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Abstract. It is an established heuristic that if each of m machines carries out an in-
dependent (in a very specific statistical sense) “Pollard-rho”—sometimes called “Monte
Carlo”—factorization sequence, then the expected time to discover a prime factor p of N
is on the order of
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where 7y is the time for a multiplication (mod N). This gain of \/m from such par-
allelization of m machines is of course disappointing. Herein we show that, by invoking
appropriate fast algorithms to resolve certain correlation products, one may obtain (if the
heuristics be valid) virtually ideal parallelism, in the sense that the time to discover p is
now estimated as:
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with somewhat lower complexities obtainable in certain cases via known modifications of
the Pollard iteration itself. On this heuristic for parallelism, various factoring labors are
assessed in regard to their practicality.
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1. Motivation for parallel Pollard-rho

The “Pollard-rho” factorization method is based on an idea of [Pollard 1975] to employ
random, or “Monte Carlo” sequences to discover, by virtue of a deterministic periodicity
inherent to certain such sequences, hidden factors of a given number N. The method has
enjoyed a certain vogue, peaking in a sense with the impressive factorization of Fg = 22° 11
about two decades ago [Brent and Pollard 1981]. In general, the Pollard-rho method or
any of its modern variants and enhancements [Montgomery 1987|[Brent 1980] discovers a
hidden prime factor p of N in time

O(7nv vP); (1.1)

where 7y is the time for a ring multiplication in Zy. We remind ourselves right off
that this p'/2 behavior is heuristic, yet seems to be quite the case in practice. All of
these established enhancements alter only the implied big-O constant, so we can think
of any Pollard-rho variant as requiring O(pl/ 2) operations in some statistical sense, with
worst-case factoring of composite N involving therefore O(N'/*) operations.

Though the elliptic curve method (ECM) of H. Lenstra has become a dominant scheme
for extracting relatively small factors of large numbers, there remains a genuine niche for
Pollard-rho and its variants. The Pollard-rho amounts in a certain sense to a “statistical
sieve” (of course not technically so, we mean that the rho may be used to ferret out, if
you will, “most” factors up to some limit). Indeed, with the rho method one can typically
attain sieving bounds as high as 10'? or more on possible factors p, at least with reasonable
probability that all relevant p have thus been checked. One infers from the above heuristic
big-O estimate that only a few million Pollard iterations are required to saturate with
high chance such a limit of 10'2. As pointed out by [Brent 1990], the use of m machines
in an elementary attempt to parallelize the Pollard-rho, say by running each machine
independently (meaning, with independent iteration polynomials and independent random
starting values, as we later clarify) stopping the entire ensemble of machines when some
machine finds a factor p, should result in expected discovery time

O(rn \/—‘/2). (1.2)

There is an easy heuristic argument that explains the disappointing acceleration factor of
only \/m, as we shall see.

Because it is a kind of simple sieve, the Pollard-rho method still has applications in
computational number theory. For example, pre-factoring of residues from other problems,
quick factorization of elliptic curve orders in elliptic-curve primality proving (ECPP), and
so on. What is more, there are other domains in which a parellelized rho method might
apply. For example, as known to Brent and Pollard, if the hidden prime factor of N is
known to be of the form p = 1(mod 2K) then the time to discover p is reduced further by
about (log, K)/v/2K — 1, the logarithm appearing due to extra operations in a modified,
K-dependent rho sequence. So for such as Fermat numbers F,, = 22" + 1, with n > 1, any
prime factor of which being = 1(mod 2"%2), the rho method enjoys a substantial boost;
witness the success on Fg as mentioned above, for which Brent and Pollard used K = 512.
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For example, the recent (April 1999) discovery by R. McIntosh and C. Tardif, namely the
factor
81274690703860512587777 | Fig

though found via a particular ECM variant [Crandall and Pomerance 1999|[Brent et. al.
1999], could in principle have been found on the same type of machinery, as we argue later,
via the new parallel realization of the rho method.

Recently, [van Oorschot and Wiener 1999] reported a clever way of applying a rho
method to the discrete logarithm (DL) problem in parallel fashion. The DL problem has
two primary manifestations: first, given g, y, p, to solve g* = y(mod p) for z; or second,
to solve £g = y on an elliptic curve. Note that whereas the former problem has various
known attacks, the rho method is the most powerful known general-purpose scheme for the
elliptic case. In those authors’ use of “distinguished points” the utilization of m machines
is ideal, in that the time to solve DL is reduced by a factor of m, so that a time bound
of the type (1.2) is obtained, but with m in the denominator instead of \/m. However,
as pointed out by [Wiener 1999], there is so far no known extension of their parallel-DL
scheme to factorization per se.

The purpose of the present paper is to show how Pollard-rho factoring can, with m
machines operating in parallel fashion, and under heuristic assumptions about the statistics
of the relevant iterations, indeed be achieved in time

Ory V2B ™) (1.3)

m

using a method which appears on the face of it to be unrelated to the DL parallelism of
van Oorschot and Wiener.

2. Statistical and algebraic pictures

The original-—and in many ways still the most elegant—manifestation of the idea of
Pollard is, for given N to be factored, to start with random x(, a and iterate a quadratic
map:

Tpy1 = (2 +a) mod N, (2.1)

where here and elsewhere the final operation on the right is reduction to least nonnega-
tive residue (mod N). Normally one uses an a parameter # 0, —2, to ensure a suitable
pseudorandom sequence {x,}. If p be a hidden prime factor of N, an occurrence of
z; = zj (mod p) for 7 # j is sought, in the sense that p (sometimes along with yet other
prime factors of V) might be the result of an operation ged(z; — 25, V). Thus the Pollard
sequence (2.1) is likely to succeed if we can detect such an i, j-collision via the ged. The
celebrated Floyd expedient is to observe that the fact of a collision also means there must
be an instance of x9x = xk, some k; indeed the least such successful £ does not exceed the
first 4 for which there is a collision of z; and x;;. This means one need not check pairs
x; — x; directly, testing instead various ged(z2; — z;, N). Now one sees how very simple
the rho method is; one only need initialize random x = w, and iterate:

7 := (z* + a) mod N, (2.2)
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w = (w? + a) mod N,
w := (w® 4+ a) mod N,

where the w iteration happens intentionally twice, so that w values amount to the x;.
Thus the memory usage is about as low as can be for any factorization method. One need
not even perform a gcd operation on every iteration. Instead, simply accumulating the
product of many differences (w — z), seldom taking one ged of the accumulation with N,
is the common practice. Various authors [Brent 1980][Montgomery 1987] have reduced
the necessary arithmetic, for example by noting other ways to detect collision and stating
simplifications of the iteration algebra, but it remains that the (heuristic) expected time
behaves as /p, in the manner of relation (1.1).

There are two interesting ways to look at the underlying mechanism of the Pollard-rho
method. One we shall call the “statistical picture” and the other the “algebraic picture.”
In the statistical picture we think of the sequence {z; : i = 1,...,n} as somehow random
modulo a hidden factor p of N. How far should this sequence be taken before it replicates a
previous value? Let us estimate crudely the probability that a random sequence traversing
a set of P elements has its first collision on the n-th iterate. Starting with random z, the
probability that z; misses xg is (P — 1)/P, the probability x5 collides with neither zy nor
x1 is (P — 2)/P and so on, so that the first collision happens for z,, with probability:

(- 5= 2).0-"20%

which we further approximate as a particular, Poisson density function

M g=n/(2P),

fm =2

whose integral over n € (0,00) is in fact unity. Crude as this line of argument may be, it
explains well the basic statistical measures encountered in actual Pollard-rho applications.
For example, we find the expected number of iterates required for a collision to be:

o0
<n> N/ nf(n)dn = ﬁ,
0 2

Now as to the comparison of the effective set size P with the prime p, we have, at least
roughly speaking, P ~ p. There is a delicate issue here—a paradox, if you will-—that runs
as follows. Because every element in our set (save perhaps for z() is a number of the form
(quadratic residue + a) modulo p, it would appear that P = p/2 is a good choice for the
effective cardinality of the set. But as explained by [Brent and Pollard 1981], this notion is
faulty, in that the empirical expectation seems to be < n > +/7p/2 for the collision index
(¢ of the first x; = <;). To paraphrase [Pollard 1999], the iterative map behaves as if it
acts on a set of the full p elements. More precise heuristics are also presented in [Cohen
1993], who gives for example the expected length of the actual period of the {z;} sequence
to be < n > /2 ~ /7p/8; yet in that work the paradox is not addressed directly. Note
that the period is not the same as the expected collision time; for one thing, the collision
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happens after an initial “pretail” and then a full period—hence the origins of the algorithm
label “rho” whose very symbol shape reminds one of a typical collision scenario. Regardless
of which analysis is used and what is the resolution of the aforementioned paradox, the
established Pollard-rho heuristic is that the expectation of necessary iterations to discover
pis: <n > ~ c,/p for constant c.

Now to the algebraic picture, which has been analyzed before in such treatments as
[Riesel 1994]. Observe the chain of factors that accrues from every index k of the xo

iterates:

2 2 2 2
Tog — Tk =Top_1 T A —Tj_1 —A=2To_1 — Th_1

= (Tak—1 + Tr—1)(Tok—1 — T—1)
= (Tak—1 + Tp—1)(T2k—2 + Tk—2) (Tak—3 + Tk—3)-.. (2.3)

and we conclude that the difference zo, — x) is possessed of about k algebraic factors.
This means that if we run the index k from 1 through some n, we accumulate about n?/2
algebraic factors. Though the rest of this line of argument is fraught with complications—
such as loglog factors in the theory of the number of prime factors of a number, not to
mention the interference between algebraic factors—it is reasonable that O(n?) “random”
factors have a fair chance of involving p, when n is O(y/p). Though less precise even
than the already heuristic statistical picture, this algebraic picture lends itself easily to
considerations of parallelization.

The important special instance when one has foreknowledge of p = 1(mod 2K) has
interesting interpretations in the statistical and algebraic pictures. Statistically, the itera-
tion:

z:= (2% 4 a) mod p

runs over a restricted set, since for the class of p in question the set of 2K-th powers has
cardinality P = (p — 1)/(2K). Thus an operation reduction by 1/v/K might be expected
to appear in the relevant expectation formulae. Note however, that this thinking leads to
the aforementioned paradox in the case of K = 1, and we recall the discovery of [Brent
and Pollard 1981] that the better reduction factor is 1/4/2K — 1. On the other heuristic
hand, that is in the algebraic picture, we have

2K 2K
T2 —Li =Toj1 — Tj1

and the right-hand side can be expected to have amplified probability of containing a
factor p, because in the field F,[X,Y] the binomial X2¥ — Y2K has factors X — g7V,
where ¢ is a primitive 2K-th root of unity. For either picture, the heuristic reduction in
total time is (avoiding the more correct 2K — 1 factor for the moment) O(log, K/VK), the
logarithmic factor for the extra powering inherent to the 2K-power iteration. Incidentally,
even if one uses iteration z := 2K 4 a without any known caveat on the hidden p, it is an
established heuristic [Montgomery 1987][Brent and Pollard 1981], and it can be inferred
roughly from either of our heuristic pictures, that the reduction factor in expected number
of ring operations is:

1/y/ged(p — 1,2K) — 1,
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where here we have given what is believed to be the correct radicand as a function of K.

3. Parallelization

Let us use the statistical picture to infer the observation of [Brent 1990], that the use
of m machines in parallel—if running independent (in both iteration polynomial and initial
seeds) Pollard-rho processes—reduces the expected factoring time only by y/m. Denote
by :cgk) the ¢-th iterate on machine k£ of m machines. For the moment, we assume that
the k-th machine uses an iteration z := 22 + ay, with the aj chosen independently (except

# 0,—2 say); and also each machine is independently seeded with an x(()k). Along the

lines of the statistical picture of the previous section, the probability that none of the m
(k)

machines has, upon its i-th iterate, a collision z;”" = xg.k) for any 7 < ¢ would be
i

—

(1-3)

and we arrive at an approximate probability density
2
Fln) = 2 g 2P) (3.1)

for the first collision on some machine to happen at iterate n. This leads immediately to
the expectation

p
<n> ey /oo
showing the disappointing reduction by only 1//m.

From the algebraic picture we can deduce the same heuristic for this weak parallelism.
Since we have algebraic factors as in (2.3) for each of the machines, a total of O(mn?/2)
factors are generated. Thus the heuristic is that n ~ /p/m steps will be required to
discover p.

This having been said about noncoupled machines, let us consider a more elaborate
construct from the algebraic picture, and hope that stronger machine coupling will allow
the construct to be efficiently evaluated. At this juncture it is important to note that
we shall have to use, in the following parallel construction, the same a-parameter across
machines. Later in Section 5 we bring up the difficult issue of whether said parameter can
be thus frozen.

The new parallel model on which we shall base the new heuristic has, at its core, the

correlation product
n m—1m—1
A )
Q=TITI II @ 2. (3.2)
i=1 k=0 j=0

Now assume that each machine has the same iteration parameter a, yet the initial seedings

{:cgk) : k = 0...m — 1} are independently random. We should then have, in the manner

of the formal expansion (2.3), O(m?n?) algebraic factors comprising @, and thus the n
VP

required to discover p should be O(%-). From the statistical picture, the same heuristic
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obtains, as the probability density for the first collision amongst machines is just (3.1) but
with m — m?2.

The reduction by 1/m of the expected n is fine and good, but what about the time
to evaluate the elaborate product (3.2)?7 An answer is, the evaluation of product @ takes,
in an appropriate asymptotic sense, just a little longer than the calculation of the usual,
basic rho sequence through index 2n. In particuler, let us say for convenience m divides
n, whence machine p of m machines can compute the partial correlation product

(p+1)n/m—1m—1m-—1

Q= II 1I Il @8 -=?) (3.3)

i=pn/m k=0 j=0

in just n/m applications of a fast polynomial evaluation algorithm. In fact, machine p can
evaluate the polynomial
m—
(k)
H Laj

at the points = € {x(J ) j=0,. — 1} in O(mlog® m) ring operations [Montgomery
1992][Crandall and Pomerance 1999]. Thus the total number of ring operations, on the
pu-th machine, is
O(ﬁmlog2 m) = O(nlog®m).
m

This basic idea, together with the observation that all other calculations, such as accumula-
tion of the actual product in (3.3), are O(n) ring operations, leads to the heuristic estimate
(1.3) of total time to discover p, with the effective reduction factor being O(log® m/m).
Subject as usual to the validity of heurism, the advantages of using iteration z :=
(z2K 4 a) mod N when it be given that a prime divisor p of N is 1(mod 2K), or at least
has a fairly large ged(p — 1,2K), likewise apply in this new parallel mode. That is to say,
each machine would use the degree-(2K) iteration, with a absolutely fixed across machines,

but a:(()k) random on the k-th machine as before. With all of these considerations in place,
the total time to discover a factor with our parallel algorithm should follow the heuristic

estimate: ,
1+logK +1
0<TN vP 11 logK 1 logm ) (3.4)
m \/ged(p—1,2K) — 1

We are now positioned to summarize a parallelization algorithm, as follows:

Algorithm for parallelization of Pollard-rho

0) We are given N to be factored, and m machines with which to do this. We assume a
number K which will determine the degree (as 2K) of the Pollard iteration, knowing that
a statistical gain from large ged(p — 1,2K) is possible. For example, if it be known that a
hidden odd prime factor p of N must have p = 1(mod 2K'), then K should be a multiple
of K'.

1) Choose a trial n, being a multiple of m, noting that primes up to a bound p ~
n?m?(ged(p — 1,2K) — 1) have a good chance of being discovered via this algorithm, and
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under the constraint that acyclic convolution of length-m sequences modulo NV be possible
on each machine.

2) For each machine k of m, establish an initial independent random seed acgk) and set w(()k)

equal to that same respective seed. Then choose a parameter a which is the same across
all machines.

3) For i € [1,...,n], iterate on each machine k of the m machines simultaneously:
:cgk) = ((mgﬁ)l)ﬂf + a) mod N,

w = ((wz@l)ﬂf + a) mod N,

wgk) = (w** 4+ a) mod N,

(k) _ (k)

so that w;”” = x,,” always.

4) On each machine p of the m machines, evaluate modulo N the product

p+1)n/m—1m—1m-—1

Qu= [ TII I @® -2

i=pn/m k=0 j=0
via n/m polynomial evaluations of degree m each, so that this step requires O(nlog® m)
ring operations on each machine.

5) On each machine, take the gcd(Q,, N) and report any nontrivial factor arising from
any machine.

6) On failure of step (5), go to (1) to increase n, or continue iterations in (3), or effect
some other means of effectively modifying n and/or parameters such as a, K.



4. Open questions, Fermat numbers, quantum computation

First we remind ourselves that little if anything has been proven so far, and mention
some open issues in regard to the kind of heuristics we have so brazenly invoked. The
“final” heuristic relation (3.4) for the parallel scheme might be viewed with suspicion,
along the following lines. As J. M. Pollard himself has pointed out to the present author,
the assumption of fixed a-parameter leads to certain difficulties in the heuristic analysis.
In the scenario of weak parallelism as enunciated in the very opening of Section 3 (i.e.,
independent seeds and independent a-parameters), different machines can be expected to
have widely varying iterative cycles in force. But if a is fixed across machines, there is a
very small expected number (actually O(logp)) of cycles at work [Pollard 1999]. Pollard
cites the small example p = 257, a = —1, for which there are only three periods 12, 7, 2
(and we note that the number of iterates to discovery is the least multiple of said period
that is not less than the tail). For example, the initial value ¢y = 0 leads to the 2-cycle
{0, —1}, while the initial value zy = 6 gives rise to the sequence

{6, 35,196, 122,234, 14,195, 245,143,145, 207, 186, 157,233, 61, 122}

whose period—after a tail of 3 iterates—is one of the possible ones cited, namely 12. The
component counts for the possible cycles decompose respectively as 142 + 98 + 17 = 257.
For example, the probability that an initial seed xy will eventually exhibit the period 12
is 142/257. Already, in this small example with three possible periods, it is not clear until
one does some detailed combinatorics how the expected minimum period across m machines
decays; although the expected period will of course be monotonic nondecreasing in m.

What happens in practice is that when p and a fixed a are chosen, with larger and
larger machine counts m emulated (say m is much less than say ,/p itself) the tendency for
some machine to pick up one of the smaller possible periods naturally increases. However
in such experiments with fixed a one does witness the aforementioned quantization of
cycle periods. In order to get the theoretically correct expectation of minimum period for
fixed a across machines therefore, one would have to know something about the relatively
small set of O(logp) periods, and furthermore know how random initial seeds deposit
themselves into the respective cycles. We repeat here the reason that it is not so hard to
infer the 1/4/m acceleration in the Brent scenario—in which each machine has a differant
ar-—namely, widely varying periods will be available to different machines; in effect the
space of possible cycle periods will be widely sampled. Instead of O(logp) possible cycles,
there would be perhaps as many as O(mlogp) cycles available on the parallel network.

Faced with such intricate statistical issues, one might be suspicious of the full parallel
scheme. The present author carried out the following experiment on the @ product (3.2)
for which a is fixed across machines. Choosing:

p=2%-1,

n = 250 iterations,

m = 250 machines,

and one random a parameter for every full parallel run, the empirical probability that

(Q contains the factor p was a healthy 0.61. This was based on one hundred random
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choices of a and a complete evaluation of () for each choice of a. Now for these choices
we have n?m? ~ p, so this brief experiment supports—at least in order-of-magnitude
fashion—the parallel heuristic based on the ) product. So even in the face of the the
complicated quantization of cycle periods when a is fixed across machines, this experiment
is encouraging.

Next, regardless of the open issues we turn to speculations stemming from the heuris-
tic (3.4). Let us attempt some estimates of actual run time for hypothetical factorizations.
We shall use formula (3.4) with the big-O cavalierly stripped away, using log, for any
logarithms (actually such is a realistic substitution), with the effective coefficients of the
log K, log® m terms both unity (actually a reasonable guess in actual practice), and a time
for one multiplication modulo N = Fig say, to be 0.1 seconds (today this is a realistic esti-
mate on such a large-integer operation, in fact multiply times an order of magnitude lower
than this have been reported for certain machine architectures [Mayer 1999]). Then to
discover the 23-digit McIntosh-Tardif factor mentioned in Section 1 we need an (operation
— time) equivalent count of

vp — 1000 years

using basic, unadorned Pollard-rho. Using the fact that any factor of Fig is of the form
p = 1(mod 22°) we set 2K = 22° and note that the better iteration z := 22X +a, for which
the estimate of (operations — time) to discover the factor is:

log2 2K

f
On the other hand, we assess the impact of parallelism as follows. In this age of massive
volunteer network computations, let us be generous and take m = 10000 machines. Now

in the “weak” parallel mode, where there is essentially no intermachine communication,
the (operation — time) estimate comes out as:

— 17 years.

/P 1 logy 2K
P m R -1

The new parallel scheme though has estimate:

VP
myv2K —1

As with this example, it is generally true that hundreds or thousands of machines would
be required to bring the new parallel method beyond the efficiency of the weak one, due
to the log® m factor. But let us at least establish that the machine parameters are not too
absurd in such regions of advantage. From the algorithm of the previous section, we see
that for n parallel iterates, per-machine, of Pollard-rho sequences the approximate relation

— 2 months.

(logy 2K +logzm) — 4 days.

p~n’m?’K

is expected. This means that each of the m = 10000 machines would only do about
n ~ 40000 iterations, or on the order 10® multiplies modulo Fig. So the number of iterates
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in step (3) of the algorithm is entirely realistic, and along with the time for product
evaluation in step (4), is on the order of days. It may be possible to bring overall times
down yet further by allowing the parallel machines to cooperate even more in the evaluation
of the products. (For example it is unknown to the present author whether a degree-m
polynomial can be evaluated at m points via m coupled machines in O(m¢) ring operations
per machine, yet this may well be possible.)

As it stands the new algorithm requires extensive sharing of stored iterates. Let
us see if such storage is even possible for our example of Fjg. Each machine must be
capable of fast polynomial evaluation for degree m, so via convolution techniques (such as
Nussbaumer convolution with memory optimizations [Crandall 1995]) that would involve
a small multiple of the memory required for 10* copies of Fig (a 32-kbyte entity). This
comes out to about 700 megabytes per machine, which although stultifying is not out of
the question even for personal computers of today. It is also the case that some kind of
memory pool must exist for all the stored iterates from step (3) of the algorithm. The
total memory required is about 2n copies of size-Fig residues on each machine p, where
we might assume that the sequence {xi” )} is actually stored. In our example that is about
7 gigabytes per machine, again unfortunate but not out of the question. An interesting
line of future research is to determine whether alterations of the precise of order of doing
things between algorithm steps (3) and (4) will save memory. For example, when machine
i = 0 does its n/m polynomial evaluations each of degree m, at m points, perhaps that
effort should be shared amongst all machines, and an accumulation (or gcd) operation
performed, so that the indices ¢ € [0,n/m — 1] once processed may theretofore be ignored.
If such memory-reduction schema can be made to work, then the dominant memory is that
of the polynomial evaluation itself, or as we have said, O(m) copies of size-N residues, per
machine.

Another interesting line of possible optimization is the following. Observe that the
choice of K can be arbitrary, on the idea that a time reduction of about 1/(ged(p—1,2K)—
1)1/ 2 results. There is nothing preventing one from trying various K values at the start
of the algorithm. It is not yet known whether using different K values per machine in
this new parallel scenario affords any advantage. It would be interesting to analyze this
question from both statistical and algebraic pictures. But since the McIntosh-Tardif factor
is

81274690703860512587777 = 1 + 223 .29 - 293 - 1259 - 905678539,

any machine that happens to have an extra factor 23 or even 23 - 29 (beyond the known
efficiency factor 2K’ = 220) contained in its 2K value will likely contribute somewhat more
powerfully than otherwise. Indeed, the appearance of the (log K + log® m) factor in the
overall time estimate (3.4) shows that for large numbers m of machines, one will usually
obtain a definite acceleration from a lucky K value, and in any case one may use various
small K values with relative impunity.

Aside from the issue of whether it makes sense to “blindly” adopt various K acceler-
ators, and whether to do this on a per-machine basis, there is the question of the Pollard
iteration itself, and how its effective traversal set can be restricted. Though linear itera-
tions = := ax + b are known to be unsatisfactory (e.g. they might have periods of length
O(p)), it would be good to know the effective periods for  := a @ x + b where e is an
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elliptic multiplication on an elliptic curve, with z now being a point. Such an elliptic
iteration was once suggested by V. Miller, in regard to pseudorandom number generation.
In fact, [Miller 1999] points out that the period of such an elliptic generator can again
be p (good for cryptography, bad for rho-factoring), depending on the group structure at
hand; i.e. whether the elliptic group is cyclic. Thus the elliptic generator—with each step
involving expensive elliptic arithmetic—may be of no use in rho-based factoring; yet the
elliptic generator should still be studied completely in this regard. Then, too, it would
be of interest to apply various of the ideas herein to the Pollard-(p — 1) method. For the
moment, we note that [Montgomery and Silverman 1990][Montgomery 1992] have shown
the importance of polynomial-evaluation acceleration to Pollard-(p — 1) and ECM, respec-
tively. It should be remarked that the aforementioned McIntosh-Tardif factor, as well as
other ECM-based discoveries such as the factor

3603109844542291969 = 1 + 2'° - 3 - 4363 - 525050549

of F13, could be found rather quickly with Pollard-(p — 1) with suitable second stage, per-
haps in the “FFT” style of Montgomery and Silverman (to pick out the factor 525050549).
Certainly the corresponding time estimates [Mayer 1999] show that such an effort would
clearly be more lucrative than single-machine Pollard-rho. But this comparison is not at
all so one-sided in a parallel-rho scenario for which some lucky machine is performing an
iteration: x 1= 22 34363 4 a, say. For that machine should only require about n ~ 10°
iterates all by itself, to discover the given 19-digit factor of Fy3, and this would only take
a matter of hours. Again this raises the open question of whether there be genuine gain
in having machines carry out separate Pollard iterations. One may look longingly at the
older results of [Brent 1985] on ECM-rho comparisons—which results imply a kind of
crossover at about 11 digit factors—and wonder what higher crossover might accrue from
both parallelism and use of hidden K values.

Now, if the present author may speculate in unrestrained fashion: whether or not
further reduction in the complexity estimate (3.4) can be effected in future, there is the
issue of quantum computation. It is now known that factorization via quantum Turing
machine (QTM) can proceed, at least in principle, at unprecedented speed, as in the Shor
factoring algorithm [Ekert and Jozsa 1996]. In such an approach, quantum cells using
natural quantum interference would be used to perform gargantuan fast Fourier transforms
(FFTs), and so look for a certain kind of periodicity of powers modulo an N to be factored.
By the same token, we expect the new parallel scheme for Pollard-rho to have a reasonably
direct analogue in the QTM world. After all, the notions of parallelism, inter-processor
communication, and large, fast transforms are all present. In fact, transforms tend to
figure into the best polynomial evaluation schemes. If there be a valid analogue of the
basic Pollard-rho on QTMs, we can say now that there should also be a parallel analogue.
If yet more speculation can be extended from this already speculative posture, let us be
truly generous and think of m = 10%* (one “mole”) of quantum cells. Not to stretch the
notion too far, but a nanotechnological society might one day view such a cell count as,
well, commonplace. Then for this m,

m
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so that formula (3.4) allows 70-digit factors p of N to be obtained in about 10'° ring oper-
ations in Zy—-certainly a feasible operation count by comparison with many of the deeper
computational successes of the present era of conventional TMs. Needless to say, 70-digit
extractions are right about at the current state of the factoring art (via the number field
sieve (NFS), say). Of course one could respond that, by the time a quantum-nano tech-
nology is upon us, other dominant factorization methods will have been correspondingly
accelerated to unprecedented performance levels. But to this we can say, Pollard-rho is so
very simple, it may be one of the first implementations in any really new technology. After
all, it has already been, once for a time the best available method for certain classes of N.
True, there is polynomial evaluation of the ) products indicated for our stated algorithm,
but for all this author knows, a future machine would be better off doing brute-force O(m?)
product evaluations, and that is a manifestly simple procedure. Because of allowed special
K values, something like the elusive Fi4 or one of its relatives might finally be demolished
in this way (it is an interesting exercise to estimate how many new Fermat factors would
accrue at a 70-digit search limit). It would therefore seem that, even though more dom-
inant factorization schemes have migrated to the forefront over the last two decades, the
last chapter in the story of the Pollard-rho method is not yet written.
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