
Integer convolution via split-radix fast Galois transform

Richard E. Crandall
Center for Advanced Computation, Reed College, Portland, OR

Feb 1999

Abstract

Integer convolution can be effected, as is well known,
via certain number-theoretical transforms. One par-
ticular transform, which we call a discrete Galois
transform (DGT), can be used efficiently for either
cyclic or negacyclic integer convolution. The DGT
has the feature that, if an appropriate prime p for the
field GF(p2) be specified, the allowed power-of-two
signal lengths can be quite large. Though the DGTs
we consider involve complex arithmetic (amongst
Gaussian integers a + bi mod p), it turns out that
the run lengths can, in certain settings, be halved.
Thus, the fact of real-valued, integer input signals
can be exploited along such lines, to enhance the per-
formance of a resulting fast Galois transform (FGT)
algorithm. Furthermore, split-radix FFT structure
can be bestowed upon the FGT, again boosting effi-
ciency for integer convolution.

1 Nomenclature

Consider the Galois field GF (p2), where p = 2q − 1
is a Mersenne prime. Arithmetic in this field may
proceed in the form of complex arithmetic involving
Gaussian integers a+bi. The multiplicative group has
order p2 − 1 = 2q(2q − 2) = 2q+1(2q−1 − 1), so that
there will be elements of any power of two up through
2q+1 inclusive. It is this existence of large power-of-
two element orders that renders discrete transforms
over GF(p2) attractive. A theorem of [Creutzburg
and Tasche 1989] gives a closed form for primitive
roots. In fact, conveniently,

h = 22q−2
+ (−3)2

q−2
i mod p (1)

is always a primitive root of order 2q+1. It is a
straightforward matter to generate directly from such
a primitive root any required roots of order 2k ≤
2q+1, or, as will be required by our negacyclic vari-
ant, M -th roots of i.

We now define the discrete Galois transform
(DGT). Let x = {x0, . . . xN−1} be a signal whose
elements belong to GF(p2). (These elements can be
thought of as Gaussian integers a + bi, with each of
a, b reduced mod p.) Then the transform in question
is:

x̂k =
N−1∑
j=0

xjg
−jk mod p, (2)

where g is a primitive root of order N in GF(p2). The
inverse transform is:

xj = N−1
N−1∑
k=0

x̂kgkj mod p. (3)

These forward and inverse transforms are precisely
analogous to the usual Fourier transforms, in that
GF(p2), for a Mersenne prime p (indeed for any prime
p = 3 mod 4), supports Gaussian integer arithmetic.
Note that the specificiation of Mersenne primes is
mainly to allow very large power-of-two run lengths.
However, another advantage accrues: the (mod p)
operation is especially efficient, involving only shifts
and adds.

Now integer convolutions can be effected via these
transforms. Heretofore we consider (real) integer in-
put signals x, y; because we wish eventually to exploit
the reality condition. For the cyclic convolution x⊗y,
where each of x, y is of length N = 2k, we proceed:

1



Algorithm 1: cyclic convolution via
DGT

1. Choose a Mersenne prime p such that every con-
volution element will be less than p/2 in magni-
tude;

2. Obtain the length-N DGTs x̂, ŷ of x,y respec-
tively;

3. Multiply-mod dyadically to obtain a transform
ẑ according to:

ẑk = x̂kŷk, (4)

with all of the arithmetic performed mod p.

4. The inverse DGT, z, of ẑ is the cyclic convolu-
tion z = x⊗ y mod p, which according to (1) is
unambiguous mod p so z is in fact the desired
cyclic convolution.

For other types of convolution, the steps are the
same, except that a discrete weighted transform
(DWT) over GF(p2) should be employed. For ex-
ample, negacyclic convolution can be effected simply,
using a primitive N -th root of −1 in GF(p2) [1, 2].
However, both cyclic and negacyclic cases can be en-
hanced dramatically, as we next investigate.

2 Exploiting reality of the in-
put signals

Since the DGT with its Gaussian integer arithmetic
is much like the standard complex DFT, we expect it
possible to exploit the fact of real-valued input sig-
nals. Indeed, consider the “nested-complex” repre-
sentation X of a real signal x:

Xj = x2j + ix2j+1, (5)

where j now runs through 0, 1, . . . ,M − 1, with
M = N/2. Now as is well known from the the-
ory of standard FFTs, a shorter, length-M DGT on
the (complex) signal X contains all the information
one requires for inversion or convolution. The dyadic
multiply-mod step is more complicated; we leave out

the details and simply state the resulting dyadic rela-
tion below. Ther resulting overall scheme for convo-
lution involves halved run lenghts at every step. We
assume each of the (real) integer signals x, y to be of
length N = 2k = 2M :

Algorithm 2: Real-signal, cyclic convo-
lution via DGT

1. Choose a Mersenne prime p such that every con-
volution element with be less than p/2 in mag-
nitude;

2. Using the nested-complex representation (5), use
a primitive M -th root of unity (call it G) to ob-
tain two length-M DGTs X̂, Ŷ of the (complex)
signals X, Y respectively (see Sections 4,5 on en-
hancements to the complex DGT itself);

3. Multiply-mod dyadically to obtain a transform
Ẑ according to:

Ẑk = (X̂k + X̂∗
−k)(Ŷk + Ŷ ∗

−k)

+2(X̂kŶk−X̂∗
−kŶ ∗

−k)−G−k(X̂k−X̂∗
−k)(Ŷk−Ŷ ∗

−k),
(6)

with all of the complex integer arithmetic per-
formed modulo p.

4. Calculate the length-M inverse DGT, call it Z,
of Ẑ. Then Z/4, though complex, is the nested-
complex representation of the (real) cyclic con-
volution z = x⊗ y mod p.

We see that cyclic convolution of two, length-N real
integer signals can be effected thus with three, length-
N/2 complex DGTs. One convenient choice of field
for certain applications is to adopt p = 289−1. Then
integer convolutions of signals having 32-bit elements
can be handled, for signal lengths up to about 224. In
such cases the butterfly arithmetic within the DGT
could be performed via 96-by-96 bit multiprecisions
multiplies.

3 Negacyclic case

Again for real signals, there is a negacyclic convo-
lution that enjoys all the benefits. This negacyclic

2



variant is applicable to problems such as squaring
modulo Fermat numbers. In fact, ongoing tests for
the number:

F24 = 2224
+ 1 (7)

are using auto-negacyclic convolution (i.e. squar-
ing modulo F24) on residues having 220 digits of 24

bits each. It turns out that the Mersenne prime
p = 261 − 1 works well for such a calculation. (The
author has recently been informed that E. Mayer has
completed a complete Pepin test implying F24 is com-
posite. That test having used floating-point meth-
ods, the DGT approach underway has importance in
pure-integer arithmetic verification of the character
of F24.)

It is convenient for the negacyclic case to define a
different, let us say “folded” transform on a length-N
real signal x:

Xj = xj + ixj+N/2. (8)

It is not hard to see that now the full, negacyclic con-
volution can be obtained via a “right-angle” convolu-
tion of X sequences. That is, we twist the elements
of X by powers of H, with H being an N/2-th root
of i: That is to say, we can use the discrete weighted
transform:

X̂ ′
k =

N/2−1∑
j=0

XjH
jG−jk, (9)

where G is an N/2-th root of unity, and do the same
for a given signal y → Y , to effect the desired nega-
cyclic convolution of x, y:

Algorithm 3: Real-signal, negacyclic
convolution via DGT

1. Choose a Mersenne prime p such that every con-
volution element with be less than p/2 in mag-
nitude;

2. Using the folded-complex representation (8),
twist elements X ′

k = XkHk (and same for Yk)
where H is an M -th root of i;

3. Use a primitive M -th root of unity (call it G) to
obtain two length-M FGTs X̂ ′, Ŷ ′ of the (com-
plex) twisted signals X ′, Y ′ respectively (see Sec-
tions 4,5 on enhancements to the complex DGT
itself);

4. Multiply-mod dyadically to obtain a transform
Ẑ ′ according to:

Ẑ ′
k = X̂ ′

kŶ ′
k, (10)

with all of the complex integer arithmetic per-
formed modulo p.

5. Calculate the length-M inverse DGT, call it Z ′,
of Ẑ ′. Then the element collection {H−kZ ′

k},
though complex, is the folded-complex represen-
tation of the (real) negacyclic convolution of x, y
mod p.

We note the simple dyadic multiply (step (4)) com-
pared to the analgous step of Algorithm 2. Of course,
Algorithm 3 involves twisting and untwisting of sig-
nals so the efficiency comparisons are nontrivial.

4 Fast mod and multiply oper-
ations

It is fortunate that a mod p operation, when p is
Mersenne, can be effected with shifts and adds only.
Thus, within FGT butterflies most of the work is just
(size p)-by-(size p) multiplies, with mods themselves
consuming negligible time. Thus for example, when
doing large-integer multiplication via the usual expe-
dient of zero-padding of integer digit signals, the opti-
mization of run length of DGTs will depend upon an
assessment of the two quantities: a) the time to mul-
tiply two size-p integers mod p; and b) the number
of arithmetic operations (essentially, the multiplies
alone) in the DGT. Of course the operation count
is O(N log N). However, the implied big-O constant
can be reduced via split-radix butterfly format, as
discussed next.

There is another, amusing enhancement that de-
pends on properties of Mersenne numbers. Note that
an inverse DGT of length 2j has a prefactor 1/2j ,

3



which can also be thought of as 2q−j . Either way,
the peculiar property we have in mind is that mul-
tiplication by this prefactor is, modulo p, merely a
circular shift, in one direction or the other.

As for multiplication of complex values in GF (p2),
it should be noted that only 3 multiplies mod p
(and some extra additions) are required to effect a
full complex multiply; and this gain of 3/4 will be
important when the chosen Mersenne prime p is large
enough.

5 Split-radix FGT

Besides exploitation of reality of signal elements, an-
other optimization is to use split-radix format for the
butterflies of what we can call, as a fast means for cal-
culating the DGT, the fast Galois transform (FGT).
It is not necessarily true that any arbitrary trans-
form has an FGT analog; for example there are real-
signal floating point transforms (such as the Sorenson
RVFFT) in which constants such as

√
2 arise; and the

algebraic status of such constants is not always clear.
But what is clear, upon inspection of the detailed
arithmetic, is that the complex, split-radix FFT has
an exact FGT analog. In fact, the important but-
terfly in the decimation-in-frequency, complex, split-
radix format is of the general form

{Xb, Xc, Xd, Xe} := {Xb + Xd, Xc + Xe,

Xb −Xd − ih−a(Xc −Xe),

Xb −Xd + ih−3a(Xc −Xe)} (11)

in which all multiplicative constants exist unam-
biguously in the field.

A symbolic realization of a split-radix FGT exists
in the sotware released from Perfectly Scientific, Inc.,
Portland, OR, located at website:

http://www.perfsci.com/

References

[1] Crandall R E 1995, Topics in Advanced Scientific
Computation, TELOS/Springer-Verlag.

[2] Crandall R E and Fagin B 1994, “Discrete
weighted transforms and large-integer arith-
metic,” Math. Comp. 62, 205, 305–324.

4


