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Introduction. In a recent essay1 I described a method—a method based upon
some relatively little-known work of H. A. Kramers2—for constructing traceless
hermitian (2� + 1)× (2� + 1) matrices

J1(�), J2(�), J3(�) : � = 0, 1
2 , 1, 3

2 , 2, 5
2 , . . .

which display the commutation properties of angular momentum operators,
and serve as the generators of spin-� unimodular unitary representations of the
rotation group O(3). I propose now to explore the question with which that
essay ended: “What has any of this [the apparatus to which I have just alluded]
to do with Majorana’s method?”

Kramers’ method dates from /3, Majorana’s from .4 I have
discovered no evidence that either ever became aware of the work of the other
. . .which is a shame, for their respective creations show a methodological
affinity, and for that very reason were similarly received: both proceeded
algebraically (though Majorana’s work had a pronounced geometrical flavor),

1 “Spin matrices for arbitrary spin” (August )—Part A of a series that
I call aspects of the mathematics of spin.

2 For a description of Kramer’s idea see §2 in “Algebraic theory of spherical
harmonics” ().

3 See p. 317 in M. Dresden, H. A. Kramers: Between Tradition & Revolution
() for descriptions of the soil (his “almost discovery of the Dirac equations”)
from which Kramer’s method sprang.

4 “Atomi orientati in campo magnetico variabile,” Il Nuovo Cimento 9, 43
(1932). This six-page note—the work of a brilliant but reclusive 25-year-old,
in which only a couple of incidental paragraphs bare on the topic presently of
interest to us—is widely hailed as a classic. But the best efforts of Victoria
Mitchell, Reed College Science Librarian, have failed to turn up an English
translation. Professor Erasmo Recami has translated three of Majorana’s
papers (he wrote only nine before committing suicide at 31), but not the paper
in question; Recami considers this to be not a major problem, since “. . . Italian
is a very easy language to learn.”
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and both saw their work marginalized by a contemporaries who had recently
embraced group theory as the language of orthodoxy.5

In Part A I used methods adapted from Kramers to address a problem
(the construction of certain matrices) which was of no particular interest to
Kramers himself, or to Majorana—both of whom were concerned with the
description and properties of the states of higher spin systems (atoms). Kramers
and Majorana were, however, concerned with distinct aspects of that large
and intricate problem area: Kramers—to judge from the account of his work
published6 by H. C. Brinkman, his former student—was interested primarily in
the efficient management of states that refer to populations of spin-1

2 particles,
while Majorana had interest in single particle systems of high spin. Kramers
looked upon atoms as objects assembled from their parts, while Majorana found
it efficient—and sufficient to his physical objective—to adopt a more wholistic
point of view.

Majorana, in his short note, provides no indication of whether or not he
was aware—or cared—that he worked within an analytical tradition the seed
of which had been planted by Stokes in , and to which Poincaré had made
contributions of direct relevance in . The tradition to which I refer was
still lively when Majorana wrote,7 but drew its motivation not from quantum
mechanics (of which, of course, Stokes/Poincaré knew nothing) but from the
physics of polarized optical beams. Recently I had occasion to review the that
theory, and some of its mechanical applications, in bewildering detail.8 I begin
with review of the most relevant essentials of that tangled tale.

Antecedents in the work of Stokes & Poincaré. Look into the face of an onrushing
monochromatic lightbeam; i.e., of an electromagnetic plane wave. To describe,
in reference to some selected Cartesian frame, the motion of the electric vector

5 The latter development is due mainly to the influence of Wigner (see
Zs. für Physik 40, 883 (1926) and 43, 624 (1927) for preliminary accounts
of the work summarized in his Gruppentheorie und irhe Anwendung auf die
Quantenmechanik der Atomspektren (1931)) and Weyl (Gruppentheorie und
Quantenmechanik (1928)). Ironically, Wigner himself became an enthusiastic
proponent of Kramer’s method, which he taught in his classes (where it came
to the attention of John Powell, at whose instance—Crasemann’s word—an
account of the method was included in their Quantum Mechanics ()). And
Weyl’s name will forever be linked to Majorana’s in connection with the theory
of the neutrino.

6 Applications of Spinor Invariants in Atomic Physics ().
7 P. Soleillet had made an important (but widely neglected) contribution in

. Thereafter the work was taken up and brought to a kind of classical
completion by Hans Muller (unpublished work in the early ’s), R. Clark
Jones (–) and S. Pancharatnam (). The subject was then taken
over and elaborated by a generation of quantum opticians.

8 “Ellipsometry: Stokes’ parameters and related constructs in optics and
classical/quantum mechanics” ().
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(in which the motion of the associated magnetic vector is implicit) we write

EEE(t) = E1(t) iii + E2(t) jjj with

{
E1(t) = E1 cos(ωt + δ1)
E2(t) = E2 cos(ωt + δ2)

(1)

Stokes wrote before the electromagnetic nature of light had been recognized,
but had already good reason to suppose that light involved rapid transverse
vibration of some sort: he knew that EEE(t)—whatever its physical nature—
would trace/retrace an elliptical Lissajous figure

E2
2E

2
1 − 2E1E2 cosδ · E1E2 + E2

1E
2
2 = E2

1E
2
2 sin2 δ (2)

δ ≡ δ2 − δ1 ≡ phase difference

He possessed (as we possess) no detector able to exhibit the ∼ 1014 Hz flight
of EEE(t) but—and this is a measure of the man’s genius—argued that one need
only equip oneself with a photometer and suitable filters to obtain a complete
characterization of the elliptical curve traced by EEE(t); i.e., of the polarizational
state of the lightbeam. To that end he wrote

S0 = E2
1 + E2

2

S1 = E2
1 − E2

2 = S0 cos 2χ cos 2ψ

S2 = 2E1E2 cos δ = S0 cos 2χ sin 2ψ

S3 = 2E1E2 sin δ = S0 sin 2χ




(3)

where the first set of equations define “Stokes’ parameters”
{
S0, S1, S2, S3

}
in terms of the physical variables E1, E2, δ, and the second set establishes
their relation to the geometrical parameters S0 (which—see Figure 1—sets the
scale of the ellipse), ψ (which indicates orientation) and χ (which refers to the
ellipticity).

Notice that Stokes’ parameters are quadratic in the field strengths—are, in
other words, “intensities,” susceptible to direct photometric scrutiny. And that

S2
0 = S2

1 + S2
2 + S2

3 (4)

which might appear to render one of the parameters redundant. We have,
however, assumed perfect 100% polarization, while real lightbeams can be
expected to be imperfectly or partially polarized ; in such cases (as can be shown)
one obtains

S2
0 > S2

1 + S2
2 + S2

3

It is, therefore, a further recommendation of Stokes’ construction that with four
measurements one can assign observational meaning to the

“degree of polarization” P ≡
√

S2
1 + S2

2 + S2
3

S0

Throughout the present discussion we will assume the polarization to be perfect.
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1E

E2

χ
ψ

Figure 1: Indication of the parameters used by Stokes to describe
the orientation (ψ) and eccentricity (χ) of the ellipse traced by the
flying EEE-vector in an idealized lightbeam. A remarkable theorem9

asserts that all rectangles circumscribed about the ellipse—including
in particular the two shown—have

(semidiagonal)2 = E2
1 + E2

2 = S0

which serves to set the scale of the figure (intensity of the beam).
Notice that ψ �→ ψ + π gives back the same ellipse. The angle
χ vanishes at the semi-major axis, and is understood to range on{
− π

2 ,+π
2

}
; the adjustment χ �→ −χ gives back the same ellipse,

but with reversed chirality.

9 See Figure 2 in Ellipsometry.
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χ
ψ

S

S

S

Figure 2: Placement of the point on the Stokes sphere of radius
S0 which by (3) is representative of the ellipse shown in Figure 1.
Note the doubled angles: as ψ advances from 0 to 2π the ellipse
assumes every orientation twice, and the point shown above revolves
twice around the polar axis. The sphere is, in this sense, really a
double sphere (has an “inside” and an “outside”). Reversing the
sign of χ sends the Stokes point to the opposite hemisphere (reverses
the sign of S3). Points in the Northern hemisphere represent ellipses
with � chirality, points in the Southern hemisphere have � chirality.

In contexts where we have interest in the figure of the ellipse (orientation,
ellipticity and chirality) but not in its size it becomes natural to set S0 = 0.
Or—which is on dimensional grounds preferable—to introduce variables

s1 ≡
S1

S0
= cos 2χ cos 2ψ

s2 ≡
S2

S0
= cos 2χ sin 2ψ

s3 ≡
S3

S0
= sin 2χ




(5)

We can, by (4), look upon these as the coordinates of a unit vector sss in
3-dimensional “Poincaré Space:”

sss···sss = s2
1 + s2

2 + s2
3 = 1 (6)
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x

y

1s

2s

3s

Figure 3: The Stokes point sits now on a sphere of unit radius—
the so-called “Poincaré sphere.” The figure illustrates Poincaré’s
stereographic map, whereby the Stokes point is projected from the
North Pole to a point

{
x, y

}
on the equatorial plane. Points in the

Northern hemisphere project to the exterior of the unit disk, points
in the Southern hemisphere to the interior. The former have �
chirality, the latter have � chirality, while points on equator—which
associate with linearly polarized beams—project to the boundary of
the unit disk and have undefined chirality.

Proceeding now in Poincaré’s footsteps (which follow a trail first explored
by Riemann), we (i) project points of the Poincaré sphere onto the equatorial
plane. A elementary similar triangles argument based upon the preceding figure
gives

x ≡ s1

1− s3

y ≡ s2

1− s3


 (7)

Inversely

s1 =
2x

x2 + y2 + 1

s2 =
2y

x2 + y2 + 1

s3 =
x2 + y2 − 1
x2 + y2 + 1




(8)
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Next (ii) we identify the equatorial plane with the complex plane, writing

z = x + iy =
s1 + is2

1− s3
≡ z(sss) (9)

in terms of which (8) can be written

s1 + is2 =
2z

z∗z + 1

s1 − is2 =
2z∗

z∗z + 1

s3 =
z∗z − 1
z∗z + 1




(10)

Reverting to the optical origins of this discussion: it is evident from Figure 1
that we would set ψ = 0 and χ = 0 to describe a ←→ linearly polarized beam,
and would set ψ = π

2 and χ = 0 to describe 
 polarization. Poincaré, to say the
same thing, would on the basis of (5) write

sss←→ =


 +1

0
0


 and sss� =


−1

0
0


 (11)

It is physically evident even in the absence of detailed proof that the beams just
described will not interfere when superimposed , and is obvious that sss←→ and sss�
identify antipodal points on the Poincaré sphere. Stokes’ construction leads
by its own sweet momentum to a sweeping generalization of those elementary
observations: beams with antipodal descriptors sss and −sss are (in Stokes’ phrase)
“oppositely polarized” in the sense that when physically superimposed they fail
to interfere. It becomes in that light interesting to notice that

z(−sss) = −s1 + is2

1 + s3
= − 1

z∗(sss)
(12)

where use has been made of the fact that (6) can be expressed

(s1 + is2)(s1 − is2) = (1 + s3)(1− s3) (13)

Soleillet/Muller were the first to appreciate that Stokes’ invention places
one in position to construct an elegantly economical account of the action




S0

S1

S2

S3




in

−−−−−−−−−−−−−−−−→
linear transformation




S0

S1

S2

S3




out
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of linear optical devices and materials. We will have special interest here in the
beam modifications achieved by the non-absorptive devices which opticians call
“wave plates,” “phase plates,” “compensators” or “retarders”:


S0

S1

S2

S3




in

−→




S0

S1

S2

S3




out

=




1 0 0 0
0
0 R

0







S0

S1

S2

S3




in

where preservation of (4) forces R to be a rotation matrix. We might, in such
a restictive context, write

sssin −→ sssout = R sssin (14)

to say the same thing. Thus does O(3) acquire optical interest.

Back again to Poincaré, who in place of (14) writes

z(sss) −→ z( Rsss) (15)

Well known to him was the remarkable fact10 that

The most general analytic (or conformal) transformation
z −→ z = f(z) which maps the plane one-to-one into itself
is the “linear fractional transformation”11

z =
az + b

cz + d
: ad− bc �= 0 (16.1)

Evidently R and the complex numbers
{
a, b, c, d

}
—which12 we can without loss

of generality assume satisfy
ad− bc = 1 (16.2)

—convey identical information.

The
{
a, b, c, d

}
supply eight real degrees of freedom, reduced conventionally

to six by (16.2). But R has only three real degrees of freedom, so the detailed
association R←→

{
a, b, c, d

}
is not quite obvious.13 We proceed this way:

10 See, for example, L. R. Ford, Automorphic Functions (), p. 2.
11 Such transformations are sometimes said to be “bilinear”or“homographic,”

and are sometimes called “Möbius transformations.”
12 The points to notice are that z is unaffected by

{
a, b, c, d

}
−→

{
a, b, c, d

}
≡

{
a, b, c, d

}
√

ad− bc

and that ad− bc = 1.
13 We note in this connection that equations (10) yield sss···sss = 1 as an identity,

so preservation of that condition places no limitation on the design of z.
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From either (8) or (10) obtain

s1 =
z + z∗

z∗z + 1

s2 = −i
z − z∗

z∗z + 1

s3 =
z∗z − 1
z∗z + 1




(17)

Insert (16) into the primed instance of those equations to obtain

s1 =
(az + b)(c∗z∗ + d∗) + (cz + d)(a∗z∗ + b∗)
(az + b)(a∗z∗ + b∗) + (cz + d)(c∗z∗ + d∗)

s2 = −i
(az + b)(c∗z∗ + d∗)− (cz + d)(a∗z∗ + b∗)
(az + b)(a∗z∗ + b∗) + (cz + d)(c∗z∗ + d∗)

s3 =
(az + b)(a∗z∗ + b∗)− (cz + d)(c∗z∗ + d∗)
(az + b)(a∗z∗ + b∗) + (cz + d)(c∗z∗ + d∗)




(18)

Require of the shared denominator that it conform to the design of (17):

(az + b)(a∗z∗ + b∗) + (cz + d)(c∗z∗ + d∗) = z∗z + 1

This entails
a∗a + c∗ c = 1
b∗b + d∗d = 1
a∗ b + c∗d = 0 and its conjugate

Write a = Aeiα, b = Beiβ , c = Ceiγ , d = Dei δ and consider
{
c, d

}
to be the

unknowns; then

C2 = 1−A2

D2 = 1−B2

CD =
√

1−A2
√

1−B2 = AB ⇒ A2 + B2 = 1
δ − γ ≡ (β − α + π) mod 2π

So we have C = B and D = A. The condition (16.2) becomes

A2ei(α+δ) − (1−A2)ei(β+γ) = 1

giving
α + δ ≡ (β + γ + π) mod 2π : already known

β + γ + π ≡ 0 mod 2π

from which we obtain
γ ≡ −(β + π) mod 2π

δ ≡ −α mod 2π
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The upshot of the argument is that

d = a∗

c = −b∗

}
with a∗a + b∗b = 1 (19)

which can be phrased this way:

S ≡
(

a b
c d

)
is unitary and unimodular! (20)

Returning with (19) to (18) we obtain

s1 =
(a2 − b∗2)z + (a∗2 − b2)z∗ − (ab + a∗b∗)(z∗z − 1)

z∗z + 1

s2 = −i
(a2 + b∗2)z − (a∗2 + b2)z∗ − (ab− a∗b∗)(z∗z − 1)

z∗z + 1

s3 =
(2ab∗)z + (2a∗b)z∗ + (a∗a− b∗b)(z∗z − 1)

z∗z + 1




(21)

which after some tedious manipulation can be written

sss = Rsss (22.1)

with
R11 = 1

2

(
a2 + a∗2 − b2 − b∗2

)
R12 = i 1

2

(
a2 − a∗2 + b2 − b∗2

)
R13 = −

(
ab + a∗b∗

)
R21 = −i 1

2

(
a2 − a∗2 − b2 + b∗2

)
R22 = 1

2

(
a2 + a∗2 + b2 + b∗2

)
R23 = i

(
ab− a∗b∗

)
R31 =

(
a∗b + b∗a

)
R32 = −i

(
a∗b− b∗a

)
R33 =

(
a∗a− b∗b

)




(22.2)

Each of those matrix elements is manifestly real. Mathematica thinks for 0.05
second , then for another 0.08 second. . . and reports that

det R = 1 and R
T
R = I

So the theory of optical polarization has led us as it led Poincaré (well in advance
of the quantum mechanically inspired invention of the theory of spinors) back
once again to the association SU(2)←←→ O(3).

Let us now agree—with Poincaré, in the tradition of Riemann—(iii) to
write

z =
u

v
(23)
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and to consider (16.1) to have resulted from dividing the first of the following
equations by the second:

u = au + bv

v = cu + dv

These latter equations14 we abbreviate

ξ = S ξ with ξ ≡
(

u
v

)
(24)

The complex numbers
{
u, v

}
enter into (23) as what would in projective

geometry be called “homogeneous coordinates,” but in (24) they are assigned a
different role: they are the coordinates of a complex vector (spinor) in complex
2-space (spin space). Spin space functions here as a “carrier space,” created
to provide a home for the matrix representation (24) of the unimodular linear
fractional transformation (16). And since (23) is invariant under{

u, v
}
�−→

{
ku, kv

}
: k �= 0

the association
z ←→ spinor ξ

is more properly described

z ←→ ray kξ in spin space (25)

Returning with (23) to (17) we obtain

s1 =
u∗v + v∗u

u∗u + v∗v

s2 = i
u∗v − v∗u

u∗u + v∗v

s3 =
u∗u− v∗v

u∗u + v∗v

which—if we define Pauli matrices in the usual way

σσ0 ≡
(

1 0
0 1

)
, σσ1 ≡

(
0 1
1 0

)
, σσ2 ≡

(
0 −i
i 0

)
, σσ3 ≡

(
1 0
0 −1

)
—can be notated

s1 =
S1

S0
=

ξtσσ1 ξ

ξtσσ0 ξ

s2 =
S2

S0
= −ξtσσ2 ξ

ξtσσ0 ξ

s3 =
S3

S0
=

ξtσσ3 ξ

ξtσσ0 ξ




(26)

14 My notation masks the fact that conditions (19) are still in force.
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The unsightly minus sign appears to be an artifact of “colliding conventions;”
it could be eliminated by any of several strategies—all of which entail cost, and
none of which seem entirely satisfactory. We will encounter a similar problem
at (28) below.

I conclude this review with brief indication of how Jones’ accomplishment
fits into the general scheme. Jones proceeds from the elementary observation
that the electromagnetic information conveyed by (1) is recoverable as the real
part of the complex vector

EEE(t) =EEE · eiωt

EEE ≡
(

E1e
iδ1

E2e
iδ2

)
(27)

and that the Stokes parameters, as first encountered at (3), can in this notation
be described

S0 = E2
1 + E2

2

S1 = E2
1 − E2

2

S2 = 2E1E2 cos δ

S3 = 2E1E2 sin δ

= EEE
tσσ0EEE

= EEE
tσσ3EEE

= EEE
tσσ1EEE

= EEE
tσσ2EEE




(28)

He then develops a “Jones calculus” which employs equations of the form

EEEout = JEEEin

to describe the action of certain classes of linear optical devices.15 It is by
now evident that the object EEE known to the literature as the “Jones vector”
should more properly be called the “Jones spinor;”Jones had stepped with
undergraduate innocence onto the caboose of a train that had been chugging
through the station (with Stokes/Poincaré at the controls) for nearly 90 years.16

15 Jones had special interest in “compensators” and the “optical activity” of
certain materials. The scope of his theory is expanded in §6.4 of L. Mandel &
E. Wolf, Optical Coherence & Quantum Optics (), who follow G. B. Parrent
& P. Roman, “On the matrix formulation of the theory of partial polarization
in terms of observables,” Nuovo Cimento 15, 370 (1960).

16 Jones first papers were written while he was an undergraduate at Harvard,
and employed as a research apprentice by the Polaroid Corporation. A series
of eight papers appeared in the pages of the Journal of the Optical Society of
America between  and  (see Mandel & Wolf for detailed citations), by
which time Jones had joined the research staff at Bell Laboratories. In only
one paper (co-authored by H. Hurwitz, of the Harvard physics faculty) is the
work of Poincaré cited, and Jones seems never to have become aware that he
was plowing a field that by then had been elaborately cultivated by quantum
physicists; he refers his readers to quantum texts by E. C. Kemble () and
V. Rojansky (), but only in connection with the definition of the Pauli
matrices. “Reinvention of the wheel” appears to be an entrenched tradition in
this field: see, for example, K. C. Westfold, “New analysis of the polarization
of radiation and the Faraday effect,” JOSA 49, 717 (1959).
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One curious detail: the Pauli matrices on the right side of (28) enter in
permuted order. In §7 of ellipsometry I trace this circumstance to the fact
that built unwittingly into the design of (1) and Jones’ (27) is a preoccupation
with linear ←→
 polarization, while when we elected to project from the North
Pole of the Poincaré sphere we tacitly assigned a central place to circular � �
polarization. I show there how easy it is to switch from one basis to the other,
and to interconvert (28)⇔ (26).

The developments surveyed above sprang from the physics of optical
polarization (but see service also in connection with description of the statistical
properties of optical beams). One can, however, abandon the optics and keep
the mathematics. . . or reassign the mathematics to other physical tasks. The
mathematics pertains without change to the quantum mechanics of 2-state
systems or—which is formally the same—to the quantum theory of spin 1

2 .
Majorana’s problem: How most naturally to loosen up the mathematics so as
to create apparatus that will support the quantum theory of arbitrary spin?

“Proto-spinors” orthogonal to a given spinor. The first of the essays in this
series1 proceeded from and culminated in the following observation: The
rotational transform properties of an N -spinor

ξ ≡




ξ0

ξ1
...

ξn
...

ξ2�




: ξ �→ ξ = S ξ with S ∈ subgroup of SU(N)

N ≡ 2� + 1

are implicit in the statement that

ξn mimics the response of
√(

2�
n

)
· u2�−n vn : n = 0, 1, . . . , 2�

to (
u
v

)
�→

(
u
v

)
=

(
α β
−β∗ α∗

) (
u
v

)
where the Cayley-Klein parameters

{
α, β

}
refer to an element of O(3).17

17 One comment before we proceed: It is true that O(3) marks the birthplace,
and remains a principal workplace, of spinor analysis (the Lorentz group being
another). But spinor algebra/analysis, as fashioned by van der Waerden ()
and others, amounts in effect to a “complexified tensor algebra/analysis” in
which one builds upon not two but four categories of vector:
• contravariant vector (superscript);
• conjugated contravariant vector (dotted superscript);
• covariant vector (subscript);
• conjugated covariant vector (dotted superscript).
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The objects mimiced, to be plain about it, are

(
u
v

)
,


 uu√

2 uv
vv


 ,




uuu√
3 uuv√
3 uvv

vvv


 ,




u4v0√
4 u3v1√
6 u2v2√
4 u1v3

u0v4


 , . . .

which (except when v = 0, which places z “at infinity”) can be notated

v

(
z1

z0

)
, v2


 z2√

2 z1

z0


 , v3




z3√
3 z2√
3 z1

z0


 , v4




z4√
4 z3√
6 z2√
4 z1

z0


 , . . . (29)

with z ≡ u/v. I need to assign spinors of this specialized 2-parameter design a
name; let us agree, in the absence of an established nomenclature, to call them
“proto-spinors.” For 2-spinors the spinor/proto-spinor distinction is empty, but
not so in cases N > 2; look, for example, to the case N = 5, where one has

√
4

ξ0

ξ1
=

√
6
4

ξ1

ξ2
=

√
4
6

ξ2

ξ3
=

√
1
4

ξ3

ξ4
= z

if ξ is a proto-spinor, but certainly not otherwise. Henceforth I will use π
instead of ξ to emphasize that I have in mind a spinor with proto-structure.

We are in position now to consider the question which (to avoid distracting
notational complexity) I will pose in the simplest non-trivial case: Let

ξ =


 ξ0

ξ1

ξ2




be given 3-spinor (� = 1), and let π be a proto-3-spinor. Then

ξtπ = v2 ·
(
ξ∗0z2 +

√
2 ξ∗1z + ξ∗2

)
(continued from the preceding page) In tensor algebra one might stipulate the
transformation group to be rotational, but cannot tacitly assume it to be
so. The same remark pertains to spinor algebra, but in the latter setting
the “rotational preoccupation” is so widely shared that the specialness of its
ramifications is typically unstressed; people write as though the abandonment
of O(3) were unthinkable. My purpose here is to state explicitly that I have
embraced the standard preoccupation: that the objects of interest to me are—
for reasons rooted in the physical notion of “spin”—rotational spinors. See Élie
Cartan The Theory of Spinors (, English translation ), R. Brauer &
H. Weyl, “Spinors in n-dimensions,” Amer. J. of Math. 57, 425 (1935) and
especially Chapter 2 in E. M. Corson, Introduction to Tensors, Spinors, and
Relativistic Wave Equations (), which contains an elaborate annotated
bibliography.
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Require πtπ �= 0 so as to exclude the possibility that v = 0. Then we will have

ξ ⊥ π if and only if z is a root of

ξ∗0z2 +
√

2 ξ∗1z + ξ∗2 = 0
and irrespective of the non-zero value
assigned to the complex multiplier v2




(30)

Looking similarly to other cases of low order, we are led to the statements

ξ∗0z + ξ∗1 = 0 : � = 1
2 (31.1)

ξ∗0z2 +
√

2 ξ∗1z + ξ∗2 = 0 : � = 1 (31.2)

ξ∗0z3 +
√

3 ξ∗1z2 +
√

3 ξ∗2z + ξ∗3 = 0 : � = 3
2 (31.3)

ξ∗0z4 +
√

4 ξ∗1z3 +
√

6 ξ∗2z2 +
√

4 ξ∗3z + ξ∗4 = 0 : � = 2 (31.4)
...{

polynomial p(z; ξ) of degree 2�
}

= 0 : general case

All the elements of ξ enter into the design of p(z; ξ), but linearly : the statements

ξ ⊥ π, equivalently p(z; ξ) = 0, are invariant under




ξ0

ξ1
...

ξ2�


→ k




ξ0

ξ1
...

ξ2�




so can most properly be said to refer therefore to a π-ray normal to the ξ-ray .
The polynomial p(z; ξ) can be looked upon as a “generating function” of the
ξ-ray.

It is a clear implication of ξ ⊥ π ⇐⇒ ξ ⊥ π that equations of type (31) are
rotationally invariant:

p(z; ξ) = 0 ⇐⇒ p(z; ξ) = 0 (32)

where ξ �→ ξ = S(α, β)ξ and where

zn �→ zn =
[ α z + β

−β∗z + α∗

]n

: n = 0, 1, . . . , 2� (33)

serves to describe the transformation not of π (since the multiplier has been
abandoned) but of the π-ray. The latter point is a little confusing, so I illustrate
how it works in the case � = 1:

π ∼


 z2√

2 z1

z0


 =




[
α z+β

−β∗z+α∗

]2

√
2

[
α z+β

−β∗z+α∗

]1

[
α z+β

−β∗z+α∗

]0




=
[

1
−β∗z+α∗

]2

· S(1)


 z2√

2 z1

z0


 ∼ S(1)π
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where

S(1) ≡


 α2

√
2 αβ β2

−
√

2 β∗α (α∗α− β∗β)
√

2 α∗β
(β∗)2 −

√
2 α∗β∗ (α∗)2




is precisely the unimodular unitary matrix which at (A-34) was found to effect
the rotational transformation of 3-spinors. The argument extends to higher
�-values, but rapidly becomes burdensome.

If ξ has N ≡ 2� + 1 components then the generating polynomial

p(z; ξ) is generally of degree 2�, and has that many
(not necessarily distinct) roots

{
z1, z2, . . .

}
but

if ξ0 = 0 and ξ1 �= 0 the degree is reduced to 2�− 1
if ξ0 = ξ1 = 0 and ξ2 �= 0 the degree is reduced to 2�− 2

...

To each of the distinct roots
{
z1, z2, . . .

}
of p(z; ξ) we can associate one and

only one proto-spinor orthogonal to ξ, so the latter—call them
{
π1, π2, . . .

}
—

are precisely as numerous as the former, and can never exceed 2� in number
(which makes good sense: ξ lives in a (2�+1)-dimensional space, so the subspace
orthogonal to ξ is 2�-dimensional).

Look to the instance of a spinor with ξ0 �= 0: then

p(z; ξ) = ξ0 · (z − z1)µ1 · (z − z2)µ2 · · ·

where the
{
z1, z2, . . .

}
are distinct roots, and

{
µ1, µ2, . . .

}
are the associated

multiplicities:
µ1 + µ2 + · · · = 2�

Since the polynomial refers to a ray , we can without loss of generality set
ξ0 = 1. Enlarging upon the latter remark, we will agree henceforth to scale the
components of ξ in such a way

k terms{ ︷ ︸︸ ︷
0, 0, . . . , 0, ξk, ξk+1, ξk+2, . . . , ξ2�

}
√

binomial coefficient · ξk

as to render the generating polynomial monic:

p(z; ξ) = (z − z1)µ1 · (z − z2)µ2 · · · : µ1 + µ2 + · · · = 2�− k
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To gain a sharper sense of what’s going on here, we look to the case � = 3
2 ,

where we encounter monic polynomials of these types:

i) (z − z1)(z − z2)(z − z3) : ξ0 �= 0; non-degenerate

ii) (z − z1)2(z − z2) : ξ0 �= 0; singly degenerate

iii) (z − z1)3 : ξ0 �= 0; doubly degenerate
iv) (z − z1)(z − z2) : ξ0 = 0, ξ1 �= 0; non-degenerate

v) (z − z1)2 : ξ0 = 0, ξ1 �= 0; singly degenerate
vi) (z − z1) : ξ0 = ξ1 = 0, ξ2 �= 0; non-degenerate

not defined : ξ0 = ξ1 = ξ3 = 0, ξ4 �= 0

In case (i) we have

z3 − (z1 + z2 + z3)z2 + (z1z2 + z2z3 + z3z1)z − z1z2z3

=
ξ0 · z3 +

√
3 ξ∗1 · z2 +

√
3 ξ∗2 · z + ξ∗3

ξ∗0

(34.1)

from which cases (ii) and (iii) can be obtained by specialization; in case (iv)

z2 − (z1 + z2)z + z1z2

=
0 · z3 +

√
3ξ∗1 · z2 +

√
3 ξ∗2 · z + ξ∗3√

3 ξ∗1

(34.2)

which gives (v) by specialization, and in case (vi)

z − z1

=
0 · z3 + 0 · z2 +

√
3 ξ∗2 · z + ξ∗3√

3 ξ∗2

(34.3)

If we exercise our still -lively option to

set the leading non-zero ξ � equal to (say) unity

and observe that

1 =
z0
1 + z0

2 + · · ·
number of roots

= symmetric function of roots

we are led on the evidence of (34) to the conclusion that

the components ξk of ξ are expressible as symmetric
functions of the roots of the generating polynomial.
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It is instructive to look to these special instances of (34):

ξ =




1
0
0
0


⇐⇒ p(z; ξ) = (z − 0)3

ξ =




0
1
0
0


⇐⇒ p(z; ξ) = (z − 0)2

ξ =




0
0
1
0


⇐⇒ p(z; ξ) = (z − 0)1




(35.1)

The element of mystery is removed from the remaining case when one reinstates
homogeneous coordinates:

ξ =




0
0
0
1


⇐⇒ 0 · u3 +

√
3 0 · u2v +

√
3 0 · uv2 + 1 · v3 = 0 (35.2)

which entails v = 0 whence z ≡ u/v =∞, which we might express

(z −∞) = 0 : root has become the “point at infinity”

It was originally Riemann’s idea to adjoint to the complex plane a “point∞ at
infinity,” and to consider it to be the stereographic image of the North pole.18

The unifying value of the idea will become clearer as we proceed.

Look finally to the primitive case � = 1
2 , where (see again (31.1))

ξ∗0z + ξ∗1 = ξ∗0(z − z1) = 0

entails
z1 = −ξ∗1

ξ∗0
: root always non-degenerate (36)

More particularly, we have(
1
0

)
⇐⇒ root z1 at origin :

(
0
1

)
⇐⇒ root z1 “at infinity”

If we restore to 2-spinors the plumage which—at (24)—they wore when they
stepped out of the egg

ξ =
(

ξ0

ξ1

)
reverts to

(
u
v

)
then (36) becomes

z1 = − v∗

u∗
: compare z ≡ u

v

= − 1
z∗

(37)

18 §74.D in Encyclopedic Dictionary of Mathematics ().
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While z lends structure to ξ, z1 was designed to lend structure to a spinor π1

normal to ξ

π1 ∼
(

z1

1

)
⊥ ξ =

(
u
v

)

and indeed: πtξ ∼ z∗1u + v = (−v/u)u + v = 0.

We have touched here on an instance of a more general circumstance, which
I illustrate in the case � = 3

2 . Let z refer to an arbitrary proto-spinor

π ∼




z3√
3 z2√
3 z1

z0




and let z1 refer to a proto-spinor π1 ⊥ π. Immediately

πtπ1 ∼ (z∗z1)
3 + 3(z∗z1)

2 + 3(z∗z1)
1 + 1

= (z∗z1 + 1)3

= 0 if and only if z1 = − 1
z∗

Evidently there exists only one such π1, and it is described—not just in the
case � = 1

2 but in every case—by (37). It is a notable fact—which we will soon
want to exploit—that (37) is structurally reminiscent of Poincaré’s (12):

z(−sss) = − 1
z∗(sss)

Majorana’s construction. In the preceding section we looked not to19

ξ =




ξ0

ξ1

ξ2

ξ3




itself, but to the population of proto-spinors normal to ξ:

π1 ∼




z3
1√

3 z2
1√

3 z1
1

z0
1


 , π2 ∼




z3
2√

3 z2
2√

3 z1
2

z0
2


 , π3 ∼




z3
3√

3 z2
3√

3 z1
3

z0
3




19 It is, as before, “to avoid notational distractions” that I write (as has
become my habit) in language specific to the case � = 3

2 , which should make
clear the pattern of statements in the general case. And I pretend there to be
a “full house” of π-spinors (i.e., that they are 2� in number), even though that
is (as we have seen) not always the case.
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We found that the π-population can be looked upon as a “property” of ξ
—more properly: not of ξ itself, but of the associated ξ-ray—as can the set{
z1, z2, . . .

}
of complex numbers from which the π-population derives. Those

—together with the associated multiplicites
{
µ1, µ2, . . .

}
—permit one to write

the generating polynomial p(z; ξ) of the ξ-ray, whence to reconstruct ξ itself (to
within an overall complex multiplier). The ξ-ray has thus been represented by
a population of (possibly coincident) points sprinkled on the complex plane.

North-polar stereographic projection back upon the unit sphere—which
in the optical application (where only 2-spinors were encountered) deposited a
single point on the “Poincaré sphere”—produces a population of points sprinkled
on the surface of the what in the present application we will agree to call the
“Majorana sphere” (see Figure 4). If we adopt the understanding that

[degree # of p(z; ξ)] + [number of “points at ∞”] = 2� (38.1)

then we can assert that in the case of spin �

every ξ-ray is represented by 2� points on the Majorana sphere (38.2)

of which 2� − # reside at the North pole.

Transformation theory informs us that we are, in fact, forced to adopt the
viewpoint just described, for degree-controlling conditions of the forms

“if ξ0 = 0 and ξ1 �= 0 the degree is reduced to 2� − 1,
if ξ0 = ξ1 = 0 and ξ2 �= 0 the degree is reduced to 2� − 2

...
etc.”

encountered earlier are transformationally unstable, which is to say: they are,
in general, not preserved under ξ �→ ξ = S ξ. To illustrate the point I revert to
the example (case � = 1) used to illustrate (32/33): Suppose it to be the case
that ξ0 = 0 and ξ1 �= 0. Then p(z; ξ) =

√
2 ξ∗1z + ξ∗2 = 0 entails

z1 =
u1

v1
= − ξ∗2√

2 ξ∗1

z2 =
u2

0
= ∞

Rotation engenders

ξ �→ ξ =


 α2

√
2 αβ β2

−
√

2 β∗α (α∗α − β∗β)
√

2 α∗β
(β∗)2 −

√
2 α∗β∗ (α∗)2





 0

ξ1

ξ2




giving

p(z; ξ) =
[√

2 α∗β∗ ξ∗1 + (β∗)2ξ∗2
]
z2 +

√
2
[
(α∗α − β∗β)ξ∗1 +

√
2 αβ∗ξ∗2

]
z

+
[
−
√

2 αβξ∗1 + α2ξ∗2
]

and so has (in typical cases) lifted the degree of the generating polynomial
(restored it to its generic value 2� = 2)



Majorana’s construction 21

x

y

Figure 4: Three points • sprinked on the complex plane represent
a ξ-ray with � = 3

2 . Stereographic projection yields a trio of points
• sprinkled on the Majorana sphere. If a point • were to recede to
∞ the associated point • would retreat to the North pole.


