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Abstract

This thesis is a general investigation into the properties of the Kapranov rank
and the tropical rank of a tropical matrix. Of note is the connection between the
C-representability of a matroid M and the equality of the Kapranov and tropical
ranks of the matroid’s cocircuit matrix, the lack of Gaussian elimination for the
tropical rank, and the equivalence of the Kapranov and tropical ranks for 5×5 zero-
one matrices.





Introduction

Tropical algebra, also know as min-plus or max-plus algebra, has recently become
a hot topic in certain circles of mathematics due to its connections to various sub-
fields of mathematics, for example algebraic geometry (14), synchronized systems
(10) and computation biology (21). This algebra was given the name ‘tropical’ in
honor of one of its pioneers, the Brazilian mathematician Imre Simon (19), by his
French colleagues including Jean-Eric Pin (17).

This word ‘ranks’ in the title, refer to the fact that equivalent notions of the rank
of a matrix over a field are no longer equivalent for a tropical matrix. One notion is
that the rank of a matrix M is the smallest dimension linear space containing the
columns of M , this will be known at the Kapranov rank. Another notion is that
the rank of M is the largest nonsingular submatrix of M , and this will be known as
the tropical rank of M . The aim of this thesis was to answer two of the questions
posed at the end of (5), namely

(Q1) Is there an analogue to Gaussian elimination for computing the tropical rank?

(Q6) Is there a 5× 5 matrix whose tropical rank not is not equal to its Kapranov
rank?

Chapter one establishes some basic facts and examples about tropical algebra
and tropical algebraic geometry, where the latter is used to define the Kapranov
rank. The second chapter is devoted to the development of the Kapranov rank, the
tropical rank, and properties of the tropical determinant. An improved proof of
a combinatorial formula for the tropical rank of a zero-one matrix is given, Theo-
rem 2.3.1. The third chapter is a development of matroid theory, which following
(5), presents a proof of Theorem 3.4.12 that connects the C-representability of a
matroid M and the equality of the Kapranov and tropical rank of its cocircuit ma-
trix. This theorem is then used to give an example of a matrix whose Kapranov
rank exceeds its tropical rank. Chapter four is devoted to establishing the basics of
NP-completeness and presenting an improved proof of Theorem 4.3.12, which first
appeared in (11) and along with Theorem 2.3.1 implies that computing the tropical
rank of a zero-one matrix is NP-complete. Which answers question (Q1) in the neg-
ative, at least until the P = NP question is settled. Finally, Appendix A presents
computations that prove that every 5 × 5 zero-one matrix has equal tropical and
Kapranov ranks, which partially answers question (Q6) above.





Chapter 1

Basics

1.1 Tropical Basics

Definition 1.1.1. Define the tropical semiring to be (R,⊕,�) where

a⊕ b = min{a, b} and a� b = a+ b.

Examples of tropical addition and multiplication are

5⊕ 11 = 5 and 5� 11 = 16.

One can easily check that the additive structure is an abelian semigroup and the
multiplicative structure is an abelian group with the multiplicative identity being
0. One can verify that tropical multiplication distributes over addition. If we wish,
then we can also include the formal element ∞, to obtain an additive identity
element where a ⊕∞ = min{a,∞} = a. However even with an additive identity,
the additive structure is still not a group since there are not additive inverses. For
example 2 ⊕ x = 3 has no solution since 2 ⊕ x < 3 for all x. The addition and
multiplication tables are as follows:

⊕ 0 1 2 3 4 5 6
0 0 0 0 0 0 0 0
1 0 1 1 1 1 1 1
2 0 1 2 2 2 2 2
3 0 1 2 3 3 3 3
4 0 1 2 3 4 4 4
5 0 1 2 3 4 5 5
6 0 1 2 3 4 5 6

� 0 1 2 3 4 5 6
0 0 1 2 3 4 5 6
1 1 2 3 4 5 6 7
2 2 3 4 5 6 7 8
3 3 4 5 6 7 8 9
4 4 5 6 7 8 9 10
5 5 6 7 8 9 10 11
6 6 7 8 9 10 11 12

These tropical operations carry over to Rn and Rn×m in the natural way. For
example in R2,

4�

2
3
5

 =

4� 2
4� 3
4� 5

 =

6
7
9

 and

−1
4
4

⊕

2
3
5

 =

−1⊕ 2
4⊕ 3
4⊕ 5

 =

−1
3
4

 .
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In R2×2, matrices tropically multiply in the natural way as well,(
0 1
3 4

)
�

(
5 2
0 3

)
=

(
(0� 5)⊕ (1� 0) (0� 2)⊕ (1� 3)
(3� 5)⊕ (4� 0) (3� 2)⊕ (4� 3)

)
=

(
5⊕ 1 2⊕ 4
8⊕ 4 5⊕ 7

)
=

(
1 2
4 5

)
.

How matrices multiply suggest the following modeling application, which (10)
explores in depth. Suppose that one has a directed graph on vertices V = {1, . . . , n}
and weighted edges E. Then we can form the transition cost matrix C ∈ Rn×n where
Cij is the weight given to the edge (i, j). By convention Cii = 0 and if edge (i, j)
does not exists then Cij = ∞. If we interpret the weight of an edge (i, j) as the
cost of moving from vertex i to vertex j, then (C�m)ij will be the minimum cost of
moving from vertex i to vertex j in at most m steps.

Example 1.1.2. Suppose we have three cities {1, 2, 3} and they are connected by
the transition cost matrix

C =

 0 2 5
∞ 0 2
1 4 0

 .

Then we have

C�2 = C � C =

0 2 4
3 0 2
1 3 0

 .

In fact, by inspection we can see that C�m = C�2 for m ≥ 2, since any trip of size
3 or more steps contains a circuit.

Example 1.1.3. An interesting variation is if we say that one cannot spend the
night in a city by saying that Cii = ∞. Then the interpretation of C�m is the
transition cost matrix for traveling from city i to city j in exactly m steps. In this
case then

C =

∞ 2 5
∞ ∞ 2
1 4 ∞

 .

One can no longer see immediately what for example C�7 is, and one would need
to write a special program to calculate C�m for an arbitrary m. However there is a
way out of this, namely let

C̃ =

0 t2 t5

0 0 t2

t t4 0

 .

For a polynomial p(t) where positive and negative powers of t are allowed, let deg(p)
be the number of zeros at t = 0. For example deg(t2− t5) = 2, deg(−5+ t+ t2) = 0,
deg(t−3 +1+ t) = −3, and by convention deg(0) = ∞. The important idea here will
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be that deg(C̃ij) = Cij, because the map deg turns classical algebra into tropical
algebra. Observe that

deg(tn + tm) = min{deg(tn), deg(tm)} = deg(tn)⊕ deg(tm)

deg(tntm) = deg(tn) + deg(tm) = deg(tn)� deg(tm).

In fact, more generally for p, q ∈ R≥0[t, t
−1] we have

deg(p+ q) = deg(p)⊕ deg(q) and deg(pq) = deg(p)� deg(q). (1.1.1)

Therefore we get that C�m = deg(C̃m). In particular, since

C̃7 =

 8t17 t12 + 12t20 5t15 + 8t23

4t14 8t17 t12 + 8t20

t11 + 8t19 5t14 + 8t22 12t17


we know that

C�7 =

17 12 15
14 17 12
11 14 17

 .

This method gives us even more information, for C̃m tells us how many different
trips of size m there are for a given cost. In this case we can see that there are five
trips of cost 15 and eight trips of cost 23 from city 1 to city 2 that take exactly 7
steps.

Tropical exponentiation in R has some interesting properties in its own right as
well. For instance,

x�2 = x� x = 2x

where the 2x is interpreted classically. Using the fact that x�−1 should be the
number such that x�−1 � x = 0, since 0 is the multiplicative identity, we get that
x�−1 = −x. Therefore we have

x�a = ax where a ∈ Z.

Similarly, we have that

(x⊕ y)�2 = (x⊕ y)� (x⊕ y)

= (x� x)⊕ (x� y)⊕ (y � x)⊕ (y � y)

= 2x⊕ (x� y)⊕ 2y.

In fact, since classically we have that min{2x, 2y} ≤ x+ y, the above becomes

(x⊕ y)�2 = 2x⊕ 2y = x�2 ⊕ y�2.

This in fact generalizes and we get the following theorem in the tropical semiring:

Theorem 1.1.4 (The Freshman’s Dream). In the tropical semiring, exponentiation
distributes over addition, namely

(x1 ⊕ · · · ⊕ xn)
�m = x�m1 ⊕ · · · ⊕ x�mn .
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1.2 Tropical Algebraic Geometry

Observe that in R[x1, . . . , xn], tropical monomials

x�a1
1 � · · · � x�an

n = a1x1 + · · ·+ anxn

are just ordinary linear forms where aj ∈ Z. Tropical polynomials F ∈ R[x1, . . . , xn]
are of the form

F (x1, . . . , xn) =
⊕
a∈A

ca � x�a1
1 � · · · � x�an

n = min{ca + a1x1 + · · ·+ anxn | a ∈ A}

with A ⊆ Zn finite and ca ∈ R. In fact, tropical polynomials represent piecewise
linear convex functions F : Rn → R. To ease notation, we will write

F (x) =
⊕
a∈A

ca � x�a = min{ca + a · x | a ∈ A}

where x�a = x�a1
1 � · · · � x�an

n and a · x = a1x1 + · · ·+ anxn.

Example 1.2.1. Let F be the tropical polynomial in R[x1, x2] where

F (x1, x2) = (3� x�2
1 )⊕ (1� x1 � x2)⊕ (3� x�2

1 )⊕ (4� x1)⊕ (4� x2)⊕ 8

= min{3 + 2x1, 1 + x1 + x2, 3 + 2x2, 4 + x1, 4 + x2, 8}.

Then the graph of F is the following figure:

Figure 1.1: The tropical polynomial F (x1, x2).

Definition 1.2.2. Let F be a tropical polynomial where F (x) =
⊕

a∈A ca � x�a.
Define the tropical hypersurface to be the set T (F ) consisting of all x ∈ Rn such
that the minimum in F (x) = min{ca + a · x | a ∈ A} is obtained by at least two
a ∈ A. Equivalently, T (F ) is the set of all x ∈ Rn where F is not differentiable.
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Figure 1.2: The tropical hypersurface T (F ) for F (x1, x2) in Example 1.2.1.

It turns out that we can study these tropical hypersurfaces in the language of
algebraic geometry. However, in order to do so we need to cover some preliminaries
to allow for the translation.

Definition 1.2.3. A Puiseux series with complex coefficients is a formal power
series p(t) = c1t

a1 + c2t
a2 + · · · , where cj ∈ C and a1 < a2 < · · · are rational

numbers with a common denominator. These form a field denoted by K = C{{t}},
which is the algebraic closure of field of Laurent series C((t)) (Corollary 13.15 in (7)).

The field of Puiseux series has the valuation deg : K∗ → Q where deg(f) = a1, its
minimum exponent. This allows us to model tropical arithmetic as in Example 1.1.3,
so given p, q ∈ K we have that

deg(pq) = deg(p) + deg(q) = deg(p)� deg(q) (1.2.1)

and if the leading terms of p and q do not cancel, then

deg(p+ q) = min{deg(p), deg(q)} = deg(p)⊕ deg(q). (1.2.2)

It should be noted that this valuation also gives us a local ring of K and the ring’s
maximal ideal, which are

RK = {p ∈ K | deg(p) ≥ 0} and MK = {p ∈ K | deg(p) > 0}.

Observe that C = RK/MK .
Let f ∈ K[x] where

f(x) =
∑
a∈A

pa(t)x
a with A ⊆ Zn finite and pa(t) ∈ K∗.

Then we can associate with f a tropical polynomial trop(f) : Rn → R where

trop(f)(x) =
⊕
a∈A

deg(pa)� x�a.
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Definition 1.2.4. Let I ⊆ K[x] be an ideal. Then the tropical variety of ideal I is

T (I) =
⋂
f∈I

T (trop(f)) ⊆ Rn.

There turns out to be a strong connection, provided by the degree map, between
T (I) and the variety V (I) ⊆ (K∗)n. For an ideal I ⊆ K[x1, . . . , xn] = K[x], let
V (I) be its variety in the algebraic torus (K∗)n. So V (I) is the set of all n-tuples of
nonzero Puiseux series (p1, . . . , pn) such that f(p1, . . . , pn) = 0 for all f ∈ I ⊆ K[x].
Since what we tropically care about are the exponents of these power series, let us
enlarge K so that the exponents can be real numbers.

Definition 1.2.5. Let K̃ be the field of transfinite series with complex coefficients
and real exponents, so it consists of all power series of the form

p(t) =
∑
s∈S

cst
s

where S ⊆ R is well ordered and cs ∈ C. The well ordered condition ensures that
K̃ is closed under addition and multiplication.

The valuation for K̃ is deg : K̃∗ → R where

deg :
∑
s∈S

cst
s 7→ min{s ∈ S | cs 6= 0}.

Observe that K ( K̃ and their valuations agree on K.
Given an ideal I ⊆ K[x1, . . . , xn], let Ṽ (I) be the variety in (K̃∗)d defined by I.

We can then map Ṽ (I) to Rn by extending the degree map coordinatewise, where

deg(p1, . . . , pn) = (deg(p1), . . . , deg(pn)).

Hence deg(Ṽ (I)) ⊆ Rn where,

deg(Ṽ (I)) = {(d1, . . . , dn) ∈ Rn | (p1(t), . . . , pn(t)) ∈ Ṽ (I) and deg(pj(t)) = dj}.

It turns out (Theorem 1.2.8) that the closure of deg(V (I)) in Rn equals deg(Ṽ (I)),
which in turn equals T (I) for any ideal I ⊆ K[x].

Lastly we can also characterize T (I) using the theory of Gröbner bases, see (1)
and (22) for an introduction to the theory.

Definition 1.2.6. For w ∈ Rn, let the w-weight of the term pa(t)x
a be

wgtw(pa(t)x
a) = deg(pa) + w · a,

where pa ∈ K∗. If v is be the smallest w-weight of any term in f ∈ K[x] and
f̃(x) = f(tw1x1, . . . , t

wnxn), then t−vf̃ ∈ RK [x]. Define the initial form inw(f) to
be the residue of t−vf̃ in C[x] = RK/MK [x].
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Definition 1.2.7. Given an ideal I ⊆ K[x], define the initial ideal of I with respect
to w to be

inw(I) = 〈inw(f) | f ∈ I〉 ⊆ C[x].

Theorem 1.2.8 (Theorem 2.1 in (20)). For an ideal I ⊆ K[x] the following subsets
of Rn are equal:

1. T (I);

2. {w ∈ Rn | inw(I) contains no monomial};

3. The closure of deg(V (I)) in Rn;

4. deg(Ṽ (I)).

Example 1.2.9. Let 〈f〉 ⊆ K[x1, x2], where

f(x1, x2) = t3x2
1 + t1x1x2 + t3x2

2 + t4x1 + t4x2 + t8

and therefore

trop(f)(x1, x2) = (3� x�2
1 )⊕ (1� x1 � x2)⊕ (3� x�2

1 )⊕ (4� x1)⊕ (4� x2)⊕ 8.

Observe that trop(f)(x1, x2) = F (x1, x2) from Example 1.2.1. By Theorem 1.2.8,
for w ∈ R2, we should expect that inw(f) is not a monomial only if w ∈ T (F ). If
w = (3, 1) ∈ R2, the w-weights of the terms in f are

wgtw(t3x2
1) = 3 + (3, 1) · (2, 0) = 9 wgtw(t1x1x2) = 1 + (3, 1) · (1, 1) = 5

wgtw(t3x2
2) = 3 + (3, 1) · (0, 2) = 5 wgtw(t4x1) = 4 + (3, 1) · (1, 0) = 7

wgtw(t4x2) = 4 + (3, 1) · (0, 1) = 5 wgtw(t8) = 8 + (3, 1) · (0, 0) = 8

and therefore the smallest w-weight among the terms in f is v = 5. Now

f̃(x1, x2) = f(t3x1, t
1x2) = t9x2

1 + t5x1x2 + t5x2
2 + t7x1 + t5x2 + t8,

so therefore

t−vf̃(x1, x2) = t−5f̃(x1, x2) = t4x2
1 + x1x2 + x2

2 + t2x1 + x2 + t3.

This mean that the residue of t−vf̃ ∈ C[x1, x2] is

inw(f) = x1x2 + x2
2 + x2,

so inw(f) is not a monomial. If we check Figure 1.2 we can verify that indeed
w = (3, 1) ∈ T (F ), as predicted by Theorem 1.2.8. In fact, the minimum in F (w)
is obtained three times, by 1 � w1 � w2 = 3 � w�2

2 = 4 � w2 = 5 and these terms
correspond to the terms in inw(f).





Chapter 2

Two Ranks of a Tropical Matrix

2.1 The Kapranov Rank

One way of defining the classical rank of a matrix M ∈ Rn×m is that rank(M) is
the smallest dimension of any linear space in Rn containing the columns of M . It is
this sense of rank that the Kapranov rank models for tropical matrices.

Definition 2.1.1. A tropical linear space in Rn is any tropical variety T (I) where
I ⊆ K̃[x] is an ideal generated by linear forms p1(t)x1+· · ·+pn(t)xn where pj(t) ∈ K̃.
The dimension of T (I) is given by n minus the minimal number of generators of I.

Definition 2.1.2. The Kapranov rank of M ∈ Rn×m, denoted k-rank(M), is the
smallest dimension of any tropical linear space in Rn containing the columns of M .

We will now present a different characterization of the Kapranov rank, which
will allow us to compute the Kapranov rank with Gröbner bases. Let Jr be the
ideal generated by all (r + 1) × (r + 1) subdeterminants of the n × m matrix of
indeterminates (xij). Jr has the property that F ∈ (K̃∗)n×m has classical rank
at most r if and only if F ∈ Ṽ (Jr), for being in Ṽ (Jr) simply means that every
(r + 1)× (r + 1) subdeterminant is zero.

Definition 2.1.3. Let M ∈ Rn×m and F ∈ (K̃∗)n×m, then F is a lift of M if
deg(F ) = M .

Theorem 2.1.4 (Theorem 3.3 in (5)). Let M = (mij) ∈ Rn×m, then the following
are equivalent:

1. k-rank(M) ≤ r

2. M ∈ T (Jr)

3. There exists a lift F of M with classical rank in K̃n×m at most r.

Proof. The equivalence (2 ) and (3 ) follows directly from the definition of the tropical
variety and preceding discussion about the connection between rank and member-
ship in Ṽ (Jr).
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Suppose (3 ) holds, so there is a lift F of M where the rank of F is at most r.
Let V be an r-dimensional linear subspace of K̃n, which contains the columns of F .
Hence V is defined by an ideal I of n− r linearly independent linear forms in K̃[x].
This gives that M ⊆ T (I) where T (I) is a linear tropical space of dimension r.
Therefore k-rank(M) ≤ r.

Suppose (1 ) holds, so k-rank(M) ≤ r. Let L be a tropical linear space of
dimension r containing the columns of M . Let I ⊆ K̃[x] an ideal generated by
linear form such that L = T (I). Then by the definition of T (I), for each column
of M there exists a preimage, under the degree mapping, in Ṽ (I) ⊆ (K̃∗)n. Let
F ∈ K̃n×m be the matrix whose columns are preimages in Ṽ (I) of the columns of
M . So F is a lift of M and since the columns of F are in the variety defined by I
we have rank(F ) ≤ r.

Corollary 2.1.5 (Corollary 3.4 in (5)). The Kapranov rank of M ∈ Rn×m is the
smallest rank in (K̃∗)n×m of any lift of M .

Corollary 2.1.6. The Kapranov rank of M ∈ Rn×m is invariant under transpo-
sition, any permutation of its rows or columns, and tropically scaling any row or
column.

Corollary 2.1.7. If M ∈ Rn×m has two identical columns (rows), then the matrix M̃

obtained by removing a duplicate column (row) is such that k-rank(M̃) = k-rank(M).

Using Theorem 1.2.8 and Theorem 2.1.4, we can give an algorithm using Gröber
bases to compute the Kapranov rank, which is from (5).

Algorithm to Compute the Kapranov Rank: Let M ∈ Rn×m and we want to
know whether or not k-rank(M) > r.

Step 1: First fix a term order ≺M on C[x], where x is the n × m matrix of inde-
terminates xij, which is a refinement of the partial ordering on monomial using the
weight vector M .

Step 2: Compute the reduced Gröber basis G of Jr for the term order ≺M . For each
g ∈ G, let inM(g) be its leading form with respect to the partial ordering due to the
weight vector M .

Step 3: The ideal generated by the leading forms {inM(g) | g ∈ G} is the initial

ideal inM(Jr). Let xall =
∏

ij xij, then compute the saturation

(inM(Jr) : 〈xall〉∞) = {f ∈ C[x] | f · (xall)s ∈ inM(Jr) for some s ∈ N}, (2.1.1)

which can be computed by various computational commutative algebra programs,
such as CoCoA.

The reason this algorithm computes the Kapranov rank is because of the following
theorem

Theorem 2.1.8 (Corollary 3.7 in (5)). A matrix M ∈ Rn×m has k-rank(M) > r if
and only if the ideal in (2.1.1) is the unit ideal 〈1〉.
This will be the algorithm we use in the appendix to compute the Kapranov rank
of various 5× 5 zero-one matrices.
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2.2 The Tropical Rank and Determinant

Another way of defining the classical rank of a matrix is to use the determinant,
where the rank of M is the size of the largest square submatrix of M with nonzero
determinant. In the tropical case this becomes the following:

Definition 2.2.1. M = (mij) ∈ Rr×r is tropically singular if the minimum in

det(M) =
⊕
σ∈Sr

m1σ(1) � · · · �mrσ(r) = min{m1σ(1) + · · ·+mrσ(r) | σ ∈ Sr}

is attained at least twice, where Sr is the symmetric group on r elements.. The
tropical rank of a matrix M ∈ Rn×m is the largest integer r such that M has a
nonsingular r × r minor. This will be denoted as t-rank(M) = r.

It will turn out that the tropical rank is not equivalent to the Kapranov rank
(Theorem 3.5.3), but for now we have that the tropical rank is a lower bound for
the Kapranov rank.

Theorem 2.2.2 (Proposition 4.1 in (5)). For every M ∈ Rn×m we have that

t-rank(M) ≤ k-rank(M).

Proof. Suppose M has a r× r minor M ′ that is tropically nonsingular. Then every
lift F ′ of M ′ is classically nonsingular since the smallest exponent of t in its clas-
sical determinant occurs exactly once. Therefore by Theorem 2.1.4 it follows that
r ≤ k-rank(M).

Example 2.2.3. Let M ∈ R3×3 be the matrix

M =

2 7 7
1 3 −2
1 3 −2

 .

Observe that the upper-left 2× 2 minor

M ′ =

(
2 7
1 3

)
is tropically nonsingular, because

m′
11 �m′

22 = 5 < 7 = m′
12 �m′

21.

Therefore 2 ≤ t-rank(M). However k-rank(M) ≤ 2, for

F =

t2 + t5 t7 t7

t1 t3 t−2 + 1
t1 t3 t−2 + 1


is a lift of M , since deg(F ) = M , and the classical rank of F in K̃3×3 is 2. Hence
by Corollary 2.1.5 we know that k-rank(M) ≤ 2. By Theorem 2.2.2 we have that

2 ≤ t-rank(M) ≤ k-rank(M) ≤ 2,

so therefore t-rank(M) = 2 = k-rank(M).
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In (5), the following two sufficient conditions for k-rank(M) = t-rank(M) are given:

Theorem 2.2.4 (Theorem 5.5 in (5)). For a matrix M ∈ Rn×m,

k-rank(M) = n or k-rank(M) = m only if t-rank(M) = k-rank(M).

Theorem 2.2.5. For a matrix M ∈ Rn×m,

t-rank(M) ≤ 2 only if t-rank(M) = k-rank(M).

Proof. For the case where t-rank(M) = 2, see Theorem 6.5 in (5).
If t-rank(M) = 1, we know by definition that Mij +Mkl = Mil +Mkj for all i, j,

k, and l. Let F ∈ (K̃∗)n×m be given by Fij = tMij . Then FijFkl − Fil + Fkj = 0, so
rank(F ) < 2. Hence k-rank(M) = 1.

Therefore if t-rank(M) ≤ 2, then t-rank(M) = k-rank(M).

It follows from these two theorems that if M ∈ Rn×m and t-rank(M) 6= k-rank(M),
then n or m is at least 5. In the appendix we set up the computer computations
that use Theorem 2.1.8 to prove the following:

Theorem 2.2.6. If M ∈ {0, 1}n×n and t-rank(M) 6= k-rank(M), then n ≥ 6.

Many properties of the classical determinant and rank also hold for the tropical
determinant and rank. We will now flush out those similarities. To ease notation,
for M ∈ Rr×r let ∆M : Sr → R be defined by

∆M(σ) = m1σ(1) � · · · �mrσ(r) =
r∑
i=1

miσ(i).

Hence we have the compact formula det(M) =
⊕

σ∈Sr
∆M(σ).

Proposition 2.2.7. If M ∈ Rr×r, then det(M) = det(M t).

Proof. Observe that ∆M(σ) =
∑r

i=1miσ(i) =
∑r

i=1mσ−1(i)i = ∆Mt(σ−1). Hence

det(M) =
⊕
σ∈Sr

∆M(σ) =
⊕
σ∈Sr

∆Mt(σ−1) =
⊕
σ∈Sr

∆Mt(σ) = det(M t).

Therefore det(M) = det(M t).

Corollary 2.2.8. For M ∈ Rn×m, t-rank(M) = t-rank(M t).

Proof. Suppose t-rank(M) = r, so there is an r × r nonsingular minor A. Let A
consist of the rows {x1, . . . , xr} and columns {y1, . . . yr}. Now let B ∈ Rr×r be the
minor in M t consisting of the rows {y1, . . . yr} and the columns {x1, . . . , xr}. Then
B = At.

In Proposition 2.2.7, we showed that ∆A(σ) = ∆At(σ−1). Since ∆A(σ) achieves
its minimum exactly once, ∆B(σ−1) achieves its minimum exactly once as well.
Therefore B is an r × r nonsingular minor of M t, so t-rank(M) = r ≤ t-rank(M t).

Therefore by symmetry, t-rank(M) = t-rank(M t).
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Proposition 2.2.9. For M ∈ Rr×r, det(M) is invariant under any permutation of
the rows and columns of M .

Proof. By Proposition 2.2.7, it suffices to prove that if W is the matrix obtained
by permuting the rows in M by τ ∈ Sr, then det(M) = det(W ). Observe that
mij = wτ(i)j, so we have that

∆M(σ) =
r∑
i=1

miσ(i) =
r∑
i=1

wτ(i)σ(i)

r∑
i=1

wi σ◦τ−1(i) = ∆W (σ ◦ τ−1).

This gives the following:

det(M) =
⊕
σ∈Sr

∆M(σ) =
⊕
σ∈Sr

∆W (σ ◦ τ−1) = det(W ).

Therefore det(M) = det(W ).

Corollary 2.2.10. For M ∈ Rn×m, t-rank(M) is invariant under any permutation
of its rows and columns.

Proof. By Corollary 2.2.8, it suffices to prove that if W is the matrix obtained by
permuting the rows in M by τ ∈ Sr, then t-rank(M) = t-rank(W ).

Suppose that t-rank(M) = r, so there is an r × r nonsingular minor A. Let A
consist of the rows {x1, . . . , xr} and columns {y1, . . . yr}. Now let B ∈ Rr×r be the
minor in W consisting of the rows τ({x1, . . . , xr}) and columns {y1, . . . yr}. Then
there exists ψ ∈ Sr such that B = Aψ where Aψ is the image of A after having its
rows permuted by ψ.

Then by Proposition 2.2.9, we know that ∆A(σ) = ∆B(σ ◦ ψ−1). Since ∆A(σ)
obtains its minimum only we we that ∆B(σ ◦ψ−1) obtains it minimum only once as
well, so B is a nonsingular r × r minor of W . Hence t-rank(M) = r ≤ t-rank(W ).

Therefore by symmetry t-rank(M) = t-rank(W ).

Remark 2.2.11. Proposition 2.2.9 makes our life easy for within proofs we can assume
without loss of generality that det(M) = ∆M(e) where e ∈ Sr is the identity element.

Proposition 2.2.12. The tropical determinant and ∆(•)(σ), for σ ∈ Sr, are both
r-tropical linear functions mapping Rr×r to R.

Proof. By Proposition 2.2.9 it suffices to prove tropically linearity in the first row.
Let M,N ∈ Rr×r be such that n1 = c � m1 for some c ∈ R and nj = mj for

j ≥ 2. We then have the following:

∆N(σ) =
r∑
i=1

niσ(i) = (c+mjσ(j)) +
∑
i6=j

miσ(i) = c+
r∑
i=1

miσ(i) = c�∆M(σ).

Hence ∆N(σ) = c�∆M(σ) and det(N) = c� det(M).
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Now let A,B ∈ Rr×r where ai = bi = mi for i ≥ 2. So,

∆A⊕B(σ) = (A⊕B)1σ(1) +
r∑
i=2

(A⊕B)iσ(i) = min(a1σ(1), b1σ(1)) +
r∑
i=2

miσ(i)

= ∆A(σ)⊕∆B(σ) since ai = bi = mi for i ≥ 2.

Hence ∆A⊕B(σ) = ∆A(σ) ⊕∆B(σ) and det(A ⊕ B) = det(A) ⊕ det(B). Therefore
the tropical determinant and ∆(•)(σ) are r-tropically linear functions.

Proposition 2.2.13. Let M ∈ Rn×m, and N ∈ Rn×m where N is a matrix obtained
by tropically scaling the rows and columns of M . Then t-rank(M) = t-rank(N).

Proof. Let t-rank(M) = r, A be a nonsingular r × r minor in M , and let B be
the corresponding r × r minor in W . Since B can be obtained by scaling the rows
and columns of A, by Proposition 2.2.12 we know that there is c ∈ R such that
∆B(σ) = c+∆A(σ). Since A is nonsingular, it follows that B is an r×r nonsingular
minor of W and hence t-rank(M) = r ≤ t-rank(W ). Therefore by symmetry,
t-rank(M) = t-rank(W ).

From the above we see that we have two tropical rank preserving row-operations,
permuting rows and scaling rows. However adding one row to another does not
preserve the tropical rank of a matrix as illustrated by the following example:

Example 2.2.14. Let L,M ∈ R2×2 where

L =

(
1 2
0 0

)
and M =

(
0 0
0 0

)
.

Then M can be obtained by tropically adding the second row of L to the first row.
However we can see that t-rank(L) = 2 but t-rank(M) = 1, so unlike the classical
case, adding one row to another does not preserve the tropical rank of a matrix.

Likewise in the classical case, adding one row of a matrix to another row leaves
the determinant unchanged. However this does not happen in the tropical setting for
det(L) = 1 and det(M) = 0. Without this third row-operation Gaussian elimination
does not work for to compute the tropical rank of matrices. One can think of
Gaussian elimination as a polynomial time algorithm for computing the classical
rank of a matrix, so while Gaussian elimination does not work in the tropical setting
perhaps it could have a tropical analogue. Unfortunately, in Chapter 4 we will prove
that computing the tropical rank of a zero-one matrix is NP-complete, which will
mean that is it highly unlikely that there is no analogue to Gaussian elimination for
tropical matrices.

However we do have the Hungarian method (12), (15), which by only tropi-
cally scaling rows and columns turns a square matrix into a nonnegative matrix
with tropical determinant equal to zero. Furthermore the Hungarian method is a
polynomial time algorithm which can compute the tropical determinant, which is
surprising since a brute force algorithm would have have to check n! permutations
for an n× n matrix.
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The Hungarian Method: Take a matrix M = {m1, . . . ,mn} ∈ Rn×n.

Step 1: For each row, subtract its minimum value from each entry in the row. This
corresponds to mi := −(

⊕
jmij)�mi and the resulting matrix is nonnegative.

Step 2: For each column, subtract its minimum value from each entry in the column.
This is just applying Step 1 to the transpose of M and then transposing back.

Step 3: Select rows and columns in a minimal way such that each 0 in the matrix is
in one of the selected rows or columns. If the number of rows and columns chosen
is n, then for the resulting matrix N , there exists σ ∈ Sn such that ∆N(σ) = 0.
Otherwise, continue to Step 4.

Step 4: Let m be the smallest entry in M that lies in none of the chosen rows
and columns. Then subtract m from each element not in the chosen rows and
column, and add m to each element that is in both a chosen row and column. This
corresponds to tropically scaling each chosen row and column by m and then scaling
every entry by −m. Go back to Step 3.

Example 2.2.15. Let M ∈ R4×4 be the matrix

M =


3 5 4 7
−1 1 3 −2
1 2 0 −3
5 6 3 4

 .

We will use the Hungarian method to compute the tropical determinant of M . For
Step 1, we subtract 3 from the 1st row, −2 from the 2nd row, −3 from the 3rd row,
and 3 from the 4th row to obtain the matrix

0 2 1 4
1 3 5 0
4 5 3 0
2 3 0 1

 .

For Step 2, we subtract 2 from the 2nd column to obtain the matrix
0 0 1 4
1 1 5 0
4 3 3 0
2 1 0 1

 .

For Step 3, we can cover all the zeros with three choices namely the 1st row the 4th
row, and the 4th column 

0 0 1 4
1 1 5 0
4 3 3 0
2 1 0 1

 .

Since we covered the zeros with three rows and columns, we move onto Step 4. We
can see that m = 1 is the smallest entry outside of each chosen row and column, so
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we subtract 1 from every entry and add 1 to each chosen row and column to obtain
the matrix

N =


0 0 1 5
0 0 4 0
3 2 2 0
2 1 0 2

 .

Going back to Step 3, there is no way to cover the zeros in N except by choosing 4
rows and columns, so there exists a σ ∈ S4 such that ∆N(σ) = 0. In this case there
are exactly two permutations namely, (34) and (12)(34). These same permutations
give the determinant for M , so therefore

det(M) = ∆M((34)) = 5 +−1 +−3 + 3 = 4 = 3 + 1 +−3 + 3 = ∆M((12)(34)).

Hence we see also that M is tropically singular with t-rank(M) ≤ 3.

As a direct consequence of Proposition 2.2.12 and Proposition 2.2.13 we have
the following:

Proposition 2.2.16. Let M ∈ Rn×n and H be the matrix resulting from the Hun-
garian method. Then for σ ∈ Sn, ∆M(σ) = det(M) iff ∆H(σ) = 0. Furthermore,
t-rank(M) = t-rank(H).

Therefore any question about the tropical rank or determinant of a square matrix
can be reduced to a question about the tropical rank or determinant of a nonneg-
ative square matrix with determinant equal to zero. We end this section with an
alternative characterization of the tropical rank.

Definition 2.2.17. V ⊆ Rn is tropically convex if (a � x) ⊕ (b � y) ∈ V for all
x,y ∈ V and a, b ∈ R.

Since a tropically convex set V is closed under scalar multiplication, this means
that λ� x = λ(1, . . . , 1) + x ∈ V for all λ ∈ R and x ∈ V . Therefore it makes sense
to identify V with its image in the (n− 1)-dimensional tropical projective space:

TPn−1 = Rn/(1, . . . , 1)R.

The tropical convex hull of S ⊆ Rn, denoted tconv(S), is the smallest convex set
containing S. In fact,

tconv(S) =

{
m⊕
j=1

aj � xj | xj ∈ S, aj ∈ R

}
.

Theorem 2.2.18 (Theorem 4.2 in (5)). Let M ∈ Rn×m be a matrix, then the tropical
rank of M equals one plus the dimension of the tropical convex hull of the columns
of M in TPn−1.
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2.3 The Tropical Rank of Zero-One Matrices

In (5), a combinatorial formula is given for the tropical rank of a zero-one matrix,
or any matrix with two distinct entries. Given x ∈ Rn where x = (x1, . . . , xn) define
the zeros of x to be

Z(x) = {j | xj = 0}. (2.3.1)

Then define the zero poset of V ⊆ Rn to be

poset(V ) =

{⋃
x∈S

Z(x) | S ⊆ V

}
, (2.3.2)

which has a partial ordering given by set inclusion. Finally define the length of
poset(V ) to be the number of elements in a chain of maximum length in poset(V ),
which will be denoted length(V ). For a matrix M , let length(M) = length(V ) where
V is the set of the column vectors of M . Observe that length(M) is invariant under
a permutation of its rows and columns.

Theorem 2.3.1 (Proposition 4.3 in (5)). Given a zero-one matrix M ∈ {0, 1}n×m
with no column of all ones, then t-rank(M) = length(M) where M is seen as a set
of its column vectors.

In (5), the proof that length(M) ≥ t-rank(M) claims that if N ∈ {0, 1}r×r is
nonsingular then N can be transformed by row and column permutations into a
matrix with 1’s above the diagonal and 0’s on and below the diagonal. However the
following matrix provides a simple counterexample to this claim:(

0 1
1 0

)
.

However, one only needs to show that N can be transformed into a matrix with 0’s
on and 1’s below the diagonal, which we will call being in standard form. We will
give an constructive proof that this is possible, but first we need a few preliminaries.

Definition 2.3.2. A zero-one matrix N ∈ {0, 1}r×r is in standard form if nii = 0
for all i and nij = 1 if i > j.

Example 2.3.3. If N ∈ {0, 1}3×3 is in standard form, then

N =

0 n12 n13

1 0 n23

1 1 0

 .

Observe that if N is in standard form, then N has full t-rank and full length.
The main idea of the proof of Theorem 2.3.1 will be to find a standard form r × r
minor N of the matrix M given that t-rank(M) = r.



20 CHAPTER 2. TWO RANKS OF A TROPICAL MATRIX

Example 2.3.4. Let M ∈ {0, 1}4×4 be the matrix

M =


1 1 1 1
1 0 1 0
1 0 0 0
0 1 0 1

 .

The top-left 3 × 3 minor of M is nonsingular, because e ∈ S3 is only element such
that m1σ(1) +m2σ(2) +m3σ(3) ≤ 1. Therefore t-rank(M) ≥ 3. However

m11 +m22 +m34 +m43 = 1 = m14 +m22 +m33 +m41

and det(M) ≥ 1, since m1j = 1, so M is tropically singular. Therefore t-rank(M) =
3. Let N ∈ {0, 1}3×3 be the minor of M consisting of the fourth, third, and second
rows of M and the first, third, and second columns of M ,

N =

0 0 1
1 0 0
1 1 0

 .

Hence N is a minor of M in standard form. Now let c1, c2, c3, c4 ∈ {0, 1}4 be the
columns of M , so Z(c1) = {4}, Z(c2) = {2, 3}, Z(c3) = {3, 4}, and Z(c4) = {2, 3}.
Using the order of the columns in N we see that

Z(c1) ( Z(c1) ∪ Z(c3) ( Z(c1) ∪ Z(c3) ∪ Z(c2)

is a chain of length 3 in poset(M), because

Z(c1) = {3}, Z(c1) ∪ Z(c3) = {3, 4}, and Z(c1) ∪ Z(c3) ∪ Z(c2) = {2, 3, 4}.

Therefore we have turned our knowledge of the fact that t-rank(M) = 3 into a chain
of length 3 in poset(M).

Now any zero-one matrix N ∈ {0, 1}r×r defines a bipartite graph G(N). The
vertices are partitioned into A = {a1, . . . , ar} and B = {b1, . . . , br}, and {ai, bj} is
an edge iff nij = 0.

In a bipartite graph G = (V,E) with vertex partition V = A ∪ B, subgraph
X = (V,E(X)) is a complete matching if there exists a bijection σ : A → B such
that {a, b} ∈ E(X) iff σ(a) = b. The following lemma gives a necessary condition
for a bipartite graph to have a unique complete matching.

Lemma 2.3.5 (Lemma on p. 89 in (13)). Let G = (V,E) be a bipartite graph with
vertex partition V = A ∪ B and a unique complete matching X. Then there exists
an edge {a, b} ∈ E(X), where a ∈ A and b ∈ B, such that

{a, b′} /∈ E(G) for all b′ ∈ B \ {b}.

We can now present our proof of Theorem 2.3.1.
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Proof of Theorem 2.3.1. Let M ∈ {0, 1}n×m with no column of all ones.
Suppose that length(M) = r. Observe that for zero-one vectors x and y that

Z(x ⊕ y) = Z(x) ∪ Z(y). Hence without loss of generality we can suppose that
each element of poset(M) corresponds to a column of M since adding a column to
M that already is in the tropical span of its columns does not change the tropical
rank of M by Theorem 2.2.18. Therefore, length(M) = r implies that there are r
columns in M with their zeros forming a chain of length r. From these r columns we
can select an r× r minor of M such that, up to a permutation of rows and columns,
there are zeros on the diagonal and ones below the diagonal. Hence this minor will
be in standard form and tropically nonsingular. Therefore t-rank(M) ≥ r.

Conversely, suppose that t-rank(M) = r so there exists a nonsingular r×r minor
N with minimal tropical determinant. We will prove that length(N) = r, which will
imply that length(M) ≥ r. The fact that N is nonsingular means that ∆N obtains
its minimum exactly once, and without loss of generality suppose ∆N(e) is the
minimum where e ∈ Sr is the identity. Observe that ∆N(e) ≤ 1 for if nii = njj = 1,
then nij + nji ≤ nii + njj and hence ∆N((ij)) ≤ ∆N(e), which is a contradiction.

In fact ∆N(e) = 0. For suppose otherwise that ∆N(e) = 1, then we have an
unique diagonal element njj = 1 and without loss of generality we may assume
n11 = 1. Since N is nonsingular and det(N) = ∆N(e) = 1, we know that ∆N(σ) > 1
for all σ ∈ Sr \ e. In particular if j 6= 1, then

1 < ∆N((1j)) = n1j + nj1 +
∑
i6=1,j

nii. (2.3.3)

However, nii = 0 if i 6= 1, since n11 is the unique diagonal element equal to 1, so
(2.3.3) becomes

1 < ∆N((1j)) = n1j + nj1. (2.3.4)

Therefore it follows from (2.3.4) that n1j = nj1 = 1 for all j 6= 1, and hence the
first row and column in N is all ones. Since M does not have a column of all ones,
it follows that we can choose K, an r × r minor of M where k11 = 0 and kij = nij
for i 6= 1. The idea here is that we can choose a row of M , which has a 0 in the
column that corresponds to the first column in N . Observe that det(K) = 0 since
∆K(e) = 0, and if ∆K(σ) = 0 then σ(1) = 1 for k11 is the only entry in the first
column of K that is equal to 0. For σ ∈ Sr such that σ(1) = 1, we have that
∆N(σ) = 1 + ∆K(σ) since n11 = 1, k11 = 0 and kij = nij for i 6= 1. Hence K is
a nonsingular r × r minor of M with tropical determinant zero, which contradicts
that N , with det(N) = 1, has minimal tropical determinant among the nonsingular
r × r minors. Therefore, in fact det(N) = ∆N(e) = 0.

The fact that N is tropically nonsingular with tropical determinant ∆N(e) = 0,
implies that G = G(N) has a unique complete matching. First G has a complete
matching X given by the identity permutation e ∈ Sr, since {ai, bi} ∈ E(G) (i.e.
nii = 0) for all i. Let X ′ be a complete matching, then we have a permutation
σ′ ∈ Sr such that {ai, bσ′(i)} ∈ E(G) and hence niσ′(i) = 0. However this means that
∆N(σ′) =

∑r
i=1 niσ′(i) = 0, and since N is nonsingular σ′ = e. Hence X ′ = X.

By the lemma, there exists a column in N with exactly one 0, and so a permu-
tation of rows and columns transforms N into N ′ where n′11 = 0 and n′i1 = 1 for
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i 6= 1. Proceeding to the nonsingular (r − 1) × (r − 1) lower-right minor of N ′, by
induction on r it follows a permutation of rows and columns transforms N into a
matrix N ′ that is in standard form. Since a matrix in standard form has full length,
we know length(N ′) = r. Therefore length(N) = r.

Observe that in our proof of 2.3.1, we proved the following two propositions.

Proposition 2.3.6. Let M ∈ {0, 1}n×m be a matrix with no column of all ones and
t-rank(M) = r. Then for all a ≤ r there exists an a × a nonsingular minor with
tropical determinant zero.

Proposition 2.3.7. Let N ∈ {0, 1}r×r be tropically nonsingular, then det(N) ≤ 1.
Furthermore, det(N) = 0 iff N has no column (or row) of all ones.

We can use this proposition to prove an upper bound on the sum of the tropical
rank and tropical determinant of a zero-one matrix.

Proposition 2.3.8. Let M ∈ {0, 1}n×n then t-rank(M) + det(M) ≤ 1 + n.

Proof. Let t-rank(M) = r, so without loss of generality we may assume that N , the
upper left r × r minor of M is tropically nonsingular. Furthermore, without loss
of generality we may assume that ∆N(e) = det(N) where e ∈ Sr is the identity.
Finally by Proposition 2.3.7 we know det(N) ≤ 1. Hence for the identity e ∈ Sn,

det(M) ≤ ∆M(e) =
n∑
i=1

mii =
r∑
i=1

mii+
n∑

i=r+1

mii = det(N)+
n∑

i=r+1

mii ≤ 1+(n− r).

Therefore t-rank(M) + det(M) ≤ 1 + n.

One might hope that these results could be generalize to arbitrary matrices by
means of the Hungarian method. To this end, say that a matrix H ∈ Rn×n is in the
Hungarian form if H is nonnegative and det(H) = 0.

Lemma 2.3.9. Let ϕ : Rn×n → {0, 1}n×n where

ϕ(M)ij =

{
0 if mij = 0

1 if mij 6= 0
.

If H ∈ Rn×n is in the Hungarian form, then t-rank(ϕ(H)) ≤ t-rank(H).

Proof. Suppose that t-rank(ϕ(H)) = r. By Proposition 2.3.6, there exists a non-
singular r × r minor N of ϕ(H) such that det(N) = 0. Then for the corre-
sponding minor N ′ of H, det(N ′) = 0 and N ′ is nonsingular unless there are two
σ ∈ Sr such that ∆N(σ) = ∆N ′(σ) = 0. Hence r ≤ t-rank(H) and therefore
t-rank(ϕ(H)) ≤ t-rank(H).
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Unfortunately we do not have that t-rank(ϕ(H)) = t-rank(H) for all matrices in
the Hungarian form as the following counterexample illustrates. Let H ∈ R4×4 be
the matrix in Hungarian form where

H =


0 0 2 2
0 0 1 2
0 0 0 0
0 0 0 0

 and ϕ(H) =


0 0 1 1
0 0 1 1
0 0 0 0
0 0 0 0

 .

Observe t-rank(H) = 3, but by Theorem 2.3.1 we know that t-rank(ϕ(H)) = 2.
Therefore in general all we can say for a matrix H in the Hungarian form is that
t-rank(ϕ(H)) ≤ t-rank(H).

However we can use Proposition 2.2.16 and Lemma 2.3.9 to extend half of The-
orem 2.3.1 to arbitrary square matrices.

Proposition 2.3.10. Let M ∈ Rn×n, H be a matrix obtained by applying the
Hungarian method to M , ϕ the map from Lemma 2.3.9. Then length(ϕ(H)) ≤
t-rank(M).

Proof. By Theorem 2.3.1, Lemma 2.3.9, and Proposition 2.2.16 we know that

length(ϕ(H)) = t-rank(ϕ(H)) ≤ t-rank(H) = t-rank(M).

Therefore length(ϕ(H)) ≤ t-rank(M).





Chapter 3

Matroids

3.1 The Axioms and Basic Properties

There are numerous ways of axiomatizing the concept of a matroid. We refer the
reader to the standard book (16), but perhaps the most intuitive notion of a matroid
is as a combinatorial generalization of independent sets of vectors in a vector space.
Suppose that you had a finite subset E of a vector space V and you formed the
collection I of all subsets of E that are linearly independent sets in V . Then I
would satisfy (I1), (I2), and (I3) from below, and we will make these the axioms of
a matroid.

Definition 3.1.1. A matroid M is an ordered pair (E, I) where E is a finite set
and I ⊆ 2E such that:

(I1) ∅ ∈ I.

(I2) If A ∈ I and A′ ⊆ A, then A′ ∈ I.

(I3) If A1, A2 ∈ I and |A1| < |A2|, then exists e ∈ A2 \ A1 such that (A1 ∪ e) ∈ I.

E is called the ground set of M and sets in I are called independent sets of M. A
subset of E not in I is called dependent.

Example 3.1.2. Given a matrix M ∈ Cn×m, let E be the set of the m column
vectors from M in Cn and let I be those subsets of E that are linearly independent.
Then (E, I) is a matroid and matroids that can be realized in this form are said
to be C-representable. By Theorem 3.4.12, it turns out that matroids that are not
C-representable lead to matrices with distinct Kapranov and tropical ranks

Now that we have independent sets, a natural choice for the name of a maximal
independent set is a basis.

Definition 3.1.3. Let M = (E, I) be a matroid. A set I ∈ I is a basis if I is
maximal in I with respect to set inclusion. Denote the set of bases as B.

Lemma 3.1.4. In a matroid M = (E, I), if B1, B2 ∈ B, then |B1| = |B2|. Fur-
thermore if I ∈ I and |I| = |B1|, then I ∈ B.
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Proof. Let B1, B2 ∈ B, and suppose that |B1| < |B2|. Then by (I3) we have that
there exists e ∈ B2 \B1 such that (B1 ∪ e) ∈ I. However this contradicts that B1 is
maximal in I. Therefore |B1| = |B2|.

For the second part, observe that if I is not a basis, then we have I ′ ∈ I with
|I ′| > |I| = |B1|. By (I3) this means that there exists e ∈ I ′ \ B1 such that
(B1 ∪ e) ∈ I, contradicting that B1 is maximal in I. Therefore I ∈ B.

Lemma 3.1.5. The set of bases B in a matroid M satisfies the following:

(B1) B 6= ∅.

(B2) If B1, B2 ∈ B and x ∈ B1 \ B2, then there exists y ∈ B2 \ B1 such that
(B1 \ x) ∪ y ∈ B.

Proof. Since I is finite and nonempty, it follows that B is nonempty for maximal
elements must exist in I, proving (B1).

For (B2), we know that B1 \ x ∈ I by (I2) and Lemma 3.1.4 tells us that
|B1| = |B2|. Since |B1 \ x| < |B2|, by (I3) we have

y ∈ B2 \ (B1 \ x) ⊆ B2 \B1 (3.1.1)

such that (B1 \x)∪ y ∈ I. By Lemma 3.1.4, we know that (B1 \x)∪ y ∈ B because
|(B1 \ x) ∪ y| = |B1|. Therefore there exists y ∈ B2 \B1 such that (B1 \ x)∪ y ∈ B,
proving (B2).

It turns out that (B1) and (B2) provide an equivalent axiomization of matroids.

Theorem 3.1.6 (Theorem 1.2.3 in (16)). Let E be a finite set and B a collection of
subsets of E that satisfies (B1) and (B2). Let I = {I ⊆ E | I ⊆ B for some B ∈ B}
be the collection of subsets of sets in B. Then M = (E, I) is a matroid where I
satisfies (I1), (I2), and (I3) and M has B as the set of its bases.

Example 3.1.7. Let G = (V,E) be the graph in Figure 3.1. Let I ⊆ 2E be the
collection of forests in G, so for example {1, 2, 3, 4} ∈ I, but {1, 2, 3, 4, 5} /∈ I. Then
MG = (E, I) is a matroid. Its set of bases B is the collection of spanning forests
in G, for example {1, 2, 3, 4, 6, 8} is a basis in MG. The circuits in the graph G,
{5, 6, 7} for example, will correspond to the the minimal dependent sets in MG.
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Figure 3.1: The Diagram D1 with labels added using psfrag.

Furthermore for X ⊆ E in the matroid M,

X is independent if and only if C ! X for all C ∈ C.

Proposition 3.1.9. Let M = (E, I) be a matroid. If I ⊆ E is independent and
(I ∪ e) ⊆ E is dependent, then there is a unique circuit C in M such that

e ∈ C ⊆ (I ∪ e).

Proof. Since (I ∪ e) is dependent, there exists a circuit C ⊆ (I ∪ e) and any such
circuit must contain e, for any subset of I is independent. Therefore if C1 and C2 are
two such circuits, then by (C3) there exists a circuit C3 ⊆ (C1∪C2)\e ⊆ I, which is
a contradiction. Therefore there is a unique circuit C such that e ∈ C ⊆ (I ∪e).

Corollary 3.1.10. Given a basis B and e ∈ E \B, there is a unique circuit C(e, B)
such that e ∈ C(e, B) ⊆ (B ∪ e). We say that C(e, B) is the fundamental circuit of
e with respect to B.

Lemma 3.1.11. The set of bases B of a matroid M = (E, I) satisfies:

(B2)* If B1, B2 ∈ B and x ∈ B2 \ B1, then there exists y ∈ B1 \ B2 such that
(B1 \ y) ∪ x ∈ B.

Proof. By Corollary 3.1.10, (B1 ∪ x) contains a unique circuit C(x, B1). Since
C(x, B1) ! B2, for C(x, B1) is dependent and B2 is independent, there exists
y ∈ C(x, B1) \ B2 and in fact y ∈ B1 \ B2. Furthermore, since (B1 \ y) ∪ x is
a subset of B1 ∪ x and does not contain C(x, B1), we know that (B1 \ y) ∪ x is
independent. Since the cardinality of (B1 \ y) ∪ x is the same B1, if follows that in
fact (B1 \ y) ∪ x is a basis.

The next term from linear algebra we will bring in is the rank of a set. Given a
matroid M = (E, I), let ρ : 2E → N where

ρ(X) = max{|I| | I ∈ I and I ⊆ X}.

So the rank of X ⊆ E is the size of a largest independent set contained in X.
The rank of M is ρ(E) and will be denoted by ρ(M). It turns out that one can
axiomatize matroids in terms of a rank function.

Figure 3.1: The graph G = (V,E)
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We will generalize this example to an arbitrary matroid M = (E, I), by saying
that C ⊆ E is a circuit if C is a minimal dependent set. Denote the set of circuits
of a matroid by C.

Theorem 3.1.8 (Theorem 1.1.4 in (16)). Let E be a finite set and C a collection
of subsets of E. C is the collection of circuits of a matroid M on E if and only if C
satisfies the following:

(C1) ∅ /∈ C.

(C2) If C1, C2 ∈ C and C1 ⊆ C2, then C1 = C2.

(C3) If C1, C2 ∈ C, e ∈ C1 ∩ C2, and f ∈ C1 \ C2, then there exists C3 ∈ C such
that f ∈ C3 ⊆ (C1 ∪ C2) \ e.

Furthermore for X ⊆ E in the matroid M,

X is independent if and only if C * X for all C ∈ C.

Proposition 3.1.9. Let M = (E, I) be a matroid. If I ⊆ E is independent and
(I ∪ e) ⊆ E is dependent, then there is a unique circuit C in M such that

e ∈ C ⊆ (I ∪ e).

Proof. Since (I ∪ e) is dependent, there exists a circuit C ⊆ (I ∪ e) and any such
circuit must contain e, for any subset of I is independent. Therefore if C1 and C2 are
two such circuits, then by (C3) there exists a circuit C3 ⊆ (C1∪C2)\e ⊆ I, which is
a contradiction. Therefore there is a unique circuit C such that e ∈ C ⊆ (I ∪e).

Corollary 3.1.10. Given a basis B and e ∈ E \B, there is a unique circuit C(e,B)
such that e ∈ C(e,B) ⊆ (B ∪ e). We say that C(e,B) is the fundamental circuit of
e with respect to B.

Lemma 3.1.11. The set of bases B of a matroid M = (E, I) satisfies:

(B2)* If B1, B2 ∈ B and x ∈ B2 \ B1, then there exists y ∈ B1 \ B2 such that
(B1 \ y) ∪ x ∈ B.

Proof. By Corollary 3.1.10, (B1 ∪ x) contains a unique circuit C(x,B1). Since
C(x,B1) * B2, for C(x,B1) is dependent and B2 is independent, there exists
y ∈ C(x,B1) \ B2 and in fact y ∈ B1 \ B2. Furthermore, since (B1 \ y) ∪ x is
a subset of B1 ∪ x and does not contain C(x,B1), we know that (B1 \ y) ∪ x is
independent. Since the cardinality of (B1 \ y) ∪ x is the same B1, if follows that in
fact (B1 \ y) ∪ x is a basis.

The next term from linear algebra we will bring in is the rank of a set. Given a
matroid M = (E, I), let ρ : 2E → N where

ρ(X) = max{|I| | I ∈ I and I ⊆ X}.

So the rank of X ⊆ E is the size of a largest independent set contained in X.
The rank of M is ρ(E) and will be denoted by ρ(M). It turns out that one can
axiomatize matroids in terms of a rank function.
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Theorem 3.1.12 (Theorem 1.3.2 in (16)). Let E be a finite set, ρ : 2E → N is the
rank function of a matroid M on E if and only if ρ satisfies the following:

(R1) If X ⊆ E, then ρ(X) ≤ |X|.

(R2) If X ⊆ Y ⊆ E, then ρ(X) ≤ ρ(Y ).

(R3) If X, Y ⊆ E, then ρ(X ∪ Y ) + ρ(X ∩ Y ) ≤ ρ(X) + ρ(Y ).

Furthermore for X ⊆ E in the matroid M,

1. X is independent if and only if ρ(X) = |X|;

2. X is a basis if and only if ρ(M) = ρ(X) = |X|; and

3. X is a circuit if and only if ρ(X \ x) = ρ(X)− 1 = |X| for all x ∈ X.

Another characterization of matroids can be given in terms of the closure func-
tion, which is analogous to the span of a set of vectors. Given a matroid M = (E, I)
with rank function ρ, let cl : 2E → 2E by:

cl(X) = {e ∈ E | ρ(X) = ρ(X ∪ e)}.

Theorem 3.1.13 (Theorem 1.4.4 in (16)). Let E be a finite set, cl : 2E → 2E is the
closure function of a matroid M on E if and only if cl satisfies:

(CL1) If X ⊆ E, then X ⊆ cl(X).

(CL2) If X ⊆ Y ⊆ E, then cl(X) ⊆ cl(Y ).

(CL3) If X ⊆ E, then cl(X) = cl(cl(X)).

(CL4) If X ⊆ E, e ∈ E, and y ∈ cl(X ∪ e) \ cl(X), then e ∈ cl(X ∪ y).

Furthermore for X ⊆ E in the matroid M,

X is independent if and only if x /∈ cl(X \ x) for all x ∈ X.

In linear algebra terms, this is expressing that a set of vectors is independent if and
only if no vector lies in the span of the others. We say that a subset X ⊆ E is
spanning if cl(X) = E.

Lemma 3.1.14. Let M be a matroid on E with X, Y ⊆ E. If ρ(X ∪ y) = ρ(X) for
all y ∈ Y \X, then ρ(X ∪ Y ) = ρ(X).

Proof. By induction on n = |Y \X|. If n = 1, then X ∪ y = X ∪ Y so we are done
by assumption. Now let Y \ X = {y1, . . . , yn+1} and by the induction hypothesis
ρ(X ∪ {y1, . . . , yn}) = ρ(X) = ρ(X ∪ yn+1). Hence by the properties of the rank:

ρ(X) + ρ(X) = ρ(X ∪ {y1, . . . , yn}) + ρ(X ∪ yn+1)

≥ ρ(X ∪ Y ) + ρ(X) by (R3)

≥ ρ(X) + ρ(X). by (R2)
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We invoke (R3) because

(X ∪ {y1, . . . , yn}) ∪ (X ∪ yn+1) = X ∪ Y
(X ∪ {y1, . . . , yn}) ∩ (X ∪ yn+1) = X ∩ Y.

So ρ(X) + ρ(X) = ρ(X ∪ Y ) + ρ(X) and therefore ρ(X ∪ Y ) = ρ(X).

Corollary 3.1.15. Let M be a matroid on E with X ⊆ Y ⊆ E, then

1. ρ(cl(X)) = ρ(X);

2. ρ(X) = ρ(Y ) only if Y ⊆ cl(X); and

3. If X is a flat and ρ(X) = ρ(Y ), then X = Y .

Proof. (1 ) follows directly from the definition of cl(X) and Lemma 3.1.14. For (2 ),
suppose that y ∈ Y then ρ(X) ≤ ρ(X ∪ y) ≤ ρ(Y ) = ρ(X). So ρ(X) = ρ(X ∪ y)
and hence by definition y ∈ cl(X). Therefore Y ⊆ cl(X), which proves (2 ), and if
X is a flat then cl(X) = X so Y ⊆ cl(X) = X ⊆ Y , which proves (3 ).

Therefore by Corollary 3.1.15 we have that cl(X) is the largest subset of E that
contains X and has the same rank as X. Thinking in terms of a vector space, by
analogy this is exactly what we would expect to happen in a matroid. Since in a
vector space V the span of a set of vectors X, span(X), is the largest subset of V
that contains X and has the same rank as X.

Definition 3.1.16. In a matroid M, we say that X ⊆ E is a flat or closed set of
M if cl(X) = X. A flat X with ρ(X) = ρ(M)− 1 is called a hyperplane.

Proposition 3.1.17. Let M = (E, I) be a matroid and X ⊆ E, then

1. X is spanning if and only if ρ(X) = ρ(M);

2. X is a basis if and only if X is a minimal spanning set; and

3. X is a hyperplane if and only if X is a maximal nonspanning set.

Proof. For (1 ), if X is spanning then cl(X) = E and since Corollary 3.1.15 says
that ρ(X) = ρ(cl(X)), it follows that ρ(X) = ρ(E) = ρ(M). For the converse,
if ρ(X) = ρ(M) = ρ(E), then by Corollary 3.1.15 we have that E ⊆ cl(X) and
therefore X is spanning since cl(X) = E. Therefore we have proved that (1 ) holds,
and it is clear that (2 ) follows from Theorem 3.1.12 and (1 ).

For (3 ), suppose that X is a hyperplane. By definition, ρ(X) = ρ(M) − 1, so
by (1 ) we know that X is not spanning. Let e /∈ X, because X is a flat we know
e /∈ cl(X) = X and hence ρ(X∪e) = ρ(X)+1 = ρ(M), which implies that (X∪e) is
spanning. Therefore X is a maximal nonspanning set. Conversely, if X is a maximal
nonspanning set then ρ(X) < ρ(M) and ρ(X ∪ e) = ρ(M) for all e /∈ X. Hence
ρ(X) = ρ(M) − 1 and since ρ(X ∪ e) = ρ(X) only if e ∈ X we know X = cl(X).
Therefore X is a flat with rank ρ(M)− 1 and hence a hyperplane.
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Proposition 3.1.18. Let M = (E, I) be a matroid and X ⊂ E. Then

1. X is a circuit if and only if X is a minimal set with the property that

x ∈ cl(X \ x) for all x ∈ X.

2. cl(X) = X ∪ {e ∈ E \X | M has circuit C such that e ∈ C ⊆ X ∪ e}.

Proof. Observe that by Theorem 3.1.13, (1 ) is just saying that a circuit is a minimal
dependent set. For (2 ), let e ∈ cl(X) \ X, so ρ(X) = ρ(X ∪ e). Let B be a basis
for X, then (B ∪ e) is dependent so by Corollary 3.1.10 there exists a circuit C such
that e ∈ C ⊆ (B ∪ e) ⊆ (X ∪ e). Conversely, if e ∈ E \X and there exists a circuit
C such that e ∈ C ⊆ (X ∪ e), then by (1 ) we know that e ∈ cl(C \ e) and by (CL2)
we know cl(C \ e) ⊆ cl(X). Therefore e ∈ cl(X).

3.2 The Lattice of Flats

A lattice is a partially ordered set L such that for all x, y ∈ L, the least upper bound
and greatest lower bound exist for the the pair x, y and they are denoted by x ∨ y
and x ∧ y respectively. Formally, a lattice is defined as follows:

Definition 3.2.1. A partially ordered set (L,≤) equipped with the functions

∨ : L× L→ L and ∧ : L× L→ L

is a lattice if for every x, y, z ∈ L the following are satisfied:

1. x ≤ x ∨ y and y ≤ x ∨ y;

2. If x ≤ z and y ≤ z, then x ∨ y ≤ z;

3. x ∧ y ≤ x and x ∧ y ≤ y; and

4. If z ≤ x and z ≤ y, then z ≤ x ∧ y.

We say that x ∨ y is the join of x and y, and x ∧ y is the meet of x and y.

Lemma 3.2.2. Let X1, X2 ⊆ E be flats in the matroid M = (E, I). Then X1 ∩X2

is a flat as well.

Proof. Suppose that X1 ∩X2 was not a flat, so let e ∈ cl(X1 ∩X2) \ (X1 ∩X2). By
Proposition 3.1.18 then, there exists a circuit C such that e ∈ C ⊆ (X1 ∩X2) ∪ e.
Since

(X1 ∩X2) ∪ e ⊆ (Xi ∪ e),

we have that e ∈ C ⊆ (Xi∪e). Therefore, again by Proposition 3.1.18, we have that
e ∈ cl(Xi). SinceXi is a flat we know cl(Xi) = Xi, so in fact e ∈ Xi. This means that
e ∈ X1∩X2, which is a contradiction for we assumed that e ∈ cl(X1∩X2)\(X1∩X2).
Therefore cl(X ∩ Y ) = X ∩ Y .
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For a matroid M, let L(M) be the collection of flats of M ordered under set
inclusion. L(M) can be given a natural lattice structure, as the following proposition
shows.

Proposition 3.2.3. Given a matroidM, L(M) is a lattice where for X, Y ∈ L(M),

X ∨ Y = cl(X ∪ Y ) and X ∧ Y = X ∩ Y.
Proof. It follows from (CL2) and (CL3) that cl(X∪Y ) is the smallest flat containing
X and Y . For X ∧ Y , X ∩ Y is the largest set contained in X and Y and by
Lemma 3.2.2 we know X ∩ Y ∈ L(M).

Definition 3.2.4. Given flats X ⊆ Y in L(M) we say that Y covers X if there
does not exists a flat F ∈ L(M) such that X ( F ( Y .

Lemma 3.2.5. If X and Y are flats of M and X ⊆ Y , then every maximal chain
of flats from X to Y has length ρ(Y )− ρ(X).

Proof. It suffices to prove that Y covers X if and only if ρ(X) + 1 = ρ(Y ).
Suppose that Y covers X and let y ∈ Y \ X. Since cl(X ∪ y) is a flat and

X ( cl(X ∪ y) ⊆ Y , we know that cl(X ∪ y) = Y because Y covers X. Now X is a
flat and y /∈ X, so we know that

ρ(X) + 1 = ρ(X ∪ y) = ρ(cl(X ∪ y)) = ρ(Y ).

Therefore ρ(X) + 1 = ρ(Y ). Conversely, suppose that ρ(X) + 1 = ρ(Y ). Let F be
a flat such that X ⊆ F ⊆ Y . Now either ρ(X) = ρ(F ) or ρ(F ) = ρ(Y ), then by
Corollary 3.1.15 either X = F or F = Y . Therefore Y covers X.

Corollary 3.2.6. If r is the rank of a matroid M, then a maximal length chain of
flats has length r. So r is the greatest number such that there exists flats Fj where

∅ 6= F1 ( F2 ( · · · ( Fr−1 ( Fr = E. (3.2.1)

Proposition 3.2.7 (Proposition 1.7.8 in (16)). Every flat in a matroid M is the
intersection of hyperplanes. In fact if X is a flat in M and ρ(X) = ρ(M)−k where
k ≥ 1, then there exists a set {H1, . . . , Hk} of hyperplanes such that X =

⋂
j Hj.

Proof. We will induct on k. If k = 1, then X is a hyperplane so we are done. Now
let X be a flat where ρ(X) = ρ(M)− k. Since ρ(X) < ρ(M) we know there exists
y ∈ E \X and furthermore

ρ(cl(X ∪ y)) = ρ(X ∪ y) = ρ(X) + 1 = ρ(M)− (k − 1)

since X is a flat. By the induction hypothesis we know that there exists hyperplanes
H1, . . . , Hk−1 such that cl(X ∪ y) =

⋂k−1
j=1 Hj.

Let Hk be a maximal element in the set of flats F such that X ⊆ F ⊆ E \ y,
this set is nonempty since X is such a flat. Then Hk is maximal nonspanning set
and so is a hyperplane by Proposition 3.1.17. Furthermore

cl(X ∪ y) ) cl(X ∪ y) ∩Hk =
k⋂
j=1

Hj ⊃ X. (3.2.2)

However, as in the proof of Lemma 3.2.5 we have that cl(X ∪ y) covers X and by
Lemma 3.2.2,

⋂k
j=1Hj is a flat. Therefore by (3.2.2), we have that

⋂k
j=1Hj = X.
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3.3 Matroid Duality

A common and often very powerful construction seen throughout mathematics is the
construction of a dual object. For example given a vector space V over the field F ,
the dual space V ∗ is the F -vector space of all linear functionals φ : V → F . Another
example is given a category C with morphisms M and objects O, then the dual
category C∗ has morphisms M∗ and the same objects O. Here M∗ = {f ∗ | f ∈ M},
where if f : C → D then f ∗ : D → C and (f ◦ g)∗ = g∗ ◦ f ∗.

Proposition 3.3.1. For a matroid M on ground set E with set of bases B(M), let

B∗(M) = {E \B | B ∈ B(M)}.

Then B∗(M) is the set of bases for a matroid M∗ on E.

Proof. We need to show that B∗ = B∗(M) satisfies (B1) and (B2) of Theorem 3.1.6.
Since B 6= ∅, we know that B∗ 6= ∅. Therefore (B1) is satisfied.

Let B∗
1 = E \B1 and B∗

2 = E \B2 be elements of B∗, where B1, B2 ∈ B, and let
x ∈ B∗

1 \B∗
2 . A moments thought shows that

B∗
1 \B∗

2 = B2 \B1,

so x ∈ B2\B1. By (B2)* of Lemma 3.1.11 we have there exists y ∈ B1\B2 = B∗
2 \B∗

1

such that (B1 \ y) ∪ x ∈ B. Since (B1 \ y) ∪ x ∈ B and

E \ ((B1 \ y) ∪ x) = (B∗
1 \ x) ∪ y,

we have that (B∗
1 \x)∪ y ∈ B∗ as desired. Therefore (B1) and (B2) hold for B∗.

Definition 3.3.2. Given a matroid M on ground set E with set of bases B(M),
let the dual matroid M∗ be the matroid on ground set E and with set of bases
B(M∗) = B∗(M).

By Theorem 3.3.1, M∗ is indeed a matroid and observe (M∗)∗ = M. The
bases of M∗ are called the cobases of M and similar conventions hold for all named
subsets of E(M∗). So in particular, the circuits, hyperplanes, independent sets, and
spanning sets of M∗ are called the cocircuits, cohyperplanes, coindependent sets, and
cospanning sets. As expected, there are close relationships between these set as the
following proposition shows.

Proposition 3.3.3. Let M be a matroid on ground set E and X ⊆ E. Then

1. X is independent if and only if E \X is cospanning;

2. X is spanning if and only if E \X is coindependent;

3. X is a hyperplane if and only if E \X is a cocircuit; and

4. X is a circuit if and only if E \X is a cohyperplane.
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Proof. For (2 ), by Proposition 3.1.17 and the definitions we have the following series
of equivalences:

X is spanning ⇐⇒ ρ(X) = ρ(M)

⇐⇒ Exists basis B of M such that B ⊆ X

⇐⇒ E \X ⊆ E \B where E \B is a cobasis

⇐⇒ E \X is coindependent

Therefore X is spanning if and only if E \X is coindependent.
For (3 ), by Proposition 3.1.17, (2 ), and the definitions we have the following

series of equivalences:

X is a hyperplane ⇐⇒ X is a maximal nonspanning set of M
⇐⇒ E \X is a minimal codependent set

⇐⇒ E \X is a cocircuit

Therefore X is a hyperplane if and only if E \X is a cocircuit. (1 ) and (4 ) are the
duals of the (2 ) and (3 ), respectively, so they are proved by applying (2 ) and (3 )
to the matroid M∗.

We can now characterize the rank of a matroid M in terms of its cocircuits.

Theorem 3.3.4. Let M be a matroid on the ground set E with ρ(M) = r. Let C∗
be the set of cocircuits of M and let poset(C∗) be the collection of all possible unions
of cocircuits. Then length(poset(C∗)) = ρ(M) = r.

Proof. Let H be the collection of the hyperplanes in M and let P(H) be the collec-
tion of all possible intersections of hyperplanes. By Proposition 3.2.7 we know that
P(H) = L(M), and hence by Proposition 3.3.3

poset(C∗) = {E \X | X ∈ L(M)}.

We know that the longest length chain in L(M) is equal to ρ(M) = r by
Corollary 3.2.6, so by taking the complement of (3.2.1) we get

E ) (E \ F1) ) (E \ F2) ) · · · ) (E \ Fr−1) ) ∅

is a chain in poset(C∗). Furthermore since poset(C∗) = {E \X | X ∈ L(M)}, this
must be a maximal length chain. Therefore length(poset(C∗)) = ρ(M) = r.

Definition 3.3.5. Given a matroid M on the ground set E = {v1, . . . , vn} and
set of cocircuits C∗ = {C1, . . . , Cm}, then let M ∈ {0, 1}n×m be the matrix where
Mij = 0 if and only if vi ∈ Cj. M is known as the cocircuit matrix of M.

Corollary 3.3.6. Let M ∈ {0, 1}n×m be the cocircuit matrix of matroid M, then

t-rank(M) = ρ(M). (3.3.1)
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Proof. By Proposition 3.3.3 we know that no cocircuit is empty, since if X is a
hyperplane then X ( E, and therefore no column of M is all ones. Therefore
by Theorem 2.3.1, we know that t-rank(M) = length(poset(M)). Observe that
poset(M) = poset(C∗), so length(poset(M)) = length(poset(C∗)) = ρ(M) by Theo-
rem 3.3.4. Therefore t-rank(M) = ρ(M).

So we know what the circuits, hyperplanes, independent sets, and spanning sets
of the dual matroid M∗ are in terms of M, but what about the rank function ρ∗ on
M∗? To answer this question we first need the following lemma.

Lemma 3.3.7. Given a matroid M = (E, I), let I, I∗ ⊆ E be disjoint where I is
independent and I∗ is coindependent. Then there is a basis B and a cobasis B∗ such
that I ⊆ B, I∗ ⊆ B∗, and B ∩B∗ = ∅.

Proof. Let B be a maximal independent set such that I ⊆ B ⊆ E \ I∗, so therefore
ρ(E \ I∗) = ρ(B). However by Proposition 3.3.3, we know that E \ I∗ is spanning,
so by Proposition 3.1.17 we know ρ(E \ I∗) = ρ(M). Therefore ρ(B) = ρ(M), so
B is a basis. Now since B ⊆ E \ I∗, we know that I∗ ⊆ E \ B = B∗. Therefore B
and B∗ are the required basis and cobasis.

Proposition 3.3.8. Given a matroid M on ground set E with rank function ρ, the
rank function ρ∗ for M∗ is given by

ρ∗(X) = |X| − ρ(M) + ρ(E \X).

Proof. Let X ⊆ E. Now let B∗
X be a maximal independent set in M∗ contained in

X, and let BE\X be a maximal independent set in M contained in E \X. Therefore

ρ∗(X) = |B∗
X | and ρ(E \X) =

∣∣BE\X
∣∣ . (3.3.2)

Furthermore BE\X is independent, B∗
X is coindependent, and they are disjoint. By

Lemma 3.3.7, there is exists a basis B such that BE\X ⊆ B and B∗
X ⊆ (E \B) = B∗.

Now BE\X ⊆ B ∩ (E \X) ⊆ E \X, so by the maximally of BE\X we know that

BE\X = B ∩ (E \X). (3.3.3)

Similarly,
B∗
X = B∗ ∩X. (3.3.4)

From (3.3.3), it follows that B = BE\X ·∪ (B ∩X) and hence

|B ∩X| = |B| −
∣∣BE\X

∣∣ . (3.3.5)

Bringing this all together gives:

|X| = |X ∩B|+ |X ∩B∗| (by B∗ = E \B)

= (|B| −
∣∣BE\X

∣∣) + (|B∗
X |) (by (3.3.4) and (3.3.5))

= ρ(M)− ρ(E \X) + ρ∗(X) (by (3.3.2)).

Therefore ρ∗(X) = |X| − ρ(M) + ρ(E \X).
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3.4 Matroid Representability

Definition 3.4.1. Given a field F , a matroidM = (E, I) is F -representable if there
exists a vector space V over F and a mapping ϕ : E → V such that for X ⊆ E:

X ∈ I if and only if ϕ|X is injective and ϕ(X) is linearly independent in V.

If a matroid M = (E, I) is F - representable, then we can think of a representa-
tion as a matrix in M ∈ F n×m where E = {e1, . . . , en} and m = dim(V ). Picking a
basis for V , say {v1, . . . ,vm}, let M ∈ F n×m be the matrix such that

ϕ(ei) = Mi1v1 + · · ·+Mimvm.

Conversely, a matrix M ∈ F n×m is said to be a F -representation if the mapping
ei 7→ (Mi1, . . . ,Mim) is a representation E → Fm.

We now present a necessary and sufficient condition for a matroid M to be
F -representable. Our presentation is based off of (24), but the theorem was first
proved in (23).

Theorem 3.4.2. Let M = (E, I) be a matroid, then M is F -representable if and
only if for each hyperplane H of M there exists a function cH : E → F so that

(H1) For each hyperplane H, kernel(cH) = H.

(H2) For hyperplanes H1, H2, H3 of M, if ρ(H1∩H2∩H3) ≥ ρ(M)−2, then there
exists α1, α2, α3 ∈ F ∗ such that α1cH1 + α2cH2 + α3cH3 = 0.

To prove this theorem we need a few lemmas, which we will prove first.

Lemma 3.4.3. Let M = (E, I) be a matroid with basis B = {b1, . . . , br} where
r = ρ(M). Then for each bj there exists an unique hyperplane Hj of M such that
B \ bj ⊆ Hj and these hyperplanes are distinct.

Proof. Let Hj = cl(B \ bj), know that that Hj is a hyperplane since Hj is a flat and
ρ(Hj) = ρ(M)− 1. Observe that bj /∈ Hj, by Theorem 3.1.13 and the fact that B is
independent. However, bi ∈ Hj if i 6= j, which proves that the Hj are distinct.

Lemma 3.4.4. Let F be a field, E be a set, and FE be the vector space over F
consisting of all functions g : E → F . Let f1, . . . , fr ∈ FE be functions where there
are distinct b1, . . . , br ∈ E such that fi(bj) 6= 0 if and only if i = j. Then {f1, . . . , fr}
is a linearly independent set in FE.

Proof. Suppose there exists αj ∈ F such that 0 =
∑r

j=1 αjfj in FE. Then since
fi(bj) = 0 if i 6= j, we have that

0 =
r∑
j=1

αjfj(bj) = αjfj(bj),

and since fj(bj) 6= 0, it follows that αj = 0. Therefore {f1, . . . , fr} is a linearly
independent set in FE.
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Lemma 3.4.5. Suppose that we have a matroid M = (E, I) and a set of functions
{cH : E → F | H is a hyperplane in M} that satisfy (H1) and (H2) from Theo-
rem 3.4.2. Let V = span({cH | H is a hyperplane in M}), which is a subspace of
FE. Let B = {b1, . . . , br} be a basis in M and let Hj = cl(B \ bj) be the distinct
hyperplanes from Lemma 3.4.3. Then CB = {cH1 , . . . , cHr} is a basis for V .

Proof. For i, j ≤ r, we know that bj /∈ Hj and bj ∈ Hi if i 6= j, so by (H1) we know
that cHi

(bj) 6= 0 if and only if i = j. Hence by Lemma 3.4.4, we know that CB is a
linearly independent set in FE and hence in V as well.

For a hyperplane H in M, let h = r − 1 − |H ∩B|. We will prove that
cH ∈ span(CB) by induction on h. If h = 0, then |H ∩B| = r − 1 and hence
by Lemma 3.4.3 we know that cH ∈ CB. So if h = 0, then cH ∈ span(CB).

Let H be a hyperplane in M and suppose that h = r − 1− |H ∩B| ≥ 1. Then
H ∩B is independent, so by reindexing B and extending H ∩B to BH , a maximal
independent subset of H, we have

H ∩B ⊆ {b1, . . . , bl, al+1, al+2, . . . , ar−1} = BH ⊆ H,

where |H ∩B| = l = r − h− 1. Then

L = cl({b1, . . . , bl, al+1, al+2, . . . , ar−2})

is a rank r−2 flat contained inH. Let b′ ∈ B\L and form hyperplaneH ′ = cl(L∪b′).
Similarly, let b′′ ∈ B \ H ′ and form the hyperplane H ′′ = cl(L ∪ b′′). These exist
since ρ(L) = r− 2 and ρ(H ′) = r− 1, so neither can contain a basis so in particular
cannot contain B.

H ′ and H ′′ are distinct from H since |H ′ ∩B| , |H ′′ ∩B| ≥ l+1, and furthermore
they are hyperplanes such that r−1−|H ′ ∩B| , r−1−|H ′′ ∩B| ≤ h−1. Therefore
by the inductive hypothesis cH′ , cH′′ ∈ span(CB). Since H ∩ H ′ ∩ H ′′ ⊇ L, we
know that ρ(H ∩ H ′ ∩ H ′′) ≥ ρ(L) = r − 2 and therefore by (H2) we have that
cH ∈ span(cH′ , cH′′) ⊆ span(CB). Hence cH ∈ span(CB) and therefore by induction
CB spans V = span({cH | H is a hyperplane in M}). Since we also proved that CB
is linearly independent, we therefore have proved that CB is a basis for V .

Recall that for a vector space V over the field F , the dual space V ∗ is a vector
space over F and consists of all linear functionals φ : V → F . Remember that if U
is a subspace of V , then

W = {φ ∈ V ∗ | U ⊆ ker(φ)}

is a subspace of V ∗ and dim(W ) = dim(V )− dim(U).

Proof of Theorem 3.4.2. Suppose that (H1) and (H2) are satisfied by the set
{cH : E → F | H is a hyperplane in M}, and form the vector space V over F
where V = span({cH | H is a hyperplane in M}) ⊆ FE. Now for each e ∈ E,
define the linear functional

Le : V → F where Le : f 7→ f(e)
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We claim that the mapping σ : E → V ∗ by σ : e 7→ Le is a representation. To
prove this it suffices to show that σ preserves independent and dependent sets, and
to do this it suffices to shot that bases are mapped to independent sets and minimal
dependent sets are mapped to dependent sets.

If B = {b1, . . . , br} ⊆ E is a basis for M, then by Lemma 3.4.5 we know
that CB = {cH1 , . . . , cHr} is a basis for V and cHi

(bj) 6= 0 if and only if i = j.
Hence Lbj(cHi

) 6= 0 if and only if i = j. Therefore by Lemma 3.4.4, we know that
Lb1 , . . . , Lbr are linearly independent. Therefore we have proved that σ maps bases
of M to independent sets in V ∗.

If X = {b0, b1, . . . , bk} is a minimal dependent set where k ≤ r = ρ(M), then
X \ b0 is independent and may be extended to a basis B = {b1, . . . , br} of M. By
Lemma 3.4.5 we have that a basis CB = {cH1 , . . . , cHr} for V with Lbj(cHi

) 6= 0 if
and only if i = j. However b0 ∈ cl({b1, . . . , bk} ⊆ cl(B \ bi) = Hi for i > k, so
Lb0(cHi

) = cHi
(b0) = 0 for i > k since b0 ∈ Hi. Since CB = {cH1 , . . . , cHr} is a basis

for V and Lb0 : V → F is a linear functional, we know that Lb0 is determined by is
is values on CB. In fact for αj = Lb0(cHj

)/Lbj(cHj
) = cHj

(b0)/cHj
(bj) we have

Lb0 =
r∑
j=1

αjLbj =
k∑
j=1

αjLbj

since αj = cHj
(b0)/cHj

(bj) = 0 for j > k. Therefore {Lb0 , . . . , Lbk} = σ(X) is
dependent. Hence σ : E → V ∗ by σ(e) = Le preserves independent and dependent
sets, and therefore is a representation.

Now we want to prove that M having a set of functions that satisfy (H1) and
(H2), is a necessary condition for M to be F -representable. Suppose that a matroid
M = (E, I) has an F -representation ϕ : E → V , where V is a vector space
over F and without loss of generality we can assume that dim(V ) = ρ(M). So
for any hyperplane H in M, span(ϕ(H)) = U is a subspace of V of dimension
ρ(M)− 1 = dim(V )− 1. Then there is a unique (up to a nonzero scalar multiple)
linear functional fU : V → F such that kernel(fU) = U . Let cH = fU ◦ ϕ. Observe
that for e ∈ E,

cH(e) = 0 ⇐⇒ ϕ(e) ∈ U ⇐⇒ e ∈ H,

so (H1) is satisfied. If H1, H2, and H3 are hyperplanes of M such that there is
a rank r − 2 flat L ⊆ H1 ∩ H2 ∩ H3, then the fUi

, where Ui = span(ϕ(Hi)), are
linear functionals whose kernels contain ϕ(L). Since dim(span(ϕ(L))) = r − 2, the
subspace of linear functionals whose kernel contains ϕ(L) has dimension 2. Therefore
cH1 , cH2 , cH3 are linearly dependent and minimally as well since no two hyperplane
functions are linearly dependent. Therefore (H2) holds for cH = fspan(ϕ(H)) ◦ ϕ.

Therefore we have proved that conditions (H1) and (H2) are necessary and suf-
ficient conditions for a matroid M = (E, I) to be F -representable.

It follows that if a matroid M = (E, I) is F -representable, then there exists the
representation σ : E → V ∗ from the proof of Theorem 3.4.2. Let {H1, . . . , Hm} be
the hyperplanes in M, and let {e1, . . . , en} be the elements in E. Then we can think
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of σ as being a matrix in F n×m, where

σij = Lei
(cHj

) = cHj
(ei).

So in fact the jth column of σ is just cHj
. Since the rows with zero in the jth column

correspond to the hyperplane Hj, it follows from Proposition 3.3.3 that the supports
of the columns are precisely the cocircuits of M. Where the support of x ∈ F n is
support(x) = {j | xj 6= 0}.

Corollary 3.4.6. If a matroid M is F -representable, then there exists a matrix M ,
which is an F -representation in matrix form, such that the supports of the columns
of M are exactly the cocircuits of M .

We will use these results to prove the following theorem that relates matroid
representability with the Kapranov rank of cocircuit matrices.

Theorem 3.4.7 (Theorem 7.3 in (5)). Let M = (E, I) be a matroid and let M be
is cocircuit matrix as in Definition 3.3.5. Then k-rank(M) = ρ(M) if and only if
M is C-representable.

In order to prove one direction of this theorem, we need a few preliminary lem-
mas, but first an example.

Example 3.4.8. Let k be the finite field Z/2Z. Then p = x(x− 1) is a polynomial
in k[x] and p 6= 0 as polynomials. However, for all x ∈ k = {0, 1} we can see that
p(x) = 0. The next lemma shows that this can only happen when k is a finite field,
see (8) for a proof.

Lemma 3.4.9. Let k be an infinite field and p ∈ k[x] = k[x1, . . . , xn] be a polyno-
mial, then p = 0 in k[x] if and only if p(x) = 0 for all x ∈ kn.

In a matroid M = (E, I), an element e ∈ E is a loop if e /∈ I for all I ∈ I.
Observe that e being a loop is equivalent to e being in every flat, which is equivalent
by Proposition 3.2.7 to e being in every hyperplane. By Proposition 3.3.3, e being
in every hyperplane is equivalent to e not being in any cocircuit. Therefore in the
cocircuit matrix M , a loop will correspond to a row of 1’s.

Lemma 3.4.10. Let M be a zero-one n×m matrix such that every column has at
least one 0. Let M̃ be the matrix where a row of 1’s is added on top of M . Then
k-rank(M) = k-rank(M̃).

Proof. We just need to prove that any lift of M gives rise to a lift for M̃ of the same
rank. Suppose F is a lift for M , with columns fj = (F1j, . . . , Fnj) ∈ (K̃∗)n whose
constant terms are cj ∈ Cn. The condition that M has no column of 1’s means that
no cj is all 0’s. We want to find a vector x ∈ Cn such that x · cj 6= 0 for all cj. This
would allow us to form the row in (K̃∗)m:

r0 = (x1t)r1 + · · ·+ (xnt)rn
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where ri is the ith row of F . Then the matrix with rows r0, . . . , rn would be a lift of
M̃ with the same rank as M .

We can think of x · cj as a nonzero linear polynomial pj ∈ C[x1, . . . , xn]. If
for every x ∈ Cn, there was some pj(x) = 0, then p =

∏m
j=1 pj is a polynomial in

C[x] such that p(x) = 0 for all x ∈ Cn. Since C is an infinite field, it follows by
Lemma 3.4.9 that p = 0, so some pj = 0, which is a contradiction. Hence there exists
an x ∈ Cn such that x · cj 6= 0 for all cj. Therefore k-rank(M) = k-rank(M̃).

Corollary 3.4.11. If M = (E, I) is a matroid and M̃ = (E ∪ L, I) is a matroid
with loops L added to M, then ρ(M) = ρ(M̃) and for the respective cocircuit
matrices we have k-rank(M) = k-rank(M̃).

Proof of Theorem 3.4.7. Let M be a matroid on E = {1, . . . , n} with cocircuits
C∗ = {C1, . . . , Cm}. So the cocircuit matrix M ∈ {0, 1}n×m has Mij = 0 if and only
if i ∈ Cj.

Suppose that k-rank(M) = ρ(M) = r. Then there is a lift F ∈ (K̃∗)n×m such
that rank(F ) = r and deg(F ) = M . Let vi = (vi1, . . . , vim) ∈ Cm be the vector of
the constant terms from the entries in the ith row of F and observe that

vij 6= 0 ⇐⇒ Mij = 0 ⇐⇒ i ∈ Cj. (3.4.1)

Let V = {v1, . . . ,vn} ⊆ Cm, which we can think of as a matrix in Cn×m where the
ith row is vi. It is the case that rank(V ) ≤ rank(F ) = r, since if a subdeterminant
of F is zero then the corresponding subdeterminant in V is also zero. We claim
that the mapping E → span(V ) by i 7→ vi is a C-representation of M. It suffices
to prove that B = {i1, . . . , ir} is a basis of M if and only if {vi1 , . . . ,vir} is a basis
of V . Without loss of generality let B = {1, . . . , r}.

If B is a basis, then we know E \B is a cobasis and therefore by Corollary 3.1.10
we have cocircuit C(i, E \ B) for each i ∈ B. Again without loss of generality, let
Ci = C(i, E \B) for i ≤ r. Hence the upper left r×r minor of M is all 1’s except for
all 0’s on the main diagonal. This means that {v1, . . . ,vr} is linearly independent
by Lemma 3.4.4 since for j ≤ r we have vij 6= 0 if and only if j = i by (3.4.1).
Therefore since rank(V ) ≤ r, we have that {v1, . . . ,vr} is a basis and rank(V ) = r.

If B is not a basis, then ρ(B) < r, so B can be extended to a hyperplane X
where without loss of generality we have that X = {1, . . . , r, r + 1, . . . , c}. Hence
E \ X is a cocircuit and without loss of generality let it be C1, so B ∩ C1 = ∅.
Therefore Mi1 = 1 for i ≤ r and hence by (3.4.1) we have that vi1 = 0 for i ≤ r.
However since C1 is not empty, some v1j 6= 0. Therefore {v1, . . . ,vr} does not span
V and hence is not a basis.

Suppose that M is representable over C. By Corollary 3.4.11, without loss of
generality we can assume that M has no loops and therefore M has no row of 1’s.
By Corollary 3.4.6, we can have M be represented by a matrix A ∈ Cn×m where
the element i ∈ E is mapped to row i in A, and the supports of the columns in A
are exactly the cocircuits in M. Observe that rank(A) = ρ(M) = r. Without loss
of generality let {1, . . . , r} be a basis for M. If A′ is the submatrix of the first r
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rows of A, then there exists a matrix C ∈ Cn−r×r such that

A =

(
Ir
C

)
· A′

where Ir is the r × r identity matrix. Because M does not have any loops, A and
therefore C does not have a row of 0’s (since the supports of the columns of A are
the cocircuits). There exists a matrix B′ ∈ Cr×m such that every entry in(

Ir
C

)
·B′

is nonzero, because by Lemma 3.4.9 we can think of each entry in resulting matrix
as being a polynomial over C in the entries in B′. Now define

F (t) =

(
Ir
C

)
· (A′ + tB′) ∈ (K̃∗)n×m.

Since F is the product of two matrices each with rank at most r, we know that
rank(F ) ≤ r. However rank(F (0)) ≤ rank(F ), F (0) = A, and rank(A) = r, so
therefore rank(F ) = r. We also have that deg(F ) = M , the cocircuit matrix, since
F (0) = A and the supports of the columns of A are the cocircuits of M. Therefore
k-rank(M) = ρ(M).

Combining Corollary 3.3.6 and Theorem 3.4.7 we get the following theorem from
(5) that gets at the heart of the difference between the Kapranov and tropical rank.

Theorem 3.4.12. Let M be a matroid with cocircuit matrix M ∈ {0, 1}n×m, then
M is C-representable if and only if

k-rank(M) = t-rank(M).

3.5 The Fano Plane Matroid

Using Theorem 3.4.12, by presenting a matroid M that is not C-representable, we
can now finally prove that the Kapranov rank is not equivalent to the tropical rank.
Such an example is provided by the Fano plane, the combinatorialists’ coat of arms.

Definition 3.5.1. The Fano plane matroid F = (E, I) consists of the seven nonzero
vectors in the vector space (Z/2Z)3 where independence is induced from the vector
space.

Therefore in F , the ground set is E = {x = (x1, x2, x3) | xj ∈ {0, 1} and x 6= 0}
and the seven hyperplanes are:

H1 = V (x1) H3 = V (x3) H5 = V (x2 + x3) H7 = V (x1 + x2 + x3)

H2 = V (x2) H4 = V (x1 + x2) H6 = V (x3 + x1)



3.5. THE FANO PLANE MATROID 41

We number the elements in E as

1 = (1, 0, 0) 3 = (0, 0, 1) 5 = (1, 1, 1) 7 = (0, 1, 1)

2 = (0, 1, 0) 4 = (1, 0, 1) 6 = (1, 1, 0)

So the hyperplanes in F are

H1 = {2, 3, 7} H3 = {1, 2, 6} H5 = {1, 5, 7} H7 = {4, 6, 7}
H2 = {1, 3, 4} H4 = {3, 5, 6} H6 = {2, 4, 5}

Under this notation, we can represent the Fano plane matroid F graphically, where
the hyperplanes are the lines passing through three points. The circle counts as a
line and it is the hyperplane H7. This picture also represents the bases of F for
B ⊆ E will be a basis if and only if B consists of three noncollinear points.

18 DEVELIN, SANTOS, AND STURMFELS

that all entries of the d × r-matrix

(

Ir

C

)

· B′ are non-zero. We now define

F =

(

Ir

C

)

· (A′ + tB′) ∈ K̃d×n.

This matrix has rank r and deg(F ) = C(M). This completes the proof of Theorem 7.3. !

If k is representable over a finite field, its Kapranov rank (with respect to that field) may still
exceed its tropical rank. It is easy to find examples - for example, the matroid represented by
{(0, 1), (1, 0), (1, 1), (0, 0)} over F2 will work.

Corollary 7.4. Let M be a matroid which is not representable over a given field k. Then the
Kapranov rank with respect to k of the tropical matrix C(M) exceeds its tropical rank.

This corollary furnishes many examples of matrices whose Kapranov rank exceeds their tropical
rank. Consider, for example, the Fano and non-Fano matroids, depicted in Figure 2. They both
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Figure 2. The Fano (left) and non-Fano (right) matroids.

have rank three and seven elements. The first is only representable over fields of characteristic two,
the second only over fields of characteristic different from two. In particular, Corollary 7.4 applied
to these two matroids implies that over every field there are matrices with tropical rank equal to
three and Kapranov rank larger than that. Also, it shows that the Kapranov rank of a matrix may
be different over different fields k and k′, even if k and k′ are assumed to be algebraically closed.
This is a more significant discrepancy than that of Example 6.6, which used a finite field.

More explicitly, the cocircuit matrix of the Fano matroid is

C(M) =





















1 1 0 1 0 0 0
0 1 1 0 1 0 0
0 0 1 1 0 1 0
0 0 0 1 1 0 1
1 0 0 0 1 1 0
0 1 0 0 0 1 1
1 0 1 0 0 0 1





















.

This matrix is the smallest known example of a matrix whose Kapranov rank over C (four) is
strictly larger than its tropical rank (three). Put differently, the seven columns of this matrix (in
TP6) have as their tropical convex hull a two-dimensional cell complex which does not lie in any
two-dimensional linear subspace of TP6, a feature decidedly absent from ordinary geometry.

Applied to non-representable matroids, such as the Vamos matroid (rank 4, 8 elements, 41
cocircuits) or the non-Pappus matroid (rank 3, 9 elements, 20 cocircuits) [19], Corollary 7.4 yields

Figure 3.2: The Fano plane matroid and its hyperplanes.

It turns out that F is F -representable only if F has characteristic 2, which means
in particular that F is not C-representable. This was first proven in (25) and our
proof will follow the one that appears in (18).

Proposition 3.5.2. If the Fano plane F = (E, I) is representable then F has
characteristic 2.

Proof. Let ϕ : E → V be a representation where V is a vector space over F and
ϕ : (a, b, c) 7→ vabc. Since this is a representation and {(1, 0, 0), (0, 1, 0), (0, 0, 1)}
is a basis for F , we know that {v100,v010,v001} is a basis for span(ϕ(E)). Since
{v111,v100,v010,v001} is a minimal dependent set, we know that

v111 = a1v100 + a2v010 + a3v001 where aj ∈ F ∗. (3.5.1)

Similarly we know that {v011,v010,v001} and {v011,v111,v100} are also minimal de-
pendent sets, so there exists b1, c1, d1, e1 ∈ F ∗ such that

b1v010 + c1v001 = v011 = d1v111 + e1v100. (3.5.2)
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Substituting (3.5.1) into (3.5.2), gives

v011 = d1(a1v100 + a2v010 + a3v001) + e1v100. (3.5.3)

Since v011 has an unique representation as the linear combination of v100, v010, v001,
(3.5.2) and (3.5.3) tell us that d1a1 + e1 = 0. Therefore we can rewrite (3.5.3) as

v011 = d1a2v010 + d1a3v001. (3.5.4)

The same line of argument shows that since {v101,v100,v001} and {v101,v111,v010}
are minimal dependent sets, we have d2 ∈ F ∗ such that

v101 = d2a1v100 + d2a3v001. (3.5.5)

Likewise since {v110,v100,v010} and {v110,v111,v001} are minimal dependent sets,
we have d3 ∈ F ∗ such that

v110 = d3a1v100 + d3a2v001. (3.5.6)

Finally we have that since {v011,v101,v110} is a minimal dependent set, we have
fj ∈ F ∗ such that

f1v011 + f2v101 + f3v110 = 0. (3.5.7)

Substituting (3.5.4), (3.5.5), and (3.5.6) into (3.5.7) gives

0 = f1(d1a2v010 + d1a3v001) + f2(d2a1v100 + d2a3v001) + f3(d3a1v100 + d3a2v001)

= (f2d2a1 + f3d3a1)v100 + (f3d3a2 + f1d1a2)v010 + (f1d1a3 + f2d2a3)v001.

However since {v100,v010,v001} is a basis, this gives

f2d2a1 = −f3d3a1 (3.5.8)

f3d3a2 = −f1d1a2 (3.5.9)

f1d1a3 = −f2d2a3. (3.5.10)

Forming a = (f2d2a1)(f3d3a2)(f1d1a3) =
∏

j ajdjfj, it follows from (3.5.8), (3.5.9),
(3.5.10), and aj, dj, fj 6= 0, that

a = −a 6= 0.

Therefore the characteristic of F is 2.

It follows from Proposition 3.5.2 that F is not C-representable, and therefore by
Theorem 3.4.12 we get that for the cocircuit matrix M of the Fano plane F where

M =



0 1 1 0 1 0 0
1 0 1 0 0 1 0
1 1 0 1 0 0 0
0 1 0 0 0 1 1
0 0 0 1 1 1 0
0 0 1 1 0 0 1
1 0 0 0 1 0 1


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that t-rank(M) < k-rank(M). In fact since the rank of the Fano plane matroid
is 3, we know by Corollary 3.3.6 the t-rank(M) = 3. Using Theorem 2.1.8, one
can compute that k-rank(M) = 4. Since we can join the Fano matroid with other
matroids and have the resulting matroid remain not C-representable, we have the
following:

Theorem 3.5.3. For all n ≥ 7 there exists a matrix M ∈ Rn×n such that

t-rank(M) < k-rank(M).





Chapter 4

NP-completeness and the Tropical
Rank

In this chapter will present a proof, based on the one that appears in (11), that
computing the tropical rank of a zero-one matrix is NP-complete, answering question
(Q1) at the end of (5). This proof will appear in Section 4.3, and the first two sections
of this chapter will serve as a brief primer on the the theory of NP-completeness
based on the standard book (9).

4.1 The Basics of P and NP

The study of NP-completeness deals with decision problems, which are problems
with a definitive yes/no answer.

Definition 4.1.1. A decision problem Π is an order pair Π = (DΠ, YΠ), where
YΠ ⊂ DΠ. The elements of D = DΠ are called instances and the elements in
Y = YΠ are the yes-instances.

To describe decision problems we use the INSTANCE/QUESTION format. For
example consider the problem:

VERTEX COVER
INSTANCE: A graph G = (V,E) and K ∈ N.
QUESTION: Is there a set S ⊆ V with |S| ≤ K such that for every {u, v} ∈ E
either u ∈ S or v ∈ S?

Then for the vertex cover decision problem V C, DV C = G × N where G is
the collection of (finite) graphs and (G,K) ∈ YV C if and only if the answer to the
question in the case of (G,K) is ‘yes.’ Now suppose that we had a program that could
compute the answer for any instance of V C and we wanted to know the size of the
smallest vertex cover for a given graph G = (V,E). Then we could compute (G,K)
for each K ∈ N with K ≤ |E| and pick the smallest K such that (G,K) ∈ YV C ,
which exists since (G, |E|) ∈ YV C . Using this idea, many optimization problems can
be reduced to decision problems.
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Definition 4.1.2. For a finite set Σ, denote by Σ∗ the set of all finite strings of
symbols from Σ, including the empty string ε. A subset L ⊆ Σ∗ is called a language
over the alphabet Σ.

Example 4.1.3. If Σ = {0, 1}, then ε, 0, 1, 00, 01, 10, 11, and 000 are examples of
elements from {0, 1}∗. Likewise {ε, 1, 001, 100011}, the set of all finite strings with
exactly three 1’s, and {0, 1}∗ are examples of languages over {0, 1}.

We relate decision problems with languages with the notion of an encoding
scheme. Where an encoding scheme for Π is an injective function e : DΠ → Σ∗

where Σ is some alphabet. Such an encoding of a decision problem, results in a
partition of Σ∗:

Σ∗ = e(YΠ) ·∪ e(DΠ \ YΠ) ·∪ (Σ∗ \ e(DΠ)).

It is the first set in this partition that we are interested in. It is the language over
Σ we will associate with Π and e where:

L[Π, e] = e(YΠ).

The idea going forward will be that if a result holds for the language L[Π, e], then
it will hold for the decision problem Π under encoding e.

Now given a problem Π what kind of encoding schemes should we allow so that
a notion of the computational complexity of Π is preserved? This turns out to be a
difficult question to answer. However, we know that such encoding schemes should
be ‘concise’ so as not to make an easy problem computationally hard by adding
irrelevant data, and it should be ‘decodable’ meaning that it is easy to compute
the inverse of e. Furthermore, if e and e′ are allowable encoding schemes then we
would want a result about the computability of L[Π, e] to hold if and only if the
same result about L[Π, e′] holds. The utility behind this approach is that it allows
us to talk about results involving a decision problem independent of any particular
encoding scheme. Let’s informally say that such an encoding is ‘reasonable’ and
we refer the reader to (9) for a longer discussion about what ‘reasonable’ encoding
schemes might be.

For convenience let’s suppose that every decision problem has an input-length
function Length : DΠ → N which is polynomially related to reasonable encoding
schemes. This mean that for any reasonable encoding scheme e there exists polyno-
mials p, q ∈ Z[x] such that for all instances I ∈ DΠ:

Length(I) ≤ p(|e(I)|) and |e(I)| ≤ q(Length(I)),

where |e(I)| is the length of the string e(I) in Σ∗. For example in the VERTEX
COVER problem, we could take

Length(G,K) = |V | where G = (V,E).

A deterministic Turing machine (DTM) consists of a two-way infinite sequence
of tape squares labeled by the integers, a read-write head to write symbols on the
tape squares, and a finite state control to shift the tape following a finite set of rules.
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Definition 4.1.4. A program for a DTM consists of the following:

1. A finite set Γ of tape symbols with a subset Σ ⊆ Γ of input symbols and a
blank symbol b ∈ Γ \ Σ;

2. A finite set Q of states with a start-state q0, and halt-states qY and qN ; and

3. A transition function δ : (Q \ {qN , qY })× Γ → Q× Γ× {−1, 1}.

The program then runs as follows. The input is any string x ∈ Σ∗, and the
string x is placed in the tape squares 1 through |x|, one symbol per square, and
every other tape square contains the blank symbol b. The program then starts
with the read-write head at square 1 in state q0 and proceeds in accordance to the
transition function σ. If at any time the state q is qN or qY then the program halts
and returns the answer ‘no’ or ‘yes’ respectively. Otherwise if q ∈ Q\{qN , qY }, then
the read-write head reads the symbol s ∈ Γ at the head’s present location z and
computes δ(q, s) = (q′, s′,∆). The read-write head erases s and writes s′ at position
z and then moves to position z + ∆ and switches to state q′ and the process now
repeats.

We say that a DTM program M with input alphabet Σ accepts x ∈ Σ∗ if M
halts in state qY when given x as an input. The language LM recognized by the
program M is given by

LM = {x ∈ Σ∗ |M accepts x}.

A DTM program M is an algorithm if it halts for all inputs x ∈ Σ∗. Hence an
algorithm is a function from Σ∗ → {qN , qY }.

Definition 4.1.5. We say that a DTM algorithm M solves the decision problem Π
under encoding scheme e if and only if and LM = L[Π, e].

For x ∈ Σ∗, the time a DTM algorithm M takes to compute M(x) is just the
number of steps occurring in the computation until the program halts.

Definition 4.1.6. Given a DTM algorithm M , its time complexity function is given
by TM : N → N where

TM(n) = max{t | x ∈ Σ∗, |x| = n, and computing M(x) takes time t}.

We can now define a polynomial time algorithm and the class P.

Definition 4.1.7. A DTM algorithm M is a polynomial time algorithm if there
exists a polynomial p ∈ Z[x] such that TM(n) ≤ p(n) for all n ∈ N. P is then the
collection of languages defined as

P = {L | there exists polynomial time algorithm M such that L = LM}.

We say that a decision problem Π belongs to P if there exists an encoding scheme e
such that L[Π, e] ∈ P, and restricting ourselves to reasonable encoding schemes we
will just say that Π belongs to P.
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Returning to the VERTEX COVERING problem, there is no known polynomial
time algorithm solution, however given an arbitrary instance (G,K) and arbitrary
subset of vertices C it is easy to check if |C| ≤ K and if C is a vertex covering. It
is problems like this, where it easy to check if a proposed object is a solution to an
existence question, that we will want to be NP problems.

The counterpart of a DTM here will be a nondeterministic Turing machine
(NDTM), which is just like a DTM with the addition of a guessing module. Programs
for NDTM are just the same as for DTM, except in running them there is first a
guessing stage. So a tape with an input x ∈ Σ∗ is fed into the NDTM, and then
the guessing module guesses a string g ∈ Γ∗, having the read-write head write the
guess on tape squares 0 to − |g|+1. The guessing stage then ends and the program
starts to run at square − |g|+ 1.

For a given guess g ∈ Γ∗, if computation halts at qY then the guess g is said
to be an accepting computation, and if the computation halts at qN or never halts,
then the guess g is said to be a nonaccepting computation. We say that a NDTM
program M accepts an input x ∈ Σ∗ if there is at least one guess that is an accepting
computation. The language recognized by M is

LM = {x ∈ Σ∗ |M accepts x}.

The time required by an NDTM program M to accept a string x ∈ LM is the
minimum number of steps required to get the program to halt at qY (counting both
the guessing and computing stage) over all accepting computations. Then the time
complexity function TM : N → N for M is

TM(n) = max{t | x ∈ LM , |x| = n, and the time for M to accept x is t},

and by convention if the set is empty, then TM(n) = 0. As expected, a NDTM
program M is a polynomial time NDTM program if there exists a polynomial p ∈
Z[x] such that TM(n) ≤ p(n) for all n ∈ N. So the class NP of languages is defined
as follows:

NP = {L | there exists polynomial time NDTM program M such that L = LM}.

Just as in the case of P, we say that a decision problem Π belongs to NP if there
exists an encoding scheme e such that L[Π, e] ∈ NP. However we can be informal
and say that Π belongs to NP if it is clear that it leads to a language in NP under
some reasonable encoding.

Observe that P ⊆ NP, since given a polynomial time algorithm M such that
L = LM , then M with the addition of a guessing module is a NDTM program and
for each input in x ∈ Σ∗ the program halts for the empty guess. Further discussions
about the relationship between P and NP are far beyond the scope of this thesis
(it one of the Clay Foundation’s Millennium Problems to determine if P = NP),
however we will end by quoting the following result.

Theorem 4.1.8 (Theorem 2.1 on p.33 in (9)). If a decision problem Π is in NP, then
there exists a polynomial p ∈ Z[x] such that Π can be solved by a DTM algorithm
having time complexity O(2p(n)).
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4.2 NP-completeness and Cook’s Theorem

Since the question of whether P = NP is currently intractable, there is no known way
of showing that a problem Π belongs to NP \P. So the question of NP-completeness
deals with the weaker statement: if P 6= NP, then Π ∈ NP \P. The way of address-
ing this is the notion of a polynomial transformation.

Definition 4.2.1. A polynomial transformation from language L1 ⊆ Σ∗
1 to language

L2 ⊆ Σ∗
2 is a function T : Σ∗

1 → Σ∗
2 such that

1. There is a polynomial time DTM program that computes T ; and

2. T−1(L2) = L1 or equivalently for x ∈ Σ∗
1, x ∈ L1 if and only if T (x) ∈ L2.

If there exists a polynomial transformation form L1 to L2, then we say that L1

transforms to L2 and denote this by L1 ∝ L2.

The importance of polynomial transformations in the theory of NP-completeness
lies in the following two propositions:

Proposition 4.2.2. If L1 ∝ L2 and L2 ∈ P, then L1 ∈ P.

Proof. Let Σ1 and Σ2 be the alphabets of L1 and L2 respectively and let T : Σ∗
1 → Σ∗

2

be the polynomial transformation from L1 to L2. Now let MT and M2 be the
polynomial time DTM algorithms that compute T and recognize L2 respectively.

Then we claim that the composition M2 ◦ MT = M1, is a polynomial time
DTM algorithm that recognizes L1. M1 is the program that takes x ∈ Σ∗

1 and first
computes T (x) and then computes M2(T (x)). Observe that, x ∈ L1 if and only
if T (x) ∈ L2 if and only if M2(T (x)) halts at qY , so it is a DTM algorithm such
that LM1 = L1. Furthermore, if the time complexity function for T and M2 are
pT and p2 respectively, then TM1 ≤ pT + p2(pT ) which is a polynomial. Therefore
M1 = M2 ◦MT is a polynomial time DTM algorithm such that LM1 = L1 and hence
L1 ∈ P.

In practice we will use the contrapositive, namely that if L1 ∝ L2 and L1 /∈ P,
then L2 /∈ P. At the decision problem level, we say that Π1 ∝ Π2 if there exists
encoding schemes e1 and e2 such that L[Π1, e1] ∝ L[Π2, e2]. Restricting ourselves to
the use of reasonable encoding schemes, we can think of a polynomial transformation
from Π1 to Π2 as a function T : DΠ1 → DΠ2 such that:

1. T is computable by a polynomial time algorithm; and

2. T−1(YΠ2) = YΠ1 .

The other important property of polynomial transformations is that the ∝ rela-
tion is transitive among languages.

Proposition 4.2.3. If L1, L2, and L3 are languages, L1 ∝ L2, and L2 ∝ L3, then
L1 ∝ L3.
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Proof. Let Σ1, Σ2, and Σ3 be the alphabets of L1, L2, and L3 respectively. Let
T1 : Σ∗

1 → Σ∗
2 be a polynomial transformation from L1 to L2 and let T2 : Σ∗

2 → Σ∗
3

be the polynomial transformation from L2 to L3. Finally let p1 and p2 be polynomials
which bound the time complexity functions for T1 and T2, respectively.

Then T = T2 ◦ T1 : Σ∗
1 → Σ∗

3 is a transformation such that

T−1(L3) = T−1
1 (T−1

2 (L3)) = T−1
1 (L2) = L1. (4.2.1)

Furthermore the time complexity function for T is bounded by the polynomial p1 +
p2(p1), since T first computes T1(x) and then T2(T1(x)). Hence by the above, which
shows that T runs in polynomial time, and (4.2.1) we have that T is a polynomial
transformation from L1 to L3. Therefore L1 ∝ L3.

We can define two languages L1 and L2 to be polynomial equivalent if L1 ∝ L2

and L2 ∝ L1, and this is an equivalence relation by Proposition 4.2.3. We can now
define the class of NP-complete languages.

Definition 4.2.4. A language L is NP-complete if L ∈ NP and L′ ∝ L for all
L′ ∈ NP.

Corollary 4.2.5. If L1 is NP-complete, L2 ∈ NP, and L1 ∝ L2, then L2 is NP-
complete.

Proof. Let L ∈ NP. Since L1 is NP-complete, we know that L ∝ L1, and hence by
Proposition 4.2.3 we have that L ∝ L2. Therefore L2 is NP-complete.

As expected we informally say that a problem Π is NP-complete if and only
Π ∈ NP and Π′ ∝ Π for all Π′ ∈ NP. For problems Π1 and Π2, we can think
of Π1 ∝ Π2 as saying that Π2 is harder that Π1. So by Proposition 4.2.2 we see
that NP-complete problems are, in this sense, the hardest problems in NP. For if an
NP-complete problem Π could be solved in polynomial time, then all NP problems
could be as well. Therefore an NP-complete problem Π has the property mentioned
at the beginning of this section, namely that if P 6= NP then Π ∈ NP \P.

Now while Corollary 4.2.5 is nice, for it gives us a method of proving that a
problem is NP-complete from a known NP-complete problem, we need a known
NP-complete problem first. We are saved by the celebrated theorem of Cook (3)
which supplies us with an NP-complete problem. The problem is known as SATIS-
FIABILITY (SAT) and is as follows:

SATISFIABILITY
INSTANCE: A set U of variables and a collection C of clauses over U .
QUESTION: Is there a truth value assignment ϕ : U → {T, F} such that every
clause c in C is satisfied by ϕ?

Example 4.2.6. Let U = {u1, u2, u3} and C = {{u1,¬u2}, {u2, u3}, {¬u1, u3}}. We
interpret the clause {u1,¬u2} as saying ‘u1 or not-u2.’ Then C is satisfied by the
function ϕ : {u1, u2, u3} → {T, F}, where ϕ(u1) = T, ϕ(u2) = T , and ϕ(u3) = T .

Theorem 4.2.7. SATISFIABILITY is NP-complete.
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In (9) numerous proofs of NP-completeness are given, using Corollary 4.2.5 by
giving a polynomial transformation from a known NP-complete problem to another
NP problem. In particular they prove in Theorem 3.3 on page 54 the following:

Theorem 4.2.8. VERTEX COVER is NP-complete.

4.3 Computing the Tropical Rank is Hard

Let A1, . . . , An ⊆ A, where A is a finite set. Recall that

poset({A1, . . . , An}) =

{⋃
j∈S

Aj | S ⊆ {1, . . . , n}

}
.

For C1, . . . , Cm ∈ poset({A1, . . . , An}), we say that

C = C1, . . . , Cm is a chain if ∅ ( C1 ( C2 ( · · · ( Cm−1 ( Cm

and we say that m is the length of the chain C. A chain C is said to have maximal
length if no other chain in the poset has a greater length, and the length of a poset
is the length of a maximal length chain.

Proposition 4.3.1. Let A1, . . . , An ⊆ A and W = poset({A1, . . . , An}). For a
maximal length chain C = C1, . . . , Cm in W it is the case that for each j ≤ m there
is a ji such that Cj−1 ∪ Aji = Cj.

Proof. Without loss of generality let Cj−1 = A1 ∪ · · · ∪Ax and Cj = Aj1 ∪ · · · ∪Ajy .
For each ji, we have that Cj−1 ⊆ Cj−1 ∪ Aji ⊆ Cj. Since C is a maximal chain, it
follows that either Cj−1∪Aji = Cj, in which case we are done, or Cj−1 = Cj−1∪Aji .

If Cj−1 = Cj−1 ∪Aji for all ji, then Aji ⊆ Cj−1 for all ji. This would imply that
Cj = Aj1 ∪ · · · ∪ Ajy ⊆ Cj−1, which is false. Therefore for some ji, we have that
Cj−1 ∪ Aji = Cj, which proves the proposition.

This proposition shows that by renumbering the Ai in poset({A1, . . . , An}), we may
assume that a maximal length chain C = C1, . . . , Cm is such that

Cj =

j⋃
i=1

Aj.

This section will be devoted to proving that the problem of computing the trop-
ical rank of a zero-one matrix is NP-complete following (11). Our method of attack
will be to show that finding the length of poset({A1, . . . , An}) is NP-complete. So
we need to prove that MAXIMAL LENGTH (MAX) is NP-complete where:

MAXIMAL LENGTH
INSTANCE: A1, . . . , An ⊆ S with

⋃n
j=1Aj = S, K ∈ N.

QUESTION: Does there exist L ≥ K such that for some Aj1 , . . . , AjL ,

Aj1 ( Aj1 ∪ Aj2 ( · · · (
L⋃
i=1

Aji = S?
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In order to prove that the problem of computing the tropical rank of a matrix
in {0, 1}n×m is NP-complete, it suffices to prove that MAX is NP-complete. This is
because Theorem 2.3.1 and Proposition 4.3.1 tell us an instance of MAX has length
less then or equal to K if and only if the the corresponding {0, 1} matrix has tropical
rank less than or equal to K.

Before diving into the proof that MAX is NP-complete, we will first prove that
the problem MINIMAL LENGTH (MIN), which looks very similar to MAX, is NP-
complete.

MINIMAL LENGTH
INSTANCE: A1, . . . , An ⊆ S with

⋃n
j=1Aj = S, K ∈ N.

QUESTION: Does there exist L ≤ K such that for some Aj1 , . . . , AjL ,

Aj1 ( Aj1 ∪ Aj2 ( · · · (
L⋃
i=1

Aji = S?

Proposition 4.3.2. MINIMAL LENGTH is NP-complete.

Proof. First off, MIN is in NP since a nondeterministic algorithm need only guess
a subset of {A1, . . . , An} and an ordering, then check to see that the subset is of
the proper size and that the ordering gives a proper chain with final element being
equal to S.

We will transform VERTEX COVER into MINIMAL LENGTH. Given a graph
G = (V,E), label the vertices and edges so V = {v1, . . . , vn} and E = {e1, . . . em}.
For each vertex, vj form the set Aj = {i | vj ∈ ei}. We claim that there is a vertex
cover S ⊆ V with |S| ≤ K if and only if there is a L ≤ K such that for some
Aj1 , . . . , AjL ,

Aj1 ( Aj1 ∪ Aj2 ( · · · (
L⋃
i=1

Aji = E.

Suppose that S = {vj1 , . . . , vjL} is a vertex cover, |S| = L ≤ K, and without
loss of generality suppose that no proper subset of S is a vertex cover. Then choose
the sets Aj1 , . . . , AjL . Since each edge has one of the vji as an end point, we know

that
⋃L
i=1Aji = E. Furthermore, if for some k we had

Aj1 ∪ · · · ∪ Ajk−1
= Aj1 ∪ · · · ∪ Ajk−1

∪ Ajk ,

then S \ vjk would be a vertex cover as well, which cannot be the case. Hence we
have

Aj1 ( Aj1 ∪ Aj2 ( · · · (
L⋃
i=1

Aji = E,

as desired. Conversely suppose that we had a minimal chain given by Aj1 , . . . , AjL
with L ≤ K. Then in particular

⋃L
i=1Aji = E, so S = {vj1 , . . . , vjL} is a vertex

cover with |S| ≤ K.
Hence VERTEX COVER can be mapped to MINIMAL LENGTH by a polyno-

mial transformation. Therefore MINIMAL LENGTH is NP-complete.
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Now we will present a couple of propositions that will allow us to prove that
MAXIMAL LENGTH is NP-complete. This series of propositions and proofs is
based off of Theorem 13 in (11), where it is proven that computing the tropical
rank of a zero-one matrix is NP-complete. We will be working with colored cycles,
c-cycles, defined as follows:

Definition 4.3.3. Let C be a graph that is a circuit, so C = (V,E) where

V = {v0, v1, . . . , v2n} and E = {(v0, v1), (v1, v2), . . . , (v2n−1, v2n), (v2n, v0)}.

C is a c-cycle if each edge is assigned a color from the distinct {c0, . . . , cn}, where c0
is assigned to (v2n, v0) and for j > 0, cj is assigned to (v2j−2, v2j−1) and (v2j−1, v2j).
In this case c0 will be called the cycle’s color and (v2n, v0) the cycle’s final edge.

Example 4.3.4. Figure 4.1 is an example of a c-cycle for n = 2. In this case c1 is
‘black’, c2 is ‘dashed black’, and c0, the cycle’s color, is ‘gray’.
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5

C1

6 7

8

C2

9 10

11

C3

Figure 5: The Diagram D1 with labels added using psfrag.

v1 v2

v3

Figure 6: The Diagram D1 with labels added using psfrag.

v0
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v2

v3

v4

c0

c1

c1c2

c2

Figure 7: The Diagram D1 with labels added using psfrag.

5

Figure 4.1: A c-cycle for n = 2.

For a general colored graph G, where C = e1, . . . , em is an ordering of a subset
of its edges, we say that C is a chain iff every ej has a color or vertex that does not
appear in any ei for all i < j. The chain C is said to have length m.

Proposition 4.3.5. Let C be a c-cycle, labeled and colored as is in the definition.
For j ≤ 2n let ej = (vj−1, vj) and let e2n+1 = (v2n, v0). Then C = e1, e2, . . . , e2n, e2n+1

is a chain of length 2n+ 1.

Proof. For j ≤ 2n, ej contains the vertex vj that does not appear in any ei for i < j.
Observe that e2n+1 is the cycle’s final edge and therefore no other edge contains its
color, c0. Therefore C is a chain of length 2n+ 1.

Definition 4.3.6. For a c-cycle C, let CC = C where C is from Proposition 4.3.5.
Define CC to be C’s natural chain and let C∗C = e1, e2, . . . , e2n be C’s natural chain
without its final edge.
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Proposition 4.3.7. Suppose C = e1, e2, . . . , e2n+1 is a chain consisting of all the
edges of a c-cycle C. Then e2n+1 is the final edge and every other ej has a vertex
that does not appear in any ei for i < j.

Proof. Each of the 2n + 1 vertices of C appear in any collection of 2n edges of C.
Hence e2n+1 must have a color that no other edge in C has, and therefore e2n+1

is the final edge. Now for some j ≤ 2n, suppose that the vertices of ej appear in
ea or eb where a, b < j. Then ea and eb are the adjacent edges of ej in C, and
therefore without loss of generality we know that ej and ea have the same color.
This contradicts the fact that ej has a color or vertex that does not appear in any
ei for i < j. Therefore ej must contain a vertex that does not appear in any ei for
any i < j.

Definition 4.3.8. Given chains C1 = e1, e2, . . . , en and C2 = f1, f2, . . . , fm, their
concatenation is

C1, C2 = e1, . . . , en, f1, . . . , fm.

Proposition 4.3.9. Suppose that G is a colored graph consisting of n disjoint c-
cycles C1, . . . , Cn, where each cycle’s color is distinct and let L be the length of the
longest chain in G. Then under a renumbering of the cycles, there is a chain C of
length L where

C = C1, . . . , Cm, C∗m+1, . . . , C∗n.

Here Cj is the natural chain for the c-cycle Cj and C∗j is the natural chain without
its final edge for the c-cycle Cj.

Remark 4.3.10. Observe while the collection of vertices for each c-cycle are pairwise
disjoint and each c-cycle’s color is distinct, the collection of colors appearing in the
c-cycles are not necessarily pairwise disjoint. For example C1, C2, C3 could be as
follows where C1’s color is ‘black’, C2’s color is ‘gray’, and C3’s color is ‘dashed
black’.
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Figure 5: The Diagram D1 with labels added using psfrag.
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Figure 4.2: Three disjoint c-cycles with distinct colors.
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Example 4.3.11. Before beginning the proof of Proposition 4.3.9, we will do an
example first. Observe that

L = (7, 8), (10, 11), (11, 9), (8, 6), (6, 7), (2, 3), (3, 4), (4, 5), (5, 1), (9, 10)

is a chain in Figure 4.2, where (i, j) is the edge between vertex i and vertex j. In L
cycles C2 and C3 are completed, so let

L′ = (7, 8), (10, 11), (11, 9), (8, 6), (6, 7), (9, 10)

be the chain obtained by removing the edges in L that are from cycle C1. In L′, we
can pull edges from cycle C2 in front of edges from C3 since C2 is the first cycle in
L′ that is completed. Pulling these edges into the front gives the chain

L′′ = (7, 8), (8, 6), (6, 7), (10, 11), (11, 9), (9, 10) = C2, C3.

Let N = C∗1 , then we have that

C = L′′,N = C2, C3, C∗1

is a chain of length 9, which was the length of L, and C is of the desired form for
Proposition 4.3.9.

Proof of Proposition 4.3.9. Let e be the total number of edges in G. Observe
that

C = C1, C∗2 , . . . , C∗n
is a chain, for C1 is a chain and in C∗j each edge is adding a vertex. The length of C
is e− (n− 1) because it contains every edge except for n− 1 final edges. Therefore
L ≥ e− n+ 1 and by the pigeon-hole principle, any maximal length chain contains
at least one completed cycle.

Let L = e1, e2, . . . , eL be a maximal length chain. From L remove every edge
that does not belong to a completed cycle in L, and call the remaining chain

L′ = ei1 , . . . , eia .

Let eib be the first edge in L′ that completes a cycle and without loss of generality
let it be C1. Let j ≤ b with eij ∈ C1 and eij−1

/∈ C1. We claim that then,

ei1 , . . . , eij−2
, eij , eij−1

is a valid chain. But this follows from Proposition 4.3.7 for eij−1
contains a vertex

that does not appear in any eic for c < j − 1 and that vertex cannot appear in eij
for eij is not in the same cycle as eij−1

. So the above list is in fact a valid chain and
therefore we can permute all the C1 edges to the beginning of L.

It follows from induction on the number of completed cycles in L′, that by
numbering the completed cycles in L′ in the order that they are completed, the
edges in L′ can be permuted into the following chain:

L′′ = C1, . . . , Cm
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We can then concatenate L′′ with the chain

N = C∗m+1, . . . , C∗n,

because each edge in N is adding a new vertex from a chain that does not appear
in L′′.

The resulting chain, C = L′′,N is at least as long as L. Therefore C has length
L and is of desired form.

Theorem 4.3.12. MAXIMAL LENGTH is NP-complete.

Proof. MAX is in NP for the same reason MIN is in NP, since a nondeterministic
algorithm need only to guess a subset of {A1, . . . , An} and an ordering, then check
to see that the subset is of the proper size and that the ordering gives a proper chain
with final element being equal to S.

We will transform VC into MAX. The idea will be to turn a graph G into a
disjoint collection of c-cycles, where each cycle’s color is distinct, so that we can
apply Proposition 4.3.9.

Let G = (V,E) be a graph with N vertices and assign each vertex vj ∈ V , a
unique color cj. Without loss of generality we may assume that there are no isolated
vertices in G, because no isolated vertex will be part of a minimal vertex cover. Now
for each vertex vj create a c-cycle Cj as follows:

Cj’s color will be cj and the other colors in Cj will be exactly those colors
ci such that (vi, vj) ∈ E is an edge in G.

Then the collection, Γ, of these c-cycles will be a colored graph consisting of n
disjoint c-cycles C1, . . . , CN where each cycle’s color is distinct. Therefore we will
be able to apply Proposition 4.3.9 to Γ.

For example the graph G in Figure 4.3 transforms into the set of the three c-
cycles from Figure 4.2. This is done by assigning v1 to the color ‘black’, v2 to the
color ‘gray’, and v3 to the color ‘dashed black’.
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Figure 4.3: The graph G transforms into Figure 4.2.

Now consider the graph Γ consisting of all c-cycles Cj created for G. For each
edge e in Γ, identify e with the set Ae = {ci, va, vb} where ci is the color of edge
e and va, vb are the two vertices of e. We can see that finding the longest chain in
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poset({Ae | e ∈ Γ}) is the same as finding the longest chain of edges in Γ. Let E
be the number of edges in Γ. We claim that there is a vertex cover of G of size K
if and only if the length of the longest chain of edges in Γ is at least E −K.

Suppose that we have a vertex cover of G of size K. We will show that there is a
chain of edges in Γ of length E−K. Renumber the vertices of G so that {v1, . . . , vK}
is a vertex cover. This means that for i, j > K we know that (vi, vj) is not an edge
in G and hence Ci and Cj do not contain the other’s color. Then in the notation of
Proposition 4.3.9, the following is a chain in Γ:

κ = CK+1, . . . , CN , C∗1 , . . . , C∗K .

Observe that the length of κ is E −K.
Suppose now that we know that the length of the longest chain of edges in Γ is

at least E −K, where K < N by Proposition 4.3.9. Let the length of the longest
chain be E − K ′ where K ′ ≤ K. It follows from Proposition 4.3.9, that after a
renumbering of the cycles and their edges we have a maximal length chain of edges
of the form:

C = CK′+1, . . . , CN , C∗1 , . . . , C∗K′ .

This means if i, j > K ′ + 1 and i 6= j, then Ci and Cj do not have the other’s color.
Therefore in G there are no edges of the form (vi, vj) if i, j > K ′. Hence the set of
vertices {v1, . . . , vK′} form a vertex cover for the graph G. Since K ′ ≤ K, we know
that {v1, . . . , vK} form a vertex cover of size K for the graph G.

Therefore we have proved that there is a vertex cover of G of size K if and only
if the length of the longest chain of edges in Γ is at least E − K. Furthermore
in the worst case scenario where G = KN , Γ has 2N2 − N vertices and 2N2 − N
edges, so Γ can be constructed from G in polynomial time. Therefore since we
have a polynomial transformation from VC to MAX, which proves that MAXIMAL
LENGTH is NP-complete.





Appendix A

5×5 Zero-One Matrices

A.1 The Setup

If M ∈ {0, 1}5×5 and t-rank(M) 6= k-rank(M), then by Theorem 2.2.4 and Theo-
rem 2.2.5:

t-rank(M) = 3 and k-rank(M) = 4.

In this appendix we will present the computations that prove Theorem 2.2.6, which
states that there are no matrices M ∈ {0, 1}5×5 such that t-rank(M) 6= k-rank(M).

Let M ∈ {0, 1}5×5 be such that t-rank(M) = 3, then it has a chain of length
three and does not have a chain of length four. We can think of a chain of length
three as being an ordered partition of {1, 2, 3, 4, 5} into three nonempty sets and up
to a permutation of {1, 2, 3, 4, 5} there are exactly six of these. The six cases are:

5.1 :{1}, {2}, {3, 4, 5} 5.2 :{1}, {2, 3}, {4, 5} 5.3 :{1}, {2, 3, 4}, {5}
5.4 :{1, 2}, {3}, {4, 5} 5.5 :{1, 2}, {3, 4}, {5} 5.6 :{1, 2, 3}, {4}, {5}

So in our chain of length three, the first column adds the first set, the second column
adds the second set, and the third column adds the third set. So M can look like
one of the following matrices (where a star means the entry can be 0 or 1):

C1 =


0 ∗ ∗ ∗ ∗
1 0 ∗ ∗ ∗
1 1 0 ∗ ∗
1 1 0 ∗ ∗
1 1 0 ∗ ∗

C2 =


0 ∗ ∗ ∗ ∗
1 0 ∗ ∗ ∗
1 0 ∗ ∗ ∗
1 1 0 ∗ ∗
1 1 0 ∗ ∗

C3 =


0 ∗ ∗ ∗ ∗
1 0 ∗ ∗ ∗
1 0 ∗ ∗ ∗
1 0 ∗ ∗ ∗
1 1 0 ∗ ∗



C4 =


0 ∗ ∗ ∗ ∗
0 ∗ ∗ ∗ ∗
1 0 ∗ ∗ ∗
1 1 0 ∗ ∗
1 1 0 ∗ ∗

C5 =


0 ∗ ∗ ∗ ∗
0 ∗ ∗ ∗ ∗
1 0 ∗ ∗ ∗
1 0 ∗ ∗ ∗
1 1 0 ∗ ∗

C6 =


0 ∗ ∗ ∗ ∗
0 ∗ ∗ ∗ ∗
0 ∗ ∗ ∗ ∗
1 0 ∗ ∗ ∗
1 1 0 ∗ ∗


Thinking of each cases as an ordered partition of the number 5 into three parts,
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we have that

5.1 = (1, 1, 3) 5.2 = (1, 2, 2) 5.3 = (1, 3, 1)

5.4 = (2, 1, 2) 5.5 = (2, 2, 1) 5.6 = (3, 1, 1)

We say that a matrix M ∈ {0, 1}5×5 with t-rank(M) = 3 is in case 5.j if it can be
permuted to look like Cj, has no length 3 chain (a, b, c) < 5.j under the lexicographic
ordering, and has no column of 1’s.

Proposition A.1.1. If M ∈ {0, 1}5×5, t-rank(M) = 3, and M is in case 5.1, 5.2,
or 5.4, then t-rank(M) = k-rank(M).

Proof. Observe that M44 = M54 and M45 = M55. For otherwise c1, c2, c4, c3 would
be a chain of length four, where cj is the jth column of M , which contradicts that
t-rank(M) = 3. Therefore the last two rows of M and let M̃ ∈ {0, 1}4×5 be M with
the last column removed. Hence,

t-rank(M) = t-rank(M̃) and k-rank(M̃) = k-rank(M). (A.1.1)

Since M̃ ∈ {0, 1}4×5 it follows that

t-rank(M̃) = k-rank(M̃). (A.1.2)

Therefore t-rank(M) = k-rank(M).

The goal going forward will be to find all the representative matrices in the cases
5.3, 5.5, and 5.6 and then compute their Kapranov rank using Theorem 2.1.8. In
order to do this, there are a few computational issues that must be dealt with first
in order to make this feasible. For instance, there are 215 = 32768 matrices that are
of the form C3 and checking which of these have tropical rank 3 and computing their
Kapranov rank would take a considerable amount of time on a standard computer.
So the following three sections will be devoted to getting a better upper estimate of
the matrices in the cases 5.3, 5.5, and 5.6. For instance, we will reduce case 5.3 to
checking 23 · 45 = 360 matrices.

With these better upper bounds, we generated all of the representative matrices
in each case. A naive GAP algorithm was used to check to see if each matrix had a
length 4 chain, and those that did were thrown out. The remaining matrices were
then run through a CoCoA algorithm based off of Theorem 2.1.8, to check if they had
Kapranov rank greater than 3 (see Section A.5 for the actual code). It turned out
that no matrix that had Tropical rank 3 had Kapranov rank greater than 3. This
fact along with Proposition A.1.1 proves that there is no matrix M ∈ {0, 1}5×5 such
that t-rank(M) = 3 < k-rank(M). By the remarks at the beginning of this section,
this means we have proved Theorem 2.2.6,

t-rank(M) = k-rank(M) if M ∈ {0, 1}n×n and n ≤ 5.
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A.2 Case 5.3

We have that M with t-rank(M) = 3 is of the following form:

M =


0 ∗ ∗ ∗ ∗
1 0 ∗ ∗ ∗
1 0 ∗ ∗ ∗
1 0 ∗ ∗ ∗
1 1 0 ∗ ∗

 .

Without loss of generality we can assume that no column is all 1’s and the columns
are distinct. Furthermore, we can assume that (1, 3, 1) is the smallest length three
chain in M under the lex order.

If M54 = 1 and Mi4 6= Mj4 for i, j ∈ {2, 3, 4}, then c1, c2, c4, c3 would be a chain
and a similar result holds for c5. Therefore the last two columns of M can look like
either

f1 =


a
b
b
b
1

 or f2 =


c
d
e
f
0

 where a, b, c, d, e, f ∈ {0, 1}. (A.2.1)

If c4 = f1 and b = 1, then a = 0, since there is no column of 1’s, and hence c1 = c4
which cannot happen. Therefore the last two columns of M can look like either

f1 =


a
0
0
0
1

 or f2 =


c
d
e
f
0

 . (A.2.2)

Now in the third column of M , at least two of M23,M33,M43 must be equal to
0, for otherwise c1, c3, c2 would be a chain of the form (1, 2, 2) or (1, 1, 3) both of
which are smaller that (1, 3, 1). Hence by permuting the rows of M we know that
the first three columns look like

M =


0 ∗ ∗
1 0 ∗
1 0 0
1 0 0
1 1 0

 . (A.2.3)

A similar statement holds for the fourth or fifth columns if they are of form f2,
namely that at least two of d, e, f are equal to 0. Therefore the last two columns
must be drawn from

f1 =


∗
0
0
0
1

 , f2 =


∗
1
0
0
0

 , f3 =


∗
0
1
0
0

 , f4 =


∗
0
0
1
0

 , f5 =


∗
0
0
0
0

 . (A.2.4)
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A.3 Case 5.5

We have that M with t-rank(M) = 3 is of the following form:

M =


0 ∗ ∗ ∗ ∗
0 ∗ ∗ ∗ ∗
1 0 ∗ ∗ ∗
1 0 ∗ ∗ ∗
1 1 0 ∗ ∗

 .

Without loss of generality we can assume that no column is all 1’s and the columns
are distinct. Furthermore, we can assume that (2, 2, 1) is the smallest length three
chain in M under the lex order.

By an argument similar to that for (A.2.1) and (A.2.2), we have that the last
two columns look like either

f1 =


a
b
0
0
1

 or f2 =


c
d
e
f
0

 where a, b, c, d, e, f ∈ {0, 1}. (A.3.1)

Now neither c3, c4, nor c5 can be of the form

cn =


∗
∗
1
1
0

 ,

for then c1, cn, c2 would be a chain of the form (2, 1, 2) which is less than (2, 2, 1).
Permuting gives that M is of the form

M =


0 ∗ ∗
0 ∗ ∗
1 0 ∗
1 0 0
1 1 0

 , (A.3.2)

where c4 and c5 are drawn from

f1 =


∗
∗
0
0
1

 , f2 =


∗
∗
0
1
0

 , f3 =


∗
∗
∗
0
0

 . (A.3.3)
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A.4 Case 5.6

We have that M with t-rank(M) = 3 is of the following form:

M =


0 ∗ ∗ ∗ ∗
0 ∗ ∗ ∗ ∗
0 ∗ ∗ ∗ ∗
1 0 ∗ ∗ ∗
1 1 0 ∗ ∗

 .

Without loss of generality we can assume that no column is all 1’s and the columns
are distinct. Furthermore, we can assume that (3, 1, 1) is the smallest length three
chain in M under the lex order.

Now if M44 = M54 = 1, then M14 = M24 = M34, for otherwise c4, c1, c2, c3 would
be a chain. However, then if M44 = M54 = 1, then c4 is either all 1’s or equal to
c1, both contradictions. These statements hold just as well for the fifth column.
Therefore the last two columns of M are drawn from

f1 =


a
b
c
0
1

 or f2 =


d
e
f
g
0

 where a, b, c, d, e, f, g ∈ {0, 1}. (A.4.1)

Observe that neither c2, c4, nor c5 can be of the form

cn =


a
b
c
0
1

 or cm =


a
b
c
1
0


with at most one of a, b, and c being equal to 0, for then cn, c1, c3 or cm, c1, c2 would
be a chain with cn or cm adding less than 3 and hence the chain would be of a form
less than (3, 1, 1).

Bringing this altogether gives that M can be permuted to be the following

M =


0 ∗ ∗
0 0 ∗
0 0 ∗
1 0 0
1 1 0

 or


0 ∗ ∗
0 0 ∗
0 0 0
1 0 1
1 1 0

 , (A.4.2)

where c4 and c5 are drawn from

f1 =


a
b
c
0
1

 , f2 =


d
e
f
1
0

 , f3 =


∗
∗
∗
0
0

 , (A.4.3)

with a, b, c, d, e, f ∈ {0, 1}, a+ b+ c ≤ 1, and d+ e+ f ≤ 1.
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A.5 CoCoA Code

The following is the explicit CoCoA code used to compute the Kapranov rank of a
matrix M using Theorem 2.1.8:

// Determine whether the Kapranov rank of the matrix M has rank

// greater than T. The answer is "True" if the output is Ideal(1).

Define IsKRank(M,T)

NumRows:=Len(M);

NumCols:=Len(M[1]);

FM:=Flatten(List(M));

L:=Len(FM);

W1:=(Max(FM)+1)*NewList(L,1)-FM;

W:=Mat(Concat([W1],Submat(Identity(L),2..L,1..L)));

NewRingName := NewId();

Var(NewRingName)::= Q[x[1..NumRows,1..NumCols]],Ord(W);

Using Var(NewRingName) Do

D:=Mat([[x[I,J]|J In 1..NumCols]|I In 1..NumRows]);

J:=Ideal(Minors(T+1,D));

G:=ReducedGBasis(J);

IG:=[InitialForm(X,FM)|X In G];

S:= Saturation(Ideal(IG),Ideal(Product(Indets())));

If S=Ideal(1) Then

Return True;

Else

Return False;

EndIf;

EndUsing;

EndDefine;

// Given a polynomial F and a weight vector W for the variables,

// grab the initial form of F.

Define InitialForm(F,W)

M:=Monomials(F);

B:=Min([ScalarProduct(Log(X),W)|X In M]);

Return Sum([X|X In M And ScalarProduct(Log(X),W)=B]);

EndDefine;
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