

114

115 if (cell.a < 0) {

116 result = ivec4(255) - result;

117 }

Appendix: Code 37

118

119 } else if (select == 5){

120 //multiplicative gradient (256*3 colors)

121 int size = int(abs(float(cell.r)));

122 int base = 10; //must be 0 < base < 256

123

124 if (size < base * 1) {

125 result = ivec4(0, 0, size*(255/base), 0);

126 } else if (size < base * 2) {

127 result = ivec4(0, (size - base)*(128/base), 255, 0);

128 } else {

129 result = ivec4((size - base - base) *(64/base), 255, 255, 0);

130 }

131

132 if (cell.r < 0) {

133 result = ivec4(255) - result;

134 }

135

136 } else if (select == 6){

137 int size = int(abs(float(cell.r)));

138 //exponential gradient (256^3 colors)

139

140 int base = 10; //must be 0 < base < 256

141

142 result = ivec4(ones(size, base)*(255/base), tens(size, base)*(255/base),

hundreds(size, base)*(255/base), 0);

143

144 if (cell.r < 0) {

145 result = ivec4(255) - result;

146 }

147 }

148

149

150 if (cell.g == 0){

151 result = ivec4(0,0,128,0);

152 } else if (cell.g == 2){

153 result = ivec4(0,255,0,0);

154 } else if (cell.g == 3){

155 result = ivec4(255,0,0,0);

156 }

157

158 //can add as many color schemes as you’d like

159 return encode(result);

160 }

161

162 void main() {

163 gl_FragColor = color_select(get(0,0), color_choice, 0, 0);

164 }

1 // copy.frag

2 #ifdef GL_ES

3 precision mediump float;

4 #endif

5

6 uniform sampler2D state;

7 uniform vec2 scale;

8

9 void main() {

10 gl_FragColor = texture2D(state, gl_FragCoord.xy / scale);

11 }

1 // quad.vert

2 #ifdef GL_ES

3 precision highp float;

4 #endif

38 Appendix: Code

5

6 attribute vec2 quad;

7

8 uniform vec3 matrix1;

9 uniform vec3 matrix2;

10 uniform vec3 matrix3;

11

12 void main() {

13 mat3 matrix = mat3(matrix1, matrix2, matrix3);

14 gl_Position = vec4((matrix*vec3(quad, 1)).xy, 0, 1.0);

15 }

Next we have the HTML for the webpage. This file simply provides the canvas
which we will draw to with Javascript and WebGL. The chosen width and height
are the “actual” width and height of the canvas, putting a bound on how large of a
sandpile can be run. The canvas as displayed to the client will fill the screen, or can
otherwise have a custom apparent resolution.

The included Igloo script is a wrapper for some of the WebGL commands used in
the sand.js file. It was created by Christopher Wellons, whose Game of Life implemen-
tation using WebGL was an invaluable source of guidance and inspiration during this
project. His live implementation can be found at http://nullprogram.com/webgl-
game-of-life/ with the source at https://github.com/skeeto/webgl-game-of-

life/.

1 // index.html

2 <!DOCTYPE html>

3 <html>

4 <head>

5 <title>WebGL Sandpile</title>

6 <meta http-equiv="Content-Type" content="text/html; charset=utf-8">

7 <link rel="stylesheet" href="gol.css"/>

8 <script src="lib/igloo-0.0.3.js"></script>

9 <script src="lib/jquery-2.1.1.min.js"></script>

10 <script src="js/sand.js"></script>

11 </head>

12 <body>

13 <canvas id="sand" width="2100" height="2100"></canvas>

14 </body>

15 </html>

Lastly, we have the longest file, sand.js, which does most of the work of running
the website. Many functions are included which allow for a number of different user
interactions with the sandpile, not all of which are currently used in the live website.
The most important pieces are the step and draw functions, which call on the various
*.frag files to carry out the simulation of the sandpile. These functions alternate on
a timer, displaying the animation to the canvas.

1 // sand.js

2 const max = 1048576 - 1;

3

4 // this function is run at the bottom to initialize the sandpile simulation

5 function SAND(canvas, scale) {

6 // initialize webgl and some variables

7 var gl = this.gl = canvas.getContext(’webgl’, {preserveDrawingBuffer: true});

8 if (gl == null) {

9 alert(’Could not initialize WebGL!’);

10 throw new Error(’No WebGL’);

11 }

Appendix: Code 39

12 gl.getExtension(’OES_texture_float’);

13

14 scale = this.scale = 2;

15 this.w = canvas.width;

16 this.h = canvas.height;

17 this.viewsize = vec2(this.w, this.h);

18 this.viewx = 0;

19 this.viewy = 0;

20 this.dx = 100;

21 this.dz = 300;

22 this.statesize = vec2(this.w / scale, this.h / scale);

23 this.timer = null;

24 this.lasttick = SAND.now();

25 this.fps = 0;

26

27 this.d = 200.0;

28 this.m = this.d;

29 this.n = this.d;

30 this.res = vec2(this.m, this.n);

31

32 this.shift = vec2(-600,50);

33

34 this.saves = [];

35 this.save_id = 0;

36 this.user_saves = 0;

37

38 this.firing_vectors = [];

39 this.firing_vector_id = 0;

40

41 this.shape_choice = 1; //default to square

42

43 this.identity = null;

44

45 this.brush_height = 0;

46 this.brush_type = 0;

47

48 this.speed = 1;

49 this.frames = 1;

50 this.color = 0.0;

51

52 gl.disable(gl.DEPTH_TEST);

53

54 this.programs = {

55 copy: new Igloo.Program(gl, ’glsl/quad.vert’, ’glsl/copy.frag’),

56 sand: new Igloo.Program(gl, ’glsl/quad.vert’, ’glsl/sand.frag’),

57 draw: new Igloo.Program(gl, ’glsl/quad.vert’, ’glsl/draw.frag’)

58 };

59

60 this.buffers = {

61 quad: new Igloo.Buffer(gl, new Float32Array([

62 -1, -1, 1, -1, -1, 1, 1, 1

63]))

64 };

65

66 this.textures = {

67 front: this.texture(),

68 back: this.texture()

69 };

70

71 this.framebuffers = {

72 step: gl.createFramebuffer()

73 };

74

75 // selects initial shape (square in this case) and palces initial sand (none in this case)

76

77 this.set_surface(this.shape_choice);

78 this.set(this.fullstate(0));

79

40 Appendix: Code

80 // all these below create the interface buttons and forms

81

82 var toolbar = document.createElement(’div’);

83 toolbar.style.position = ’absolute’;

84 toolbar.style.top = ’25px’;

85 toolbar.style.left = ’25px’;

86 document.body.appendChild(toolbar);

87

88 var rightside = document.createElement(’div’);

89 rightside.style.cssFloat = ’left’;

90 toolbar.appendChild(rightside);

91

92 add_form(toolbar, "inspect_val", "1", ’Inspect’, f = function() {

93 sand.brush_type = 6;

94 });

95

96 add_form(toolbar, "full_field", "4", ’Set each cell to n’, f = function() {

97 sand.set(sand.fullstate($("#full_field").val()));

98 });

99

100 add_form(toolbar, "arithmetic_field", "4", ’Add n to each cell’, f = function() {

101 sand.plus($("#arithmetic_field").val());

102 sand.draw();

103 });

104

105 var save_div = document.createElement(’div’);

106 save_div.setAttribute(’id’, ’saves’);

107

108 var adds_div = document.createElement(’div’);

109 adds_div.setAttribute(’id’, ’adds’);

110

111 add_form(toolbar, "fire_sink_field", "1", ’Fire sink k times’, f = function() {

112 sand.fire_sink($("#fire_sink_field").val());

113 sand.canvas.focus();

114 });

115

116 add_form(toolbar, "height_field", "1", ’Set clicked cells to n’, f = function() {

117 sand.brush_height = ($("#height_field").val());

118 sand.brush_type = 4;

119 });

120

121 br(toolbar);

122 add_form(toolbar, "save_field", "my sandpile", ’Save state’, f = function() {

123 sand.save();

124 sand.user_saves += 1;

125

126 var newButton = document.createElement("input");

127 newButton.type = "button";

128 newButton.id = sand.save_id - 1;

129 newButton.value = "load " + ($("#save_field").val());

130 newButton.onclick = function(){

131 sand.load(newButton.id);

132 };

133 document.getElementById("saves").appendChild(newButton);

134

135 var newButtonAdd = document.createElement("input");

136 newButtonAdd.type = "button";

137 newButtonAdd.id = sand.save_id - 1;

138 newButtonAdd.value = "add " + ($("#save_field").val());

139 newButtonAdd.onclick = function(){

140 sand.set(sand.add(sand.saves[newButtonAdd.id], sand.get()));

141 };

142 document.getElementById("adds").appendChild(newButtonAdd);

143 });

144

145 toolbar.appendChild(save_div);

146 toolbar.appendChild(adds_div);

147

Appendix: Code 41

148 var firing_vectors_div = document.createElement(’div’);

149 firing_vectors_div.setAttribute(’id’, ’firing_vectors’);

150 add_form(toolbar, "save_firing_vector_field", "my vector", ’Save firing vector’, f =

function() {

151 sand.save_firing_vector();

152 var newButton = document.createElement("input");

153 newButton.type = "button";

154 newButton.id = sand.firing_vector_id - 1;

155 newButton.value = "fire " + ($("#save_firing_vector_field").val());

156 newButton.onclick = function(){

157 sand.fire_vector(sand.firing_vectors[newButton.id]);

158 };

159 document.getElementById("firing_vectors").appendChild(newButton);

160 });

161 toolbar.appendChild(firing_vectors_div);

162

163 add_form(toolbar, "name_field", "my sandpile", ’Download state’, f = function() {

164 var state = sand.get();

165 download("data:text/csv;charset=utf-8," + state, $("#name_field").val() + ".txt");

166 });

167

168 add_form(toolbar, "speed_field", "1", ’Frames per millisecond’, f = function() {

169 sand.set_speed($("#speed_field").val(), $("#delay_field").val());

170 sand.draw()

171 });

172

173 add_form(toolbar, "delay_field", "1", ’Milliseconds per frame’, f = function() {

174 sand.set_speed($("#speed_field").val(), $("#delay_field").val());

175 sand.draw()

176 });

177

178 add_form(toolbar, "run_field", "100", ’Run for n steps’, f = function() {

179 sand.run($("#run_field").val());

180 sand.draw()

181 });

182

183 add_button(rightside, ’Time burning config method’, f = function() {

184 sand.time_burning_config_method();

185 });

186

187 //brush tools

188 add_button(rightside, ’Add single grains’, f = function() {

189 sand.brush_type = 0;

190 });

191

192 add_button(rightside, ’Add sinks’, f = function() {

193 sand.brush_type = 1;

194 });

195

196 add_button(rightside, ’Add sources’, f = function() {

197 sand.brush_type = 2;

198 });

199

200 add_button(rightside, ’Add walls’, f = function() {

201 sand.brush_type = 3;

202 });

203

204 add_button(rightside, ’Fire’, f = function() {

205 sand.brush_type = 5;

206 });

207

208 add_button(rightside, ’Random Stable Configuration’, f = function() {

209 sand.setRandom();

210 sand.draw();

211 });

212

213 add_form(toolbar, "size_field", this.d, ’Choose grid size’, f = function() {

214 var n = ($("#size_field").val());

42 Appendix: Code

215

216 if (n < sand.w/sand.scale){

217 sand.m = n;

218 sand.n = n;

219 sand.res.x = n;

220 sand.res.y = n;

221 sand.reset();

222 sand.set_surface(1);

223 } else {

224 alert("Please choose a smaller grid. Max is " + (sand.w/sand.scale - 1) + ".");

225 }

226 });

227

228 add_form(toolbar, "state_val", "", ’Get state’, f = function() {

229 $("#state_val").val(sand.get());

230 });

231

232 add_form(toolbar, "firings_val", "", ’Get total firings’, f = function() {

233 var gl = sand.gl;

234 var state = sand.get();

235 var n = 0;

236

237 for (var i = 0; i < state.length; i += 4){

238 n += state[i + 3];

239 //alert(n)

240 }

241

242 //alert(n);

243 $("#firings_val").val(n);

244 });

245

246 add_form(toolbar, "vector_val", "", ’Get firing vector’, f = function() {

247 var vec = sand.get_firing_vector(sand.get());

248 $("#vector_val").val(vec);

249 copyToClipboard(vec);

250 });

251

252 add_button(rightside, ’get h, c, s’, f = function() {

253 var vec = sand.get_firing_vector(sand.get());

254 alert([vec[(sand.m/2)*(sand.m) + (sand.m/2)], vec[0], vec[sand.m/2]]);

255 });

256

257 br(rightside);

258 add_button(rightside, ’Calculate Identity’, f = function() {

259 sand.set_identity();

260 });

261

262 add_button(rightside, ’Approximate k’, f = function() {

263 $("#fire_sink_field").val(sand.approx_k());

264 });

265

266 add_button(rightside, ’Approximate Identity’, f = function() {

267 var n = sand.n;

268 var m = sand.m;

269 if (n == m){

270 //alert(’This may take a while’);

271 sand.reset();

272 v = sand.approx_identity_4(n);

273 sand.fire_vector(v);

274 $("#vector_val").val(v);

275 } else {

276 alert("This function not yet implemented for nonsquare grids")

277 }

278 });

279

280 add_button(rightside, ’Fire sink until identity’, f = function() {

281 alert(sand.fire_sink_until_id());

282 });

Appendix: Code 43

283

284 add_button(rightside, ’Approximate Identity Algorithm’, f = function() {

285 var n = sand.n;

286 var m = sand.m;

287 if (n == m){

288 //alert(’This may take a while’);

289 //alert(m)

290 sand.reset();

291 var t0 = performance.now();

292 sand.approx_identity_alg(n);

293 var t1 = performance.now();

294 alert("Calculation took " + (t1 - t0) + " milliseconds.")

295 } else {

296 alert("This function not yet implemented for nonsquare grids")

297 }

298 });

299

300 add_form(toolbar, "d_field", "0", ’Approx identity with certain d’, f = function() {

301 var n = sand.n;

302 sand.reset();

303 var t0 = performance.now();

304 sand.approx_identity_alg(n, $("#d_field").val());

305 var t1 = performance.now();

306 alert("Calculation took " + (t1 - t0) + " milliseconds.")

307 });

308

309 br(rightside);

310

311 add_button(rightside, ’Stabilize’, f = function() {

312 sand.stabilize();

313 });

314

315 add_button(rightside, ’Dualize’, f = function() {

316 sand.dualize();

317 });

318 add_button(rightside, ’Reset’, f = function() {

319 sand.reset();

320 });

321 add_button(rightside, ’Clear firing vector’, f = function() {

322 sand.clear_firing_history();

323 sand.draw();

324 });

325 br(rightside);

326 add_button(rightside, ’Add a random grain’, f = function() {

327 sand.set(sand.add_random(sand.get()));

328 sand.draw();

329 });

330

331 add_button(rightside, ’Calculate recurrent inverse of current state’, f = function() {

332 sand.rec_inverse();

333 sand.draw();

334 });

335 add_form(toolbar, "fire_field", "my vector", ’Fire a vector’, f = function() {

336 sand.fire_vector($("#fire_field").val().split(",").map(Number));

337 });

338

339 add_form(toolbar, "paste_field", "my state", ’Load a state’, f = function() {

340 sand.set($("#paste_field").val().split(",").map(Number));

341 sand.draw()

342 });

343

344 var colors = [[’Wesley’, 0],[’Luis’, 1],[’Which just fired’, 2],[’Unstable cells’,

3],[’Firing vector’, 4],[’256*3 colors’, 5],[’256^3 colors’, 6]];

345 add_select(toolbar, colors, f = function(e) {

346 sand.color = e.target.value;

347 });

348 }

349

44 Appendix: Code

350 // helper functions in creating the interface

351

352 function br(parent){

353 var blank = document.createElement("br");

354 parent.appendChild(blank);

355 }

356

357 function add_select(parent, options, selectfunc){

358 var select = document.createElement(’select’);

359 for (var i = 0; i < options.length; i++) {

360 var option = document.createElement(’option’);

361 option.textContent = options[i][0];

362 option.value = options[i][1];

363 select.appendChild(option) ;

364 }

365

366 select.addEventListener(’change’, function (event) {

367 selectfunc(event);

368 f.blur();

369 });

370

371 parent.appendChild(select);

372 }

373

374 function add_button(parent, buttontext, buttonfunc){

375 var f = document.createElement(’button’);

376 f.textContent = buttontext;

377 f.addEventListener(’click’, function(event){

378 event.preventDefault();

379 buttonfunc();

380 f.blur();

381 });

382 parent.appendChild(f);

383 }

384

385 function add_form(parent, fieldname, fieldval, buttontext, buttonfunc){

386 var f = document.createElement(’form’);

387

388 var i = document.createElement("input");

389 i.setAttribute(’type’,"text");

390 i.setAttribute(’id’,fieldname);

391 i.setAttribute(’value’,fieldval);

392

393 var s = document.createElement(’button’);

394 s.setAttribute(’type’,"submit");

395 s.textContent = buttontext;

396

397 f.addEventListener(’submit’, function(event){

398 event.preventDefault();

399 buttonfunc(fieldname);

400 i.blur();

401 });

402

403 f.appendChild(i);

404 f.appendChild(s);

405 parent.appendChild(f);

406 }

407

408 // allows resizing the browser window

409

410 function resize(canvas) {

411 var displayWidth = canvas.clientWidth;

412 var displayHeight = canvas.clientHeight;

413

414 if (canvas.width != displayWidth || canvas.height != displayHeight) {

415 canvas.width = displayWidth;

416 canvas.height = displayHeight;

417 }

Appendix: Code 45

418 }

419

420 SAND.now = function() {

421 return Math.floor(Date.now() / 1000);

422 };

423

424 // swap, step, and draw are the core of all this

425

426 SAND.prototype.swap = function() {

427 var tmp = this.textures.front;

428 this.textures.front = this.textures.back;

429 this.textures.back = tmp;

430 return this;

431 };

432

433 SAND.prototype.step = function() {

434 if (SAND.now() != this.lasttick) {

435 $(’.fps’).text(this.fps + ’ FPS’);

436 this.lasttick = SAND.now();

437 this.fps = 0;

438 } else {

439 this.fps++;

440 }

441 var gl = this.gl;

442 gl.bindFramebuffer(gl.FRAMEBUFFER, this.framebuffers.step);

443 gl.framebufferTexture2D(gl.FRAMEBUFFER, gl.COLOR_ATTACHMENT0, gl.TEXTURE_2D,

this.textures.back, 0);

444 gl.bindTexture(gl.TEXTURE_2D, this.textures.front);

445 gl.viewport(0, 0, this.statesize.x, this.statesize.y);

446 resize(gl.canvas);

447 this.programs.sand.use()

448 .attrib(’quad’, this.buffers.quad, 2)

449 .uniform(’state’, 0, true)

450 .uniform(’matrix1’, vec3(1,0,0))

451 .uniform(’matrix2’, vec3(0,1,0))

452 .uniform(’matrix3’, vec3(0,0,1))

453 .uniform(’scale’, this.statesize)

454 .uniform(’res’, this.res)

455 .draw(gl.TRIANGLE_STRIP, 4);

456 this.swap();

457 return this;

458 };

459

460 SAND.prototype.translation = function(tx, ty) {

461 return [1, 0, 0, 0, 1, 0, tx, ty, 1,];

462 };

463

464 SAND.prototype.draw = function() {

465 var gl = this.gl;

466 gl.bindFramebuffer(gl.FRAMEBUFFER, null);

467 gl.bindTexture(gl.TEXTURE_2D, this.textures.front);

468

469 var z = 0;

470 var mat = this.translation(z,z);

471 var matrix1 = vec3(mat[0], mat[1], mat[2]);

472 var matrix2 = vec3(mat[3], mat[4], mat[5]);

473 var matrix3 = vec3(mat[6], mat[7], mat[8]);

474

475 resize(gl.canvas);

476 gl.viewport(0, 0, gl.canvas.width, gl.canvas.height);

477 this.programs.draw.use()

478 .attrib(’quad’, this.buffers.quad, 2)

479 .uniform(’matrix1’, matrix1)

480 .uniform(’matrix2’, matrix2)

481 .uniform(’matrix3’, matrix3)

482 .uniform(’state’, 0, true)

483 .uniform(’scale’, this.viewsize)

484 .uniform(’shift’, this.shift)

46 Appendix: Code

485 .uniform(’color’, this.color)

486 .draw(gl.TRIANGLE_STRIP, 4);

487 return this;

488 };

489

490 SAND.prototype.texture = function() {

491 var state = new Float32Array(this.statesize.x * this.statesize.y * 4);

492 for (var i = 0; i < state.length; i += 1) {

493 state[i] = 0;

494 }

495 var gl = this.gl;

496 var tex = gl.createTexture();

497 gl.bindTexture(gl.TEXTURE_2D, tex);

498 gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_WRAP_S, gl.CLAMP_TO_EDGE);

499 gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_WRAP_T, gl.CLAMP_TO_EDGE);

500 gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_MIN_FILTER, gl.NEAREST);

501 gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_MAG_FILTER, gl.NEAREST);

502 gl.texImage2D(gl.TEXTURE_2D, 0, gl.RGBA, this.statesize.x, this.statesize.y, 0, gl.RGBA,

gl.FLOAT, state);

503 return tex;

504 };

505

506 SAND.prototype.get = function() {

507 var gl = this.gl, w = this.statesize.x, h = this.statesize.y;

508 gl.bindFramebuffer(gl.FRAMEBUFFER, this.framebuffers.step);

509 gl.framebufferTexture2D(gl.FRAMEBUFFER, gl.COLOR_ATTACHMENT0, gl.TEXTURE_2D,

this.textures.front, 0);

510 var state = new Float32Array(w * h * 4);

511 gl.readPixels(0, 0, w, h, gl.RGBA, gl.FLOAT, state);

512 for (var i = 0; i < state.length; i++) {

513 state[i] = state[i]*max;

514 }

515 return state;

516 };

517

518 SAND.prototype.set = function(state) {

519 var gl = this.gl;

520 var rgba = new Float32Array(this.statesize.x * this.statesize.y * 4);

521 for (var i = 0; i < state.length; i+=4) {

522 rgba[i + 0] = state[i]/max;

523 rgba[i + 1] = state[i + 1]/max;

524 rgba[i + 2] = state[i + 2]/max;

525 rgba[i + 3] = state[i + 3]/max;

526 }

527

528 gl.bindTexture(gl.TEXTURE_2D, this.textures.front);

529 gl.texSubImage2D(gl.TEXTURE_2D, 0, 0, 0, this.statesize.x, this.statesize.y, gl.RGBA,

gl.FLOAT, rgba);

530 return this;

531 };

532

533 // this is what gets it running

534

535 SAND.prototype.start = function(n,m) {

536 if (this.timer == null) {

537 this.timer = setInterval(function(){

538 for(var i = 0; i < n; i++){

539 sand.step();

540 }

541 sand.draw();

542 }, m);

543 }

544 return this;

545 };

546

547 SAND.prototype.stop = function() {

548 clearInterval(this.timer);

549 this.timer = null;

Appendix: Code 47

550 return this;

551 };

552

553 SAND.prototype.toggle = function() {

554 if (this.timer == null) {

555 this.start(this.speed, this.frames);

556 } else {

557 this.stop();

558 }

559 };

560

561 SAND.prototype.set_speed = function(n,m) {

562 this.stop();

563 this.start(n,m);

564 };

565

566 SAND.prototype.run = function(n) {

567 for (var i = 0; i < n; i++){

568 sand.step();

569 }

570 return this;

571 };

572

573 SAND.prototype.setRandom = function(p) {

574 var gl = this.gl, size = this.statesize.x * this.statesize.y;

575 var state = this.get();

576 for (var i = 0; i <= size*4; i = i + 4) {

577 var r = Math.random();

578 for (var j = 1; j <= 4 ; j++){

579 if (r <= (j/4)){

580 state[i] = j - 1;

581 break;

582 }

583 }

584 }

585 this.set(state);

586 };

587

588 SAND.prototype.set_surface = function(n) {

589 var gl = this.gl, w = this.statesize.x, h = this.statesize.y;

590 var state = this.get();

591

592 switch(n){

593 case 0:

594 for (var i = 0; i < state.length; i += 4) {

595

596 if (i % 3 == 0 || i % 5 == 0){

597 state[i + 1] = 0;

598 }

599 }

600 break;

601

602 case 1:

603 for (var i = 0; i < w; i++) {

604 for (var j = 0; j < h; j++) {

605

606 if (i < (w - this.res.x)/2.0 || i > w - .5 - (w - this.res.x)/2.0

|| j < (h - this.res.y)/2.0 || j > h - .5 - (h -

this.res.y)/2.0){

607

608 state[(i + j*w)*4 + 1] = 0;

609 } else {

610 state[(i + j*w)*4 + 1] = 1;

611 }

612 }

613 }

614 break;

615

48 Appendix: Code

616 case 2:

617 for (var i = 0; i < w; i++) {

618 for (var j = 0; j < h; j++) {

619

620 if ((i - w*.5)*(i - w*.5) + (j - h*.5)*(j - h*.5) > 1000.0) {

621

622 state[(i + j*w)*4 + 1] = 0;

623 } else {

624 state[(i + j*w)*4 + 1] = 1;

625 }

626 }

627 }

628 break;

629

630 case 3:

631 for (var i = 0; i < w; i++) {

632 for (var j = 0; j < h; j++) {

633

634 if (j > 100.0 || j < 200.0 || i > 200.0 || i < 100.00){

635

636 state[(i + j*w)*4 + 1] = 1;

637 } else {

638 state[(i + j*w)*4 + 1] = 0;

639 }

640 }

641 }

642 break;

643 }

644 this.set(state);

645 };

646

647 SAND.prototype.get_region = function(state) {

648 var region = [];

649

650 for (var i = 0; i < state.length; i += 4){

651 if (state[i + 1] == 1){

652 region.push(i);

653 }

654 }

655

656 return region;

657 };

658

659 SAND.prototype.add_random = function(state) {

660 var region = this.get_region(state);

661

662 var r = Math.floor(Math.random() * region.length);

663 state[region[r]] += 1;

664

665 return state;

666 };

667

668 SAND.prototype.fullstate = function(n) {

669 var state = this.get();

670 for (var i = 0; i < state.length; i += 1){

671 state[4*i] = n;

672 }

673 return state;

674 };

675

676 SAND.prototype.reset = function() {

677 var gl = this.gl;

678 var state = this.get();

679

680 for (var i = 0; i < state.length; i += 1) {

681 state[i] = 0;

682 }

683

Appendix: Code 49

684 this.set(state);

685 this.set_surface(this.shape_choice);

686 };

687

688 SAND.prototype.clear_firing_history = function() {

689 var gl = this.gl;

690 var state = this.get();

691

692 for (var i = 0; i < state.length; i += 4) {

693 state[i + 3] = 0;

694 }

695

696 this.set(state);

697 };

698

699 SAND.prototype.save = function() {

700 this.saves.push(sand.get());

701 this.save_id = this.save_id + 1;

702 };

703

704 SAND.prototype.load = function(n) {

705 this.set(this.saves[n]);

706 };

707

708 SAND.prototype.brush = function(x, y, choice, type) {

709 var gl = this.gl, w = this.statesize.x, h = this.statesize.y;

710 var state = this.get();

711

712 switch(type){

713 case 0:

714 if (choice){

715 state[(x + y*w)*4] += 1;

716 } else {

717 state[(x + y*w)*4] -= 1;

718 }

719 this.set(state);

720 break;

721

722 case 1:

723 if (choice){

724 state[(x + y*w)*4 + 1] = 0;

725 } else {

726 state[(x + y*w)*4 + 1] = 1;

727 }

728 this.set(state);

729 break;

730

731 case 2:

732 if (choice){

733 state[(x + y*w)*4 + 1] = 2;

734 } else {

735 state[(x + y*w)*4 + 1] = 1;

736 }

737 this.set(state);

738 break;

739

740 case 3:

741 if (choice){

742 state[(x + y*w)*4 + 1] = 3;

743 } else {

744 state[(x + y*w)*4 + 1] = 1;

745 }

746 this.set(state);

747 break;

748

749 case 4:

750 if (choice){

751 state[(x + y*w)*4] = this.brush_height;

50 Appendix: Code

752 }

753 this.set(state);

754 break;

755

756 case 5:

757 if (choice){

758 state[(x + y*w)*4] -= 4;

759

760 state[(x + 1 + y*w)*4] += 1;

761 state[(x - 1 + y*w)*4] += 1;

762 state[(x + (y + 1)*w)*4] += 1;

763 state[(x + (y - 1)*w)*4] += 1;

764 } else {

765 state[(x + y*w)*4] += 4;

766

767 state[(x + 1 + y*w)*4] -= 1;

768 state[(x - 1 + y*w)*4] -= 1;

769 state[(x + (y + 1)*w)*4] -= 1;

770 state[(x + (y - 1)*w)*4] -= 1;

771 }

772 state[(x + y*w)*4 + 2] = 10;

773 this.set(state);

774 break;

775

776 case 6:

777 $("#inspect_val").val(state.slice((x+y*w)*4, (x+y*w)*4 + 4));

778 break;

779 }

780 };

781

782 //called when clicking to add or delete cells from the region

783 SAND.prototype.draw_surface = function(x, y, choice){

784 var gl = this.gl, w = this.statesize.x, h = this.statesize.y;

785 var state = this.get();

786

787 if (choice){

788 state[(x + y*w)*4 + 1] = 1;

789 } else {

790 state[(x + y*w)*4 + 1] = 0;

791 }

792

793 this.set(state);

794 };

795

796 //calculates closeness of two states

797 SAND.prototype.distance = function(state_1, state_2){

798 var d = 0;

799

800 for (var i = 0; i < state_1.length; i = i + 4) {

801 d += Math.pow(state_2[i] - state_1[i], 2);

802 }

803

804 return d;

805 };

806

807 SAND.prototype.markov_approximation = function(target) {

808 var gl = this.gl, w = this.statesize.x, h = this.statesize.y;

809 var init_state = this.get();

810

811 //compare with target

812 var d1 = sand.distance(init_state, target);

813

814 //add a random grain

815 var new_state = this.get();

816 this.set(this.add_random(new_state));

817

818

819 this.stabilize();

Appendix: Code 51

820

821 //compare with target

822 var d2 = sand.distance(new_state, target);

823

824 //if further, return to initial state

825 if (d2 > d1) {

826 this.set(init_state);

827 }

828

829 //display the state

830 sand.draw();

831

832 return sand.distance(this.get(), target);

833 };

834

835 SAND.prototype.start_markov_approximation = function(target, n) {

836 sand.toggle();

837 if (this.markov_timer == null) {

838 this.markov_timer = setInterval(function(){

839 for (var i = 0; i < n; i++) {

840 if (sand.markov_approximation(target) == 0){

841 sand.pause_markov_approximation();

842 }

843 }

844 }, 1);

845 }

846 sand.toggle();

847 };

848

849 SAND.prototype.pause_markov_approximation = function() {

850 clearInterval(this.markov_timer);

851 this.markov_timer = null;

852 };

853

854 // this function and the one below are what implement the ‘‘surface’’ method discussed in the paper

855 SAND.prototype.approx_identity_alg = function(n){

856 //use approx_identity_4(n) to get close

857 //fire sink until nothing changes

858

859 v = this.approx_identity_4(n);

860 this.fire_vector(v);

861

862 //predict additional needed firings

863 var k = 0.01285796899499506*n*n + -0.14120481213637398*n + 3.916531993030239;

864

865 this.fire_sink(k);

866 this.stabilize(); // this takes time

867 this.draw();

868 this.fire_sink_until_id(); // this too

869 this.draw();

870 };

871

872 SAND.prototype.approx_identity_4 = function(n) {

873 //first guess coefficients

874

875 var h = Math.round(0.1674411791810444*n*n + 0.18971510117164725*n - 2.797811919063292);

876 var c = Math.round(-0.8361720629239193 + 1.4848313882485358*Math.log(n));

877 var s = Math.round(0.791548224489514*n - 1.158817405099287);

878

879 var l = (n - 1)/2;

880 var model = function(x, y) {return h + (s-h)*(x*x + y*y) + (c + h - 2*s)*((x*x)*(y*y));};

881

882 //center and scale poly

883 var p = function(x, y) {return -Math.round(model((x - l)/l, (y - l)/l));};

884

885 //construct firing vector

886 var v = new Float32Array(n*n);

887 for (var j = 0; j < n; j++){

52 Appendix: Code

888 for (var i = 0; i < n; i++){

889 v[n*j + i] = p(i, j);

890 }

891 }

892 //console.log(v);

893 return v;

894 };

895

896 SAND.prototype.plus = function(n) {

897 var state = sand.get();

898 for (var i = 0; i <= state.length; i = i + 4){

899 if (state[i + 1] == 1){

900 for (var j = 0; j < n; j++){

901 state[i] = state[i] + 1;

902 }

903 }

904 //}

905 }

906 sand.set(state);

907 };

908

909 SAND.prototype.minus = function(n) {

910 var state = sand.get();

911 for (var i = 0; i <= state.length; i = i + 4){

912 if (state[i] - n >= 0) {

913 state[i] = state[i] - n;

914 } else {

915 state[i] = 0

916 }

917 }

918 sand.set(state);

919 };

920

921 SAND.prototype.dualize = function() {

922 var state = sand.get();

923 for (var i = 0; i <= state.length; i += 4){

924 state[i] = 3 - state[i];

925 }

926 sand.set(state);

927 };

928

929 SAND.prototype.check_stable = function() {

930 var gl = this.gl, w = this.statesize.x, h = this.statesize.y;

931 var state = this.get();

932

933 for (var i = 0; i < w * h * 4; i = i + 4) {

934 if (state[i + 2] == 10 || state[i + 2] == 11){

935 return 1;

936 }

937 }

938

939 return 0;

940 };

941

942 SAND.prototype.stabilize = function() {

943 var gl = this.gl, w = this.statesize.x, h = this.statesize.y;

944 var state = this.get();

945

946 this.step();

947

948 sand.set_speed(100,1);

949 for (var i = 0; i < w * h * 4; i = i + 4) {

950 if (state[i + 1] == 2){

951 alert("Cannot stabilize when source cells are present.");

952 return 0;

953 }

954 }

955

Appendix: Code 53

956 // this seems really sensitive in total time elapsed to the choice of maximum i here,

investigate further

957 while (this.check_stable()){

958 for(var i = 0; i < 10000; i++){

959 this.step();

960 }

961 }

962

963 sand.set_speed(1,1);

964 this.draw();

965 return 1;

966 };

967

968 SAND.prototype.set_identity = function() {

969 // deprecated with introduction of approximate_identity_alg

970 alert("This may take a while.");

971 this.reset();

972 this.fire_sink(this.approx_k());

973 this.fire_sink_until_id([0, 0, 1000, 1, 1]);

974 this.identity = sand.get();

975 };

976

977 SAND.prototype.rec_inverse = function() {

978 this.toggle();

979 this.plus(6);

980 this.stabilize();

981 this.dualize();

982 this.plus(3);

983 this.stabilize();

984 this.toggle();

985 this.draw();

986 };

987

988 //this function reads a state array and creates a firing vector out of the firing history

989 SAND.prototype.get_firing_vector = function(state){

990 var region = this.get_region(state);

991

992 var vector = new Float32Array(region.length);

993 for (var i = 0; i < vector.length; i += 1){

994 vector[i] = state[region[i] + 3];

995 }

996 return vector;

997 };

998

999 SAND.prototype.save_firing_vector = function(){

1000 var gl = this.gl, w = this.statesize.x, h = this.statesize.y;

1001 var state = this.get();

1002

1003 this.firing_vectors.push(sand.get_firing_vector(state));

1004 this.firing_vector_id = this.firing_vector_id + 1;

1005 };

1006

1007 SAND.prototype.fire_vector = function(vector) {

1008 var gl = this.gl, w = this.statesize.x, h = this.statesize.y;

1009

1010 var state = this.get();

1011 var region = this.get_region(state);

1012 var newstate = this.get();

1013

1014 for (var i = 0; i < vector.length; i += 1){

1015 var j = region[i];

1016 var n = vector[i];

1017 newstate[region[i]] -= 4*n;

1018

1019 newstate[j + 4] += n;

1020 newstate[j - 4] += n;

1021 newstate[j + 4*w] += n;

1022 newstate[j - 4*w] += n;

54 Appendix: Code

1023

1024 newstate[j + 3] += n;

1025 }

1026

1027 sand.set(newstate);

1028 sand.draw();

1029 return 1;

1030 };

1031

1032 SAND.prototype.set_max_inverse = function(){

1033 sand.stop();

1034 sand.reset();

1035 sand.set_identity();

1036 this.cmax_inverse_vector = sand.get_firing_vector(sand.identity);

1037 return 1;

1038 };

1039

1040 SAND.prototype.add = function(state1, state2) {

1041 //note that the allowed region comes from state1

1042 var state = new Float32Array(state1.length);

1043

1044 for (var i = 0; i <= state1.length; i += 4){

1045 if (state1[i + 1] == 1){

1046 state[i] = state1[i] + state2[i];

1047 state[i + 1] = 1;

1048 } else {

1049 state[i + 1] = 0;

1050 }

1051

1052 }

1053 return state;

1054 };

1055

1056 SAND.prototype.eventCoord = function(event) {

1057 var $target = $(event.target),

1058 offset = $target.offset(),

1059 border = 1,

1060 x = event.pageX - offset.left - border,

1061 y = $target.height() - (event.pageY - offset.top - border);

1062 return vec2(Math.floor((x + this.shift.x) / (this.scale)), Math.floor((y + this.shift.y) /

this.scale));

1063 };

1064

1065 SAND.prototype.fire_sink = function(n){

1066 var state = this.get();

1067 var region = this.get_region(state);

1068 var vector = new Float32Array(region.length);

1069

1070 for (var i = 0; i < vector.length; i += 1){

1071 vector[i] = -n;

1072 }

1073

1074 this.fire_vector(vector);

1075 };

1076

1077 SAND.prototype.is_equal = function(state1, state2){

1078 for (var i = 0; i < state1.length; i += 4){

1079 if (state1[i] != state2[i]){

1080 return 0;

1081 }

1082 }

1083 return 1;

1084 };

1085

1086 // fires sink until hits identity

1087 SAND.prototype.fire_sink_until_id = function(){

1088

1089 // being weirdly slow

Appendix: Code 55

1090

1091 var newstate, oldstate;

1092 var counter = 0;

1093 var equal = 0;

1094

1095 while(!equal){

1096

1097 oldstate = this.get();

1098

1099 this.fire_sink(1);

1100 this.stabilize();

1101

1102 newstate = this.get();

1103

1104 if (!this.is_equal(newstate, oldstate)){

1105 counter += 1;

1106 } else {

1107 equal = 1;

1108 this.set(oldstate);

1109 }

1110 }

1111 };

1112

1113 SAND.prototype.approx_k = function() {

1114 return Math.floor((2/3)*(Math.floor(sand.m/2)*Math.floor(sand.m/2)) +

.40476*(Math.floor(sand.m/2)) + .40476/2)

1115 };

1116

1117 SAND.prototype.time_burning_config_method = function() {

1118 k = this.approx_k();

1119 sand.reset();

1120 var t0 = performance.now();

1121 this.fire_sink(k)

1122 this.fire_sink_until_id();

1123 var t1 = performance.now();

1124 alert("Calculation took " + (t1 - t0) + " milliseconds.")

1125 };

1126

1127 // all these approx_identities are deprecated except for approx_identity_4, but I’m keeping them here

for now

1128

1129 SAND.prototype.approx_identity = function(n) {

1130 //first guess coefficients

1131 var coeffs = this.approx_coeffs(n);

1132 var h = coeffs[0]

1133 var c = coeffs[1]

1134 var s = coeffs[2]

1135

1136 //create firing vector

1137 var v = this.approx_firing_vector(n, h, c, s, 0);

1138 return v;

1139 };

1140

1141 SAND.prototype.approx_identity_2 = function(n) {

1142 //first guess coefficients

1143 var h = -0.16573652165412933*n*n + -0.7710039875902805*n + -0.5866930171310152

1144 var c = 0.0014357061858030207*n*n + -0.13699963669877713*n + -1.4496706192412137

1145 var s = -0.0004727325274926919*n*n + -0.7596584069827825*n + -0.7816864295162682

1146

1147 var l = (n - 1)/2

1148 var model = function(x, y) {return h + (s-h)*(x*x + y*y) + (c + h - 2*s)*((x*x)*(y*y));};

1149

1150 //center and scale poly

1151 var p = function(x, y) {return Math.round(model((x - l)/l, (y - l)/l));};

1152

1153 //construct firing vector

1154 var v = new Float32Array(n*n);

1155 for (var j = 0; j < n; j++){

56 Appendix: Code

1156 for (var i = 0; i < n; i++){

1157 v[n*j + i] = p(i, j);

1158 }

1159 }

1160 return v;

1161 };

1162

1163 SAND.prototype.approx_firing_vector = function(n, h, c, s, d) {

1164 //alert([n,h,c,s,d])

1165 var l = (n - 1)/2

1166 var model = function(x, y) {return h + (s-h)*(x*x + y*y) + (c + h - 2*s - 2*d)*((x*x)*(y*y))

+ d*((x*x)*(y*y*y*y) + (x*x*x*x)*(y*y));};

1167

1168 //center and scale poly

1169 var p = function(x, y) {return Math.round(model((x - l)/l, (y - l)/l));};

1170

1171 //construct firing vector

1172 var v = new Float32Array(n*n);

1173 for (var j = 0; j < n; j++){

1174 for (var i = 0; i < n; i++){

1175 v[n*j + i] = p(i, j);

1176 }

1177 }

1178 return v;

1179 };

1180

1181 SAND.prototype.approx_coeffs = function(n){

1182 var h = -0.16573652165412933*n*n + -0.7710039875902805*n + -0.5866930171310152

1183 var c = 0.0014357061858030207*n*n + -0.13699963669877713*n + -1.4496706192412137

1184 var s = -0.0004727325274926919*n*n + -0.7596584069827825*n + -0.7816864295162682

1185 return [h, c, s];

1186 };

1187

1188

1189 SAND.prototype.approx_identity_3 = function(n, d) {

1190 //first guess coefficients

1191

1192 var coeffs = this.approx_coeffs(n);

1193 var h = coeffs[0]

1194 var c = coeffs[1]

1195 var s = coeffs[2]

1196

1197 /* var h = -0.16573652165412933*n*n + -0.7710039875902805*n + -0.5866930171310152

1198 var c = 0.0014357061858030207*n*n + -0.13699963669877713*n + -1.4496706192412137

1199 var s = -0.0004727325274926919*n*n + -0.7596584069827825*n + -0.7816864295162682

1200 */

1201 var l = (n - 1)/2

1202 var model = function(x, y) {return h + (s-h)*(x*x + y*y) + (c + h - 2*s - 2*d)*((x*x)*(y*y))

+ d*((x*x)*(y*y*y*y) + (x*x*x*x)*(y*y));};

1203

1204 //center and scale poly

1205 var p = function(x, y) {return Math.round(model((x - l)/l, (y - l)/l));};

1206

1207 //construct firing vector

1208 var v = new Float32Array(n*n);

1209 for (var j = 0; j < n; j++){

1210 for (var i = 0; i < n; i++){

1211 v[n*j + i] = p(i, j);

1212 }

1213 }

1214 //console.log(v);

1215 return v;

1216 };

1217

1218 SAND.prototype.zoom = function(dz, n) {

1219 if (n < 0) {

1220 if (sand.viewsize.x - dz >= 300){

1221 sand.viewsize.x -= dz;

Appendix: Code 57

1222 sand.viewsize.y -= dz;

1223 sand.shift.x -= dz/2;

1224 sand.shift.y -= dz/2;

1225 }

1226 } else {

1227 sand.viewsize.x += dz;

1228 sand.viewsize.y += dz;

1229 sand.shift.x += dz/2;

1230 sand.shift.y += dz/2;

1231

1232 }

1233 sand.draw();

1234 };

1235

1236 // this function listens for mouse inputs and some keyboard inputs

1237 function Controller(SAND) {

1238 this.sand = sand;

1239 var _this = this,

1240 $canvas = $(sand.gl.canvas);

1241 this.drag = null;

1242 $canvas.on(’mousedown’, function(event) {

1243 if (sand.brush_type == 7){

1244 _this.drag = event.which;

1245 var mx = event.clientX;

1246 var my = event.clientY;

1247 } else {

1248 event.preventDefault();

1249 _this.drag = event.which;

1250 var pos = sand.eventCoord(event);

1251 sand.brush(pos.x, pos.y, _this.drag == 1, sand.brush_type);

1252 sand.draw();

1253 }

1254 });

1255

1256 $canvas.on(’mouseup’, function(event) {

1257 _this.drag = null;

1258 });

1259

1260 $canvas.on(’mousemove’, function(event) {

1261 if (sand.brush_type == 7){

1262 event.preventDefault();

1263 if (_this.drag) {

1264 var mx = event.clientX;

1265 var my = event.clientY;

1266

1267 console.log(’Mouse position: ’ + mx + ’,’ + my);

1268 console.log(’View shift: ’ + sand.shift.x + ’,’ + sand.shift.y);

1269

1270 sand.shift.y = Math.max(my - sand.shift.y, my);

1271 sand.draw();

1272 }

1273 } else {

1274 event.preventDefault();

1275 if (_this.drag) {

1276 var pos = sand.eventCoord(event);

1277 sand.brush(pos.x, pos.y, _this.drag == 1, sand.brush_type);

1278 sand.draw();

1279 }

1280 }

1281

1282 });

1283

1284 $canvas.on(’contextmenu’, function(event) {

1285 event.preventDefault();

1286 return false;

1287 });

1288

1289 // copied and modified from some jsfiddle that I can’t find again

58 Appendix: Code

1290 $(’#sand’).bind(’mousewheel DOMMouseScroll’, function(e) {

1291 var scrollTo = 0;

1292 e.preventDefault();

1293 if (e.type == ’mousewheel’) {

1294 scrollTo = (e.originalEvent.wheelDelta * -1);

1295 sand.zoom(sand.dz, -e.originalEvent.wheelDelta);

1296 }

1297 else if (e.type == ’DOMMouseScroll’) {

1298 scrollTo = 40 * e.originalEvent.detail;

1299 sand.zoom(sand.dz, -e.originalEvent.detail);

1300 }

1301 $(this).scrollTop(scrollTo + $(this).scrollTop());

1302 });

1303

1304 $(document).on(’keyup’, function(event) {

1305 switch (event.which) {

1306

1307 case 46: /* [delete] */

1308 sand.reset();

1309 sand.draw();

1310 break;

1311 case 32: /* [space] */

1312 sand.toggle();

1313 break;

1314 case 87:

1315 // up

1316 sand.shift.y += sand.dx;

1317 sand.draw();

1318 break;

1319 case 83:

1320 //down

1321 sand.shift.y -= sand.dx;

1322 sand.draw();

1323 break;

1324 case 65:

1325 //left

1326 sand.shift.x -= sand.dx;

1327 sand.draw();

1328 break;

1329 case 68:

1330 //right

1331 sand.shift.x += sand.dx;

1332 sand.draw();

1333 break;

1334 case 109:

1335 //-

1336 sand.zoom(sand.dz, -1);

1337 break;

1338 case 107:

1339 //+

1340 sand.zoom(sand.dz, 1);

1341 break;

1342 }

1343 });

1344 }

1345

1346 $(window).on(’keydown’, function(event) {

1347 return !(event.keyCode === 32);

1348 });

1349

1350 function download(data, name) {

1351 var link = document.createElement("a");

1352 link.download = name;

1353 var uri = data;

1354 link.href = uri;

1355 document.body.appendChild(link);

1356 link.click();

1357 document.body.removeChild(link);

Appendix: Code 59

1358 delete link;

1359 }

1360

1361 function copyToClipboard(text) {

1362 window.prompt("Copy to clipboard: Ctrl+C, Enter", text);

1363 }

1364

1365 // initialize the sandpile on the canvas

1366 var sand = null, controller = null;

1367 $(document).ready(function() {

1368 var $canvas = $(’#sand’);

1369 sand = new SAND($canvas[0], 8).draw().start(1, 1);

1370 controller = new Controller(sand);

1371 });

Further Reading

Angel, E., & Shreiner, D. (2015). Interactive Computer Graphics: a top-down ap-
proach with WebGL. Boston, MA: Pearson.

Bak, P., Tang, C., & Wiesenfeld, K. (1987). Self-organized criticality - An explanation
of 1/f noise. Physical Review Letters , 59 , 381–384.

Caracciolo, S., Paoletti, G., & Sportiello, A. (2008). Explicit characterization of
the identity configuration in an abelian sandpile model. Journal of Physics A:
Mathematical and Theoretical , 41 (49).

Dhar, D. (1992). The abelian sandpile model of self-organized criticality. AIP Con-
ference Proceedings .

Levine, L. T. (2007). Limit theorems for internal aggregation models .
ProQuest LLC, Ann Arbor, MI. Thesis (Ph.D.)–University of Califor-
nia, Berkeley. http://gateway.proquest.com/openurl?url_ver=Z39.88-

2004&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&res_dat=xri:

pqdiss&rft_dat=xri:pqdiss:3306223

Pegden, W., & Smart, C. K. (2013). Convergence of the Abelian sandpile. Duke
Math. J., 162 (4), 627–642. http://dx.doi.org/10.1215/00127094-2079677

Perkinson, D., & Corry, S. (2016). Divisors and Sandpiles . http://people.reed.
edu/~davidp/divisors_and_sandpiles/draft-11.20.2016.pdf

Wellons, C. (2014). null program. http://nullprogram.com/blog/2014/06/10/

