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Abstract: We define and analyze what we call “running-out-of-fuel” (ROOF) walks, whereby
each random step uses progressively less fuel (variance), in such a way that the total fuel expen-
diture is finite. In spite of this fuel constraint, a ROOF walk might still meander arbitrarily far.
Herein we analyze the probability-density functions fn for the walker’s position after n steps,
establishing in this way connections with other fields of analysis. One interdisciplinary aspect
is a probabilistic view on the “sinc surprises” of Baillie–Borwein–Borwein [5] that arise in their
study of certain sums and integrals. Aspects of the asymptotic density function f := f∞ remain
mysterious. Yet, for a certain canonical ROOF walk we are able to prove that the density f(x)
decays at least superexponentially, in the sense that for certain positive constants A,B,C and
sufficiently large x,

0 < f(x) < Ae−Be
Cx

.

We also discuss a “primes” walk whose density function f is even more exotic—in fact triply
superexponentially decaying—with the relevant analysis combining statistics and number the-
ory.
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1 Running out of fuel

We define a running-out-of-fuel (ROOF) walk as follows.1 Let a coordinate after n random
jumps be denoted

xn = ∆1 + ∆2 + · · ·+ ∆n,

where the random jumps ∆j are pairwise statistically independent, with expectations satisfying

〈∆j〉 = 0, (1)

〈|∆1|〉 > 〈|∆2|〉 > 〈|∆3|〉 > . . . , (2)∑
j

〈∆2
j〉 < ∞. (3)

The idea is, we speak of a finite amount of “fuel,” being the last sum (3) above, which is, at
least heuristically, 〈x2

∞〉. This fuel store can—as we shall see—be identified in certain physics
models as a random walker’s total expended energy. The inequality chain (2) tells us that the
random jumps (to left or right) have essentially decreasing magnitude. This is all reasonable,
since we desire a scenario where the random walker continually expends fuel, but can execute
infinitely many jumps in doing so.

It is well known—in fact since the days of Rademacher—that xn approaches a definite limit,
with probability one, merely on the assumption of finite total variance (3) above. Throughout
the present work, when we talk of this “almost sure” coordinate x := x∞ and its density
function, we shall assume certain existence proofs; for a more thorough discussion of relevant
existence/convergence theorems and their converses, see the delightful monographs [15] [17].

In what follows, we denote by pj(∆) the density function of the j-th jump, and by fn(x)
the density function of xn. For convenience, we shall identify f(x) := f∞(x), which ultimate
density function does exist for any of our example ROOF walks. It is also the case that, for all
of our ROOF examples below, at least, fn(x) is, for every n = 1, 2, 3, . . . , monotone decreasing
away from x = 0, as follows from the fact of monotonicity being preserved under convolution
(see [17]).

2 Classes of ROOF walks

Herein we cite some examples of ROOF walks. A relatively trivial, classical ROOF walk has
jump density function

pn(∆) =
1

2
(δ(∆− 1/2n) + δ(∆ + 1/2n)) ,

1The ROOF moniker is the present author’s, intended for physicists. Previous names in the literature are
“fatigued random walker” [15] and named special cases such as “random harmonic series” [17]. The physical
interpretations in the present treatment arose more than a decade ago on the author’s idea of a particle model
with finite-absorption/random-emission, and subsequent discussions of same with O. Bonfim and S. Wolfram.
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where the Dirac delta-function notation means that the n-th coordinate is

xn = ±1

2
± 1

22
± 1

23
± · · · ± 1

2n
,

with independently random sign choices. It is well known [15] [17] that the ultimate density
for this “binary” ROOF walk is

f(x) := f∞(x) =
1

2
1[−1,1](x),

i.e., an equidistribution pedestal on x ∈ [−1, 1]. This result is intuitively clear, on the realization
that balanced -binary representation of reals is unique.

The above example—in giving a pedestal for ultimate density—has all bounded walks, for
any choice of signs. Because of wide connections with other mathematical domains, we next
define:

Class-D ROOF walks: These are “diverging” ROOF walks in the following sense: Along
with the defining relations (1)-(3), we also posit∑

〈|∆j|〉 = ∞.

Note that this divergence condition is not satisfied by the “binary” walk above (where the
relevant sum over 〈|∆j|〉 is simply 1). But for a ROOF walk of class D, we see that the walker
can go arbitrarily far away from the origin. It is generally true, in fact, that a class-D walk has
an ultimate density f := f∞ that is everywhere positive.2 We next turn to specific subclasses
of class-D walks.

D0 walks: A relatively trivial—albeit interesting—subclass of class-D ROOF walks involves
the n-th-step density function

pn(∆) =
1√

2πvn
e−∆2/(2vn),

i.e., ever-thinner, centered Gaussian jumps with real, positive variances v1 > v2 > . . . , satisfying∑
vj <∞. In this instance we reside in class D if∑√

vi = ∞.

We know that any two Gaussian densities convolve into a Gaussian density of summed variance,
so the final density function for the ultimate coordinate x∞ involves the assumed-finite sum∑
vn, as

f∞(x) =
1√

2π
∑
vn
e−x

2/(2
∑
vn).

2We leave to others the issue of proving (or disproving) positivity of f := f∞ for every class-D walk; yet,
proofs for our main examples are found in [17].
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It is interesting where this ROOF scenario is basically the only kind for which the classical
central-limit theorem can be (conceptually, accidentally if you will) applied: Indeed, for none
of our other examples does the final density function have Gaussian character. So walks in
subclass D0 are completely solvable in an obvious sense—and yet, we pay a price for said
solvability. Namely, the concept of “meandering arbitrarily far” as one runs out of fuel is trivial
since on any one step the walker can go arbitrarily far under its instantaneous Gaussian.

D1 walks: This subclass we define to involve discrete jumps, in that the density function for
jump ∆j is two superimposed Dirac-delta spikes:

pj(∆) =
1

2
(δ(∆− bj) + δ(∆ + bj)) ,

where the real, positive bj satisfy b1 > b2 > . . . , with
∑
b2
j < ∞, and class-D membership is

then assured by ∑
bj =∞.

Note that expectations for class D1 are given simply by

〈|∆j|〉 = bj, 〈∆2
j〉 = b2

j .

Now we can give the notion of “arbitrary meandering while running out of fuel” some teeth:
The density function f(x) := f∞(x) is defined and everywhere positive (see, as before, [17]).
We should admit that the phenomena attendant on sublass D1 remain to some extent shrouded
in mystery. For example, we do not know the exact density f for any explicit set of bj, and we
do not even know an exact f(0), say, for any D1 walk.

D2 walks: This subclass we define to involve ever-shrinking jumps again, but with each
density function being a pedestal:

pj(∆) =
1

2cj
1[−cj ,cj ](∆),

where the real, positive cj satisfy c1 > c2 > . . . , with
∑
c2
j < ∞, and class-D membership is

then assured by ∑
cj =∞.

The expectations for class D2 are:

〈|∆j|〉 =
1

2
cj, 〈∆2

j〉 =
1

3
c2
j .

One of the many delightful surprises that ROOF walks offer is this: It can happen that a
class-D2 walk has the very same final density function f := f∞ as a corresponding walk from
class-D1. This remarkable fact—known to other researchers in one guise or another—will be
shown from the probabilistic perspective in what follows.
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3 Physics models for ROOF walkers

The present author proposes the following physics model for any ROOF walker of class D1. We
refer to the Figure 1 pictorial to aid our intuition. Ponder a Gedanken—“thought experiment”—
involving a sled on a frictive track. The law of motion we contemplate is actually reasonable,
and used in many physics applications, namely

m
d2x

dt2
= −γ dx

dt
.

Here m is sled mass and γ is the coefficient of sliding friction. There is on-board fuel, yet to
simplify the analysis we shall neglect the initial fuel mass compared to m and simply assume
m is constant for all time.

The equation of motion is not enough, of course; we also need imagine a “demon” on the
sled, and the demon has an algorithm for precisely how to expend on-board fuel. To this end,
consider first the space-time trajectory under initial condition x(0) = 0, dx/dt(0) = v. The
exact solution to the frictive motion is

x(t) =
mv

γ

(
1− e−γt/m

)
.

Note that this motion, once begun with initial velocity v—say by a quick burst of fuel-burn—
will never stop as t → ∞; rather, the sled will asymptotically approach a jump distance of
mv/γ. So let us assume a fixed, finite jump-time τ , so that in time τ the sled moves x(τ), at
which time τ we use more fuel-burn to brake the sled from its velocity dx/dt(τ) = ve−γτ/m to
a standstill. Thus, the braking action works opposite to the sign of initial velocity v.

Now, to execute a ROOF walk, the control demon knows an infinite set of initial speeds
(v1, v2, . . . ) and randomly selects direction ± for the initial velociti v = vn on the n-th jump.
Thus, the jump distances that occur every time interval τ are

∆n = ±mvn
γ

(
1− e−γτ/m

)
.

Moreover, each jump operation involves energy outlay

En =
1

2
mv2

n +
1

2
mv2

n e
−2γτ/m,

with the two components here being, respectively, the initial thrust energy to achieve speed
|vn| and the braking energy to remove the speed after time τ .3

3It could be argued that this energy budget neither takes into account thrusting into the frictive medium,
or braking into said medium. However, if the thrusting and braking is done with infinitesimally brief energy
pulses (and so, virtually infinite power pulses yet with the finite energy), then the energy needed is effectively
that of giving/taking the kinetic energy of the sled.
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Now for generality within the class D1: For the defining sets of incremental distances
b1, b2, . . . for a class-D1 walk, choose physical constants and units such that

m = γ := 1

and the time quantum

τ := log
(

2 +
√

3
)
,

in which case the control demon can assign velocities

vn :=
1 +
√

3

2
bn

and so expend successive fuel energies
En := b2

n

to effect the ROOF walk. This model—which, by thus assigning physical units appropriately—
covers all ROOF walks of class D1, and this is what Figure 1 shows. It is an interesting scaling
property of class D1 that the time quantum log(2 +

√
3) can be fixed, across the entire class.

We presume that class-D0 ROOF walks can be modeled similarly; e.g., for class D0 one
might imagine the demon has Maxwell-distributed gas on-board, and somehow allows Gaussian-
distributed velocities for emanating gas particles.4

There are other interesting Gedankens that generate ROOF walks. For the “convex” friction
law

m
d2x

dt2
= −γ

dx
dt√∣∣dx
dt

∣∣
one can show that a sled starting with an initial velocity vn actually comes to a halt in finite time.
Thus, the sled demon can employ initial velocity bursts only, needing no braking mechanism.
Taking γ = m = 1, an exact trajectory, given initial speed vn > 0, is

x(t) =
2

3
v3/2
n −

((
2

3

)1/3

v1/2
n −

1

3

(
3

2

)2/3

t

)3

,

from which we may casually read off the total distance-to-halt, assuming random choice of
direction (left-right), as

∆n = ±2

3
v3/2
n .

If we choose velocities vn := (3/(2n))2/3, we have divergence of
∑
〈|∆j|〉 = 1+1/2+1/3+. . . . So

this frictive walk is in class D1: The variance is
∑
〈∆2

j〉 = π2/6, yet the sled can go “anywhere”

4Of course, such a scenario requires gas molecules of zero mass—or some other appropriate “law of the
infinitesimal”—to avoid just a single emanating molecule dissipating by itself all the finite energy!
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on finite fuel. It is of interest that for this convex-friction model, the total energy burn is not
the same as the total (finite) variance; rather

E =
∑
n

1

2
mv2

n =
34/3

27/3
ζ(4/3),

which is itself finite.

Figure 1: A physics Gedanken for class-D1 ROOF walks. On the n-th jump, a fuel (i.e. energy)
parcel b2

n is used to move the sled a distance ±bn, under the friction law m d2x/dt2 = −γ dx/dt.
Remarkably, by burning thus a finite total fuel

∑
b2
n, and in spite of the friction, the sled still

reaches arbitrarily remote positions with nonzero probability, being as
∑
bn diverges. For

bn := 1
2n

, the ultimate position density will be the everywhere-positive f(x) in Figure 2 (see
Theorem (1) for equivalence of D1, D2 classes).

4 Density-function calculus

From our original prescription for the n-th position,

xn = ∆1 + ∆2 + · · ·+ ∆n,

we may write the n-th density function, for any integer m ∈ [2, n], as the convolution

fn(x) =

∫ ∞
−∞

fm−1(x− y)gm,n(y) dy, (4)

where gm,n here is the density function for the random sum

y = ∆m + ∆m+1 + · · ·+ ∆n.

http://www.perfscipress.com/algorithmic-reflections-selected-works/


Also available in a new collection from PSIpress, Algorithmic reflections: Selected works 8

For example, for m = n we have the more transparent relation

fn(x) =

∫ ∞
−∞

fn−1(x− y)pn(y) dy,

where pn(y) = gn,n(y) is, as before, the transitional density for the single jump ∆n. We shall
soon be exploiting the freedom of choice in (4) for the intermediate index m. Note that all
densities are normalized in this theory; i.e., for all positive integers n and m ∈ [2, n]∫

x∈R
pn(x) dx =

∫
x∈R

fn(x) dx =

∫
x∈R

gm,n(x) dx = 1.

In a classical vein, a complementary view on density convolution involves characteristic
functions; namely, for the given transition densities pn(∆) we consider the Fourier transform

p̂n(ω) :=

∫ ∞
−∞

pn(∆)e−iω∆ d∆.

Then the familiar classical result is that convolution in configuration space turns into mutlipli-
cation in spectral space, that is

fn(x) =
1

2π

∫ ∞
−∞

n∏
j=1

p̂j(ω)eiωx dω. (5)

Now we can cite specific integral forms for class-D1 and class-D2 density functions, namely:

Density function for class-D1 walks (discrete-Dirac-delta jumps by ±bn):

p̂n(ω) = cos(bnω),

fn(x) =
1

2π

∫ ∞
−∞

eiωx dω
n∏
j=1

cos(bjω). (6)

Density function for class-D2 walks (pedestal jumps of widths 2cn):

p̂n(ω) = sinc(cnω),

fn(x) =
1

2π

∫ ∞
−∞

eiωx dω
n∏
j=1

sinc(cjω). (7)

We should state right off one of the remarkable results found in previous literature. We shall
say that two processes are statistically equivalent if their respective density functions φ, f satisfy
a scaling law φ(x) = cf(cx) for some positive constant c.

Theorem 1 The D1 walk with bn := 1
2n

is statistically equivalent to the D2 walk with cn := 1
2n−1

,
in the sense that both walks have the same asymptotic density function f := f∞.
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Proof: This follows immediately from (6) and (7), on the observation that for all real ω

∞∏
j=1

cos

(
ω

2j

)
=
∞∏
j=1

sinc

(
ω

2j − 1

)
.

This is established in [6] [8]; moreover, [17] has a probabilistic argument for the statistical
equivalence of the two walks, which argument exploits the fact that an odd-reciprocal sequence
is naturally buried in the harmonic series. QED

But there are a great many other properties to be gleaned from Fourier representations, as we
shall see.

5 Focus on class-D2 ROOF walks

Referring to Figure 2, we envision the canonical class-D2 walk, that is, the figure assumes
cn := 1

2n−1
; yet, we now proceed for general cn for the class.

Figure 2: The class-D2 ROOF walk with canonical assignments cn := 1/(2n− 1). The upper-
left plot is for the first random jump: A pedestal density over [−1, 1] with height 1/2. The
lower-left plot is the density after 2 jumps: The top-height is still 1/2, but straight lines connect
f2(c1 − c2 = 2/3) = 1/2, f2(c1 + c2 = 4/3) = 0. At lower-right is a plot of f := f∞, which plot
remarkably has f(0) < 1/2, yet barely so. It is also (barely) true that f(1) < 1/4, and that for
large x, the decay of (the everywhere-positive) f is at least superexponential; for example, we
prove f(2π) < 10−13680.
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For any cn appropriate to class D2, a useful representation also following from the convolu-
tion theory is

fn(x) =
1

2n

∫
[−1,1]n

δ(c1z1 + c2z2 + · · ·+ cnzn − x) D~z. (8)

Here, D~z is the volume element dz1dz2 · · · dzn, and the integration is over the n-dimensional
centered unit cube. This geometrically powerful representation can be derived easily from
iteration of (4), or from the subsequent Fourier theory using δ(ω) = 1/(2π)

∫
eiωzdz. We shall

later use this delta-representation (8) in connection with the Baillie–Borwein–Borwein theory
of sinc integrals. We note that relations such as (8) have been used previously in the study of
multidimensional sinc integrals [9].

Net we aim to prove three salient bounds relevant to class-D2 walks. The asymptotic (final)
density function f := f∞ of the walk has properties:

• f(0) < 1
2c1

,

• f(c1) < 1
4c1

,

• For the canonical case cn := 1/(2n − 1), the decay of f(x) is at least superexponential,
meaning that for sufficiently large x, and positive constants A,B,C, we have

0 < f(x) < Ae−Be
Cx

.

We note right off that various of our literature references have already established the two
bounds for f(0), f(c1) respectively; our intent is to prove these via the present nomenclature
and conceptual framework. The third, superexponential-decay result is new as far as the present
author is aware.

To begin our bounding analysis , we employ the convolution relation (4) in the specific
(m = 2) form

fn(x) =

∫ ∞
−∞

f1(x− y)g2,n(y) dy. (9)

In what follows, we denote probabilities by P , and recall that for a class-D2 walk, the first
density function is f1(x) = p1(x) = 1

2c1
1[−c1.c1](x). Also, let us denote generally the tails

ym = ∆m + · · ·+ ∆n; e.g., the g2,n function in (9) above is the density for random variable y2.

Theorem 2 For a class-D2 ROOF walk, we have, for all positive integers n and also n =∞,

fn(0) =
1

2c1

if c2 + . . . cn ≤ c1,

<
1

2c1

otherwise.
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Similarly,

fn(c1) =
1

4c1

if c2 + . . . cn ≤ 2c1,

<
1

4c1

otherwise.

We also have exact sum rules∑
k∈Z

fn(2kc1) =
∑
k∈Z

fn((2k + 1)c1) =
1

2c1

,

and so we have an overall sum rule ∑
k∈Z

fn(k) =
1

c1

.

Finally, for integer m > 1 and x > c1 + . . . cm−1,

fn(x) ≤ 1

2c1

P(x < ym + c1 + . . . cm−1.)

Remark: Note that the sum rules themselves imply the first two inequalities for f(0), f(c1)—
i.e., for n =∞ ultimate densities. The sum rules also yield interesting theoretical and numerical
side-connections (see Corollary 2 and Appendix).

Proof: We have immediately from (9) and the stated form for f1 the relation

fn(x) =
1

2c1

P(y2 ∈ [x− c1, x+ c1]) (10)

From this we infer

fn(0) =
1

2c1

P(y2 ∈ [−c1, c1]) =
1

2c1

(1− 2P(y2 > c1)), (11)

and this settles both branches of the fn(0) claim of the theorem. Similarly,

fn(c1) =
1

2c1

P(y2 ∈ [0, 2c1]) =
1

4c1

(1− 2P(y2 > 2c1)), (12)

thus settling the claims for fn(c1).
Now to prove the sum rules. Using (10) again, we have

fn(0) + 2fn(2c1) + · · · = 1

2c1

(P(|y2| ∈ [0, c1]) + P(|y2| ∈ [c1, 3c1]) + P(|y2| ∈ [3c1, 5c1]) + . . . )

=
1

2c1

· 1.
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A similar argument reveals that

fn(c1) + fn(3c1) + · · · = 1

4c1

,

and this establishes the sum rules. (Not only do the sum rules hold for all positive integers
n, they have to hold for the ultimate density f , i.e. for n = ∞, because it is known (see
introductory section) the sequence fn → f pointwise.)

Finally, going back to (4) for general index m and given that x > c1 + . . . cm−1, we have

fn(x) ≤ (sup
z
fn(z)) P(ym > x− c1 − c2 − · · · − cm).

However, the sup is bounded above by 1/(2c1), as follows trivially from (10), and we obtain the
theorem’s claimed bound on fn(x).

QED

In order to render the general bound on fn(x) in Theorem 2 more useful, we next cite a result
concerning expectations of exponential arguments. The following theorem is a generalization
of the expectation theory found in [17]:

Theorem 3 For a class-D2 ROOF walk, take n ≥ m, set v :=
∑n

k=m c
2
k, and denote by gm,n(y)

the density for the random variable y = ∆m + · · ·+ ∆n. Then for any real t, under the density
gm,n we have a bounded expectation

〈ety〉 ≤ e
1
6
vt2 .

Moreover, for positive real u we have, under the stated density, a probability bound

P(y > u) ≤ e−
3u2

2v .

Proof:

〈ety〉 =
∏

j∈[m,n]

1

2cj

∫ cj

−cj
ety dy =

∏
j∈[m,n]

sinh(cjt)

cjt
≤ e

1
6
vt2 .

This last bound follows immediately from

sinh z

z
= 1 +

z2

3!
+
z4

5!
+ · · · ≤ 1 +

z2/6

1!
+
z4/62

2!
+ · · · ≤ ez

2/6.

Next we invoke a beautiful theorem of Markov (see [17]), saying that for u > 0,

P(y > u) ≤ inf
t>0
〈ety〉e−tu.
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This can readily be seen in our present context by writing

P(y > u) =

∫ ∞
u

gm,n(y) dy ≤
∫ ∞
−∞

gm,n(y)et(y−u) dy.

But all of this means we can take t := 3u/v in the inf argument and thereby derive the resulting
bound for P(y > u).

QED

Theorem 4 For the class-D2 ROOF walk, denote for m > 1 the quantities am :=
∑m−1

k=1 ck
and Vm :=

∑∞
k=m c

2
k. Then the density f := f∞ satisfies

0 <
1

2c1

− f(0) <
1

c1

e
− 3c21

2V2 ,

0 <
1

4c1

− f(c1) <
1

2c1

e
− 6c21
V2 .

Moreover, for x > c1,

0 < f(x) <
1

2c1

inf
am<x

e−
3
2

(x−am)2

Vm .

Proof: Recall that f(x) is everywhere positive [17], so that the first two inequality chains,
for f(0), f(c1) respectively, follow directly from relations (11), (12) and the final statement of
Theorem 3. Then for x > 1, we can apply the last statements of Theorems 2 and 3 to get the
desired inf inequality.

QED

Corollary 1 For the canonical Class-D2 ROOF walk (assignments cn := 1/(2n−1)) the asymp-
totic density f := f∞ satisfies

0 <
1

2
− f(0) < e

− 12
π2−8 < 2 · 10−3,

0 <
1

4
− f(1) <

1

2
e
− 48
π2−8 < 10−11,

0 < f(x > 1) <
1

2
e
− 12(x−1)2

π2−8 .

Moreover, for large x the density decays at least superexponentially, in the sense that for x ≥ 3

0 < f(x) <
1

2
e12e−

6
e4
e2x .
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Remark: The bounds are nonoptimal; in truth, 1/2 − f(0) ≈ 10−6 and 1/4 − f(1) ≈ 10−43.
The superexponential-decay bound says f(3) < 10−14 while the numerical value is evidently
f(3) ≈ 5 · 10−43. A special case we discuss later is f(2π) < 10−13680, and for this we do not
know an accurate mantissa, even to one significant decimal. Interestingly: It could be that for
general class-D2 ROOF walks f(x) decays at least doubly exponentially, i.e. perhaps we always
have f(x) < A exp(−B exp(Cx)) within class D2; we do not know if this is true, although
this corollary for our canonical case is suggestive. (Later we mention a ROOF walk for which
f decays triply superexponentially, and so still bounded above by a doubly superexponential
decay.)

Proof: For this canonical ROOF walk, V2 = 1/32 + 1/52 + · · · = π2/8 − 1 and so the first
three inequality chains of the corollary result from Theorem 4. As for the last, superexponential
inequality, observe that for m ≥ 2,

am < 1 +
1

2
logm,

Vm <
1

4(m− 1)
.

These can be proved using elementary integral bounds on the function 1/(2z − 1). Now for
x ≥ 3 set

m := be2(x−2)c,

so that m ≥ 2, thus

f(x) <
1

2
e−(3/2)(x−1−(1/2)·2(x−2))2·4(m−1) ≤ 1

2
e−(3/2)·(4(m−1))

≤ 1

2
e12e−6e2x−2

,

which is the desired superexponential bound.
QED

6 Numerical evaluation of density functions

For class D2 ROOF walks, one might contemplate using the Fourier decomposition (7), per-
forming numerical integration so as to approximate fn(x) numerically. And, with enough good
fortune, perhaps some high-precision values of f(x) for the asymptotic density function f can
be obtained—via tight approximations for the infinite sinc-product. Actually there are two
related approaches, but ones that differ interestingly in the details.

One approach is used in the work [3] [4] to evaluate integrals of the type that appear in our
characteristic relation (6). Those authors were working in a scenario statistically equivalent to
a ROOF model having parameters bn := 1/(2n). (We have hereby scaled the jumps bn with
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respect to [3] for our own purposes, yet statistical equivalence prevails.) The two referenced
works employ the expansion (valid for |ω| < π/2)

log cosω =
∞∑
j=1

(−1)j (22j − 1)B2j

(2j)!j
ω2j

with a partitioned integral

f∞(x) =
1

2π

∫ ∞
−∞

eiωx dω e
∑∞
k=m(ω) log cos(ω/(2k))

m(ω)−1∏
j=1

cos(ω/(2j)). (13)

Here, m(ω) is an integer-valued function that bounds |ω|/π from above—so that the log-cos
series is always valid during numerical integration. They were able to obtain in this way what
is equivalent to an extreme-precision value for f(0) = f∞(0) for this canonical class-D1 walk
(see our Appendix for listed values).

A second approach is to exploit the equivalence Theorem 1 by considering instead the
canonical class D2 walk with cn := 1/(2n− 1), for which

f∞(x) =
1

2π

∫ ∞
−∞

eiωx dω e
∑∞
k=m(ω) log(sinc(ω/(2k−1))

m(ω)−1∏
j=1

sinc(ω/(2j − 1)). (14)

In this alternative formulation we would use

log sinc ω =
∞∑
j=1

(−1)j22j−1B2j

(2j)!j
ω2j,

valid this time for the range |ω| < π.
Note that we are saying the f∞ in (14) is the same function as the f∞ in (13).
In [17], where the two-ROOF-walk equivalence we are exploiting here is argued probabilis-

tically, appears the germ of a fine idea, as follows: That the characteristic kernel for either
of the equivalent asymptotic walks can be partitioned as a product of trigonometric (cos or
sinc) terms—corresponding to the random variable ∆1 + · · ·+ ∆m−1—times a product of char-
acteristics for the “tail variable” ym := ∆m + ∆m+1 + . . . . However, it is argued in [17] that
the distribution of ym for large m is essentially Gaussian. But this would mean a reasonable
approximation might be the relatively simple construction

f∞(x) ≈ 1

2π

∫ ∞
−∞

eiωxe−vmω
2/2 dω

m(ω)−1∏
j=1

sinc(ω/(2j − 1)),

wherein one witnesses the term e−vmω
2/2—the characteristic function for a Gaussian of variance

vm = 〈y2
m〉. A beautiful aspect of this argument is that it is actually addressing the first term
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of the log-sinc series. Indeed, take for example the log-sinc series through a few terms:5

log sinc ω = −ω
2

6
− ω4

180
− ω6

2835
− ω8

37800
− ω10

467775
− . . .

and note that the tail ym claimed to be near-Gaussian—has density even closer to

gm(y) =
1

2π

∫ ∞
−∞

eiωye−a2ω
2−a4ω4−... dω,

where

a2 :=
1

6

∑
k≥m

1

(2k − 1)2
,

a4 :=
1

180

∑
k≥m

1

(2k − 1)4
,

and so on. The gm(y) integral here is problematic. All the present author knows along such
lines is that by keeping only a2, a4, the result gm(0) is a Bessel-K1/4 evaluation.

It is interesting that even though the log-cos and log-sinc series have finite radii of conver-
gence, we can in these instances ignore that and simply choose optimal cutoff m for a desired
final precision on the desired f∞(x). This freedom is due to the happy fact of all series elements
in both of these log-series being negative, even outside the convergence domain. The downside
to this way of thinking is that we do not yet know an analytical relation giving the optimal
parameters such as cutoff m and series cutoff degree for a desired ultimate precision for f∞(x).
Still, it appears possible in principle to obtain arbitrary precision—albeit at steeply ramping
cost—via empirical tuning of the relevnt parameters, as we have done for our Appendix.

7 Experimental and theoretical surprises

7.1 The “sinc surprises” of Baillie–Borwein–Borwein

A recent work by R. Baillie, D. Borwein and J. Borwein [5] on certain sums and integrals has
the word “surprising” in its very title, for indeed, those researchers considered various product
functions—in our probabilistic language these are characteristic functions of class-D2 ROOF
walks—of a form we denote

Π(n)(ω) :=
n∏
j=1

sinc(cjω)

5The notion that all terms here are ω-powers divided by integers is specious: It may well be that the term
shown with ω10 is the last such “pure” term.
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and managed to build identities that sometimes fail with—shall we say—surprisingly minuscule
errors.6

We remind ourselves that there are ROOF walks for which the cj for j up through any
finite n can be “anything monotonic,” i.e. subject only to the constraint cj > ck for j > k,
and still represent the initial pedestal-half-widths of a finite-total-variance walk, as in the chain
(2). That is, only when we contemplate infinite products, n → ∞, denoting these Π∞ when
they exist, are we concerned about convergence issues for the cj and the ensuing products Π(n).
For finite n, then, any pairwise distinct real constants cj in the definition of Π(n) are effectively
allowed, since they can always be sorted into decreasing order.7 In what follows, therefore,
we shall assume that in the construction of a sinc-product Π(n) the multiplicands adopt the
class-D2 ROOF walk’s natural sort, with the real, positive cj strictly decreasing.

Now, two interesting constructs residing at the core of the previous research [5] are what
we shall call a sinc-sum and a sinc-integral, respectively

Sn :=
∑
k∈Z

Π(n)(k), (15)

In :=

∫
ω∈R

Π(n)(ω) dω. (16)

We reserve the freedom to formally allow n =∞, when, of course, Π∞ converges as an infinite
product. This notion is tantamount, in our probabilistic view, to discussing the density function
limit fn → f∞ =: f .

Of great interest are sim-integral error terms addressed in [5] and which we equivalently
denote

ρn := Sn − In.

In regard to such error terms, the aforementioned authors of [5] made surprising discoveries
of the following type: It can happen that the sum-integral error here is ρn = 0 for some very
large initial set of n indices, but suddenly some ρn0 does not vanish. Similarly, there can be
long stretches of n values for which not only ρn = 0 but both Sn, In maintain a steady value,
said value being invariant with increasing n until we reach some sudden index n1 where both
Sn1 , In1 depart(s) from the steady value (and so the error ρn1 at that sudden juncture may or
may not vanish).

6The philosopher Wittgenstein said “There can never be surprises in logic,” yet when mathematicians speak
of surprise we all know what is really meant: something “unexpected.” The present author maintains that
believing in “unexpectedness” does not violate Wittgenstein’s thesis, in that the sheer unpredictability of where
analysis might lead pervades all of mathematics. After all, the eminent Carl Ludwig Siegel did say “One cannot
guess the real difficulties of a problem before having solved it”—in such a sense, surprise perhaps really does
have a place in mathematics, logic notwithstanding.

7Evidently nothing prevents us from using.more generally, nonincreasing cj-sequences; i.e., the pairwise-
distinctness condition is not fundamentally required. However, much of our analysis goes through more efficiently
when no cj pairs coincide.
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In the ensuing subsections we cover some observations and results in regard to these ”sinc
surprises” and related analyses.

7.2 Exact finite forms for sinc-sums Sn

It turns out to be possible, for arbitrary cj, to evaluate any Sn (for finite n) in finite form.
We shall derive the general formula and indicate later how this sometimes leads to immediate
results for the integrals In. Note that this manner of sum evaluation is foreshadowed in [5];
here we attempt to generalize such ideas to cover arbitrary sinc-sums (for finite n).

First there is a general polylogarithmic identity, starting from

Π(n)(ω) =
1

(2iω)n
∏n

j=1 cj

n∏
j=1

(
eicjω − e−icjω

)
with a sinc-sum emerging as a combinatorial entity

Sn = 1 + 2
1

(2i)nT (~c)

∑
~β∈{−1,1}n

T (~β) Lin

(
ei
~β·~c
)
, (17)

where for any vector ~r, we denote T (~r) :=
∏n

j=1 rj, while the vector index ~β runs over all

2n balanced-binary n-vectors, ~c := (c1, . . . , cn), and Lin(z) :=
∑

k≥1 z
k/kn is the standard

polylogarithm. Happily, <(Lin),=(Lin) here can be evaluated in finite form as n is even, odd
respectively. In fact, for real z one has polynomial evaluations (see [5], [11] and references
therein)

<
(
Lin
(
eiz
))

=
∞∑
k=1

cos kz

kn
= QnBn

({ z

2π

})
; n even, (18)

=
(
Lin
(
eiz
))

=
∞∑
k=1

sin kz

kn
= QnBn

({ z

2π

})
; n odd, (19)

where Bn is the standard Bernoulli polynomial, { } indicates (mod 1) fractional part, and

Qn := (−1)bn/2c−12n−1π
n

n!
.

In spite of the fact of (17) having 2n summands if naively summed, this manner of polyloga-
rithmic evaluation does indeed give a finite form for Sn. We do not yet know a method that
will significantly accelerate this summation, so down to polynomial complexity in n rather than
2n, although something should be possible because there is so much redundancy in the combi-
natorics. (Of course, the manner in which the alternating signs of the terms in ~β · ~c enter tells
us that the basic complexity of a ROOF walk is somehow embedded in Sn itself.)
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Using the prescription (17), (18), (19) for evaluation of Sn one can establish the following:
For the class-D2 ROOF-walk assignment cj := 1/(2j − 1) we have sinc-sum evaluations

S1, S2, . . . , S7 = π,

whereas

S8 = π
467807924713440738696537864469

467807924720320453655260875000
, (20)

a striking result from earlier research; see [5], and note that the corresponding sinc-integrals In
will “track” the above Sn values—in fact the matching goes on up to surprisingly large n, as
we shall see. It will turn out for example that the origin density of the canonical ROOF walk
in question, after 8 jumps, has f8(0) = S8/(2π), i.e. a value just a touch below 1/2.

More closed forms based on the polylogarithm decomposition appear in our Appendix,
where also are found stultifying factorizations for some of the nontrivial multiples of π. For
example, the prime factorization of the “surprising” S8 above is

S8 = π
4322433877 · 108227896140339439297

23 · 312 · 56 · 77 · 116 · 136
.

7.3 Probabilistic approach for sinc-integrals

In regard to the connection between ROOF walks and sinc-integrals, there is an immediate
interdisciplinary observation of great utility:

Theorem 5 The sinc-integrals defined by (16) can be identified as

In = 2πfn(0),

where fn is the density function for n steps of the class-D2 ROOF walk having pedestal widths
2cj.

Proof: This is immediate from the characteristic relation (7). QED

This theorem connects the probabilistic notions with the theory of sinc-integrals, as exem-
plified in the following interpretation of the Mares integrals, named after B. Mares [3] [8]:

Corollary 2 Starting with the function

C(ω) :=
∞∏
j=1

cos

(
ω

j

)
,

the Mares integrals we hereby define

Mq :=

∫ ∞
0

C(ω) cos(2qω) dω
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have the probabilistic interpretation

Mq =
π

2
f(q),

where f is the ultimate density of the canonical (cj := 1/(2j − 1)) class-D2 ROOF walk. Thus
every Mq, q = 0, 1, 2, 3, . . . is positive, with particular bounds

M0 :=

∫ ∞
0

C(ω) dω <
π

4
,

M2 :=

∫ ∞
0

C(ω) cos(2ω) dω <
π

8
.

In addition, we have sum rules

M0 + 2M2 + 2M4 + · · · = π

4
,

M1 +M3 +M5 + · · · = π

8
,

and the overall sum rule ∑
q∈Z

Mq =
π

2
.

Proof: Reminding ourselves of the equivalence Theorem 1, we see from the very proof of said
theorem and the characteristic relation (6) that Mq = π

2
f(q). But by bounding Theorem 2,

we have f(0) < 1/2 and the result follows. For the second integral, the same argument goes
through involving Theorem 2 again, with M1 = π

2
f(1) < π

8
. Finally, the sum rules for the

Mares integrals Mq follow immediately from the probabilistic sum rules in Theorem 2. QED

Note that if desired, one may establish rigorous bounds for the Mares integrals, along the lines
of our Corollary 1. As for numerical estimates, our Appendix automatically has high-precision
evaluations for the Mares integrals, being as they are the given multiples of f values in Corollary
2.

The next observation is a powerful one appearing in various references such as [3] [5]. Our
present intent is to give this previously established result a probabilistic connection:

Theorem 6 For rational, monotonic decreasing cj, the sinc-integral defined in (16) is a ratio-
nal multiple of π—alternatively, the origin probability density fn(0) (= 1

2π
In) is rational—that

is

In := π
1

2n−1c1

Vol(W),

where W is the (n− 1)-dimensional polyhedron defined by the constraints

|c2z2 + . . . cnzn| ≤ c1, |zk| ≤ 1.

http://www.perfscipress.com/algorithmic-reflections-selected-works/


Also available in a new collection from PSIpress, Algorithmic reflections: Selected works 21

Proof: The theorem follows immediately from Theorem 5 and the convolution (8). QED

Evidently, then, In = π/c1 if the polyhedron under its defining constraints does not—to use
language from [8]—”bite into” the centered hypercube; however, when the constraint is “active”
we have a sudden reduction In < π/c1 and this explains some of the surprises in the realm of
sinc-integrals [3]. Note that this geometrical picture involving intersecting regions is consistent
with the constraints involved in our Theorem 2.

There is also a finite form available for sinc-integrals at a certain threshold, namely [8, Ex.
27, p. 123], this form being reminiscent of the finite form for sinc-sums, our prescription (17),
(18), (19). We cite this result in our probabilistic context:

Theorem 7 For a class-D2 ROOF walk, consider an index N such that

c2 + · · ·+ cN = c1 + δ

with 0 < δ ≤ cN . Then the probability density at the origin after N steps is

fN(0) =
1

2c1

(
1− δN−1

2N−2(N − 1)!
∏N

j=2 cj

)
.

Proof: We assume the validity of the published exercise, which starts with Bernoulli identities
of the type we used above for sinc-sums. Alternatively, one can prove the theorem directly, via
our relation (8) for class-D2 walks, on the notion that the “bite” of the polyhedron is relatively
trivial under the given δ-constraints. QED

An example of Theorem 7 in action is as follows. Note that for the canonical class-D2 ROOF
walk, it happens that

1

3
+

1

5
+ · · ·+ 1

15
≈ 1.0218,

so that we have

f8(0) =
1

2

(
1− 6879714958723010531

467807924720320453655260875000

)
=

1

2

467807924713440738696537864469

467807924720320453655260875000
,

which sure enough involves the same rational as did S8 in (20).
We next begin an analysis intended to rigorously compare sinc-sums and sinc-integrals.

7.4 Theory of sum-integral error terms ρn

An analysis of the sinc-sum-integral error terms starts with Poisson transformation. As in [10]
we can Poisson-transform the sum over k ∈ Z, as

Sn :=
∑
k∈Z

Π(n)(k) =
∑
µ∈Z

∫
ω∈R

Π(n)(ω)e2πiµω dω
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= In +
∑
µ 6=0

∫
ω∈R

Π(n)(ω)e2πiµω dω,

and so the desired error term is

ρn = 2
∞∑
µ=1

∫ ∞
−∞

Π(n)(ω)e2πiµω dω. (21)

This transformation algebra amounts to a proof of the following

Theorem 8 For a sinc-product Π(n)(ω) :=
∏n

j=1 sinc(cjω) where the cj are associated with a
class-D2 ROOF walk, the sinc-sum-integral error is given by

ρn := Sn − In = 4π
∑
µ≥1

fn(2πµ),

where fn is the density function for n steps of the ROOF walk.

This exact series representation for the error ρn leads, then, to a result known essentially to
previous authors; again we endeavor to cast a result in the language of our present framework:

Corollary 3 For the ROOF-walk cj of Theorem 8, the error ρn := Sn − In is never negative,
and is positive if and only if c1 + c2 + · · ·+ cn > 2π.

Proof: In Theorem 8, the constraint · · · > 2π determine whether there be any contributions
from f(2πµ) for positive integer µ. QED

When the converse constraint c1 + · · ·+ cn < 2π succeeds, ρn vanishes and In can be calculated
in finite form as an instance of Sn from (17); or conversely, Sn can be evaluated via an instance
of In per Theorem 6. In any case, Corollary 3 determines the precise threshold at which Sn, In
differ.

As an example, we finally have derived that for the canonical assignment cj := 1/(2j−1), the
errors ρn; n = 1, . . . 8 all valish, which means I8—remarkably enough—has the same peculiar
value as S8, in (20). It will turn out below that the index n must be taken much farther to
yield a nonzero ρn.

But in a different direction for the moment, we find that Theorem 8 has an interesting
implication regarding sum-integral identities that are always true:

Corollary 4 For a class-D2 ROOF walk with all rational cj, there is a sinc-sum/sinc-integral
relation that is true for all finite n = 1, 2, . . . , namely

Sn :=
∑
k∈Z

Π(n)(k) =

∫
ω∈R

Π(n)(ω)
sin(π(K + 1/2)ω)

sin(πω/2)
dω,

where we define the integer

K :=

⌊
c1 + · · ·+ cn

2π

⌋
.
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Remark: Note once again: If the cj sum is less than 2π, then K = 0 and we recover the
equality Sn = In, hence ρn = 0. Also, here and elsewhere we use rational cj simply to avoid the
sometimes delicate phenomenon that a sum of cj values actually equals a multiple of π. Still,
appropriate modifications of the analysis should be able to handle irrational cj.

Proof: This corollary follows from Theorem 8 and a trigonometric identity valid for any
nonnegative integer K:

K∑
µ=−K

e2πiµω =
sin(π(K + 1/2)ω)

sin(πω/2)
.

QED

One of the attractive results from [5] is that for the choice ck := 1/(2k−1), which assignment
we have associated with the canonical class-D2 ROOF walk, the error ρn := Sn − In has the
surprising property

ρ1, ρ2, . . . , ρ40249 = 0,

whereas
ρ40250 > 0.

(Note that in their work, the index n is offset by 1 with respect to our probability models.)
This phenomenon can be interpreted, via Corollary 3, as that of the sum

1

1
+

1

3
+ . . .

1

2N − 1
= 2π + δ

having
0 < δ < 1/(2N − 1)

precisely when N := 40250. That is, the sum through cn−1 does not quite reach the threshold
2π. To be clear with respect to our previous discussions about Sn and In, we remind ourselves
that even though ρn thus vanishes for thousands of low-lying n, we know that both Sn, In
fall below the value π at n = 8, because we have already given enough finite forms for some
low-lying Sn (and see Appendix for specifics).

To quantify the error ρn in such threshold cases, we establish

Theorem 9 Assume rational cj elements for a class-D2 ROOF walk, with c1 < 2π. Then there
always exists a unique threshold index N such that

c1 + c2 + · · ·+ cN = 2π + δ,

with 0 < δ < cN . Moreover, the exact sum-integral error at this threshold is

ρN := SN − IN =
πδN−1

2N−2(N − 1)!
∏N

j=1 cj
.
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Remark: Minuscule as this “threshold error” ρN can be experimentally, it is nevertheless a
rational polynomial in π.

Proof: The sum of the cj diverges for the ROOF walk, and monotonicity of the cj settles the
existence of the claimed δ and threshold N . From Theorem 8 and convolution (8), we therefore
have

ρN =
π

2N−2

∫
[−1,1]N

δ(c1z1 + c2z2 + · · ·+ cNzN − 2π) D~z,

that is, only the density terms fN(2π), fN(−2π) can possibly contribute to the error ρN . How-
ever, also because of the constraint δ < cN , the delta-function argument c1z1 + c2z2 + · · · +
cNzN − 2π cannot vanish if any zk be negative. Therefore we can change variables zk → 1− uk
and write

ρN =
π

2N−2

∫
[0,1]n

δ(c1u1 + c2u2 + · · ·+ cNuN − δ) D~u,

where the new domain is, importantly, [0, 1]N . Integrating over just u1 gives

ρN =
π

2N−2c1

∫
uj≥0; c2u2+···+cNuN<δ

du2 · · · duN .

This polyhedral integral is easily doable, yielding the desired formula of the theorem. QED

Now, in the canonical case (cj := 1/(2j − 1)) we obtain the surprising scenario of Baillie et
a;. [5], namely, with the aforementioned threshold N = 40250 we calculate

40250∑
j=1

1

2j − 1
= 2π + (δ = 0.000000234727 . . . ),

with δ < 1/(2 · 40251− 1). We already know that all errors ρ1, . . . , ρ40249 vanish. But Theorem
9 gives the sum-integral error at threshold, as

ρ40250 = S40250 − I40250 =
πδ40249

240248

80499 !!

40249 !

≈ 8.42 · 10−226577.

Here, !! means odd-factorial, as in 5!! := 5 · 3 · 1. This phenomenon tells us that sheer exper-
imental computation even in the region of 100000 decimal digits would not catch this kind of
“surprise!”

What can be said about an arbitrary error ρn in the canonical case? A summary result
follows immediately from the effective superexponential bound of Corollary 1, together with
Theorem 8, as
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Theorem 10 (Summary of the Baillie et al. error terms) For the canonical case (cj :=
1/(2j − 1)), the error ρn := Sn − In satisfies:

ρ1, . . . , ρ40249 = 0,

0 < ρ40250 < 10−226576,

and for all other n (including n =∞)

0 < ρn < 10−13679.

Remark: In spite of the rigor of these bounds, we do not know over what regions ρn might
be monotonic in n; neither do we know ρ∞ nor S∞ nor I∞.

7.5 A “primes” ROOF walk

For certain exotic ROOF walks, such as the class-D2 walk having cj := 1/pj where pj is the
j-th prime, the “surprise” effect is yet more striking. Note first that

∑
1/pj,

∑
1/p2

j diverges,
converges respectively, as is classically known, so class-D2 membership is assured. We may also
assign bj = 1/pj to get a class-D1 “primes” walk. For class D2 we can obtain a threshold error
that is remarkably small, as follows. With a view to Theorem 9, we require a threshold index
N—determining the prime pN—such that

1

2
+

1

3
+

1

5
+ · · ·+ 1

pN
= 2π + δ, (22)

with 0 < δ < 1/pN . An immediate question is, if we know N, pN , what is the threshold error
ρN from Theorem 9? Happily, there are known rigorous bounds on the n-th prime number;
said bounds having been developed in the classic work of Rosser and Schoenfeld [16], and more
recently by Dusart [13]. We know that for n ≥ 6,

n log n < pn < n log n+ n log log n, (23)

and also some bounds on the prime-counting function: For real x ≥ 599,

x

log x

(
1 +

0.992

log x

)
≤ π(x) ≤ x

log x

(
1 +

1.2762

log x

)
. (24)

The lower bound of (23) leads to

Theorem 11 For the “primes” ROOF walk threshold N described by (22), the Baillie–Borwein–
Borwein error satisfies

0 < ρN <
1

NN
.
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Proof: Clearly by direct computation, N ≥ 28. Since δ < 1/pN we have, from Theorem 9 and
the bounds (23),

ρN <
π · 2 · 3 · 5 · 7 · 11

(N logN)N−1

1

2N−2(N − 1)!

N∏
j=6

j(log j + log log j)

<
π · 2 · 3 · 5 · 7 · 11

(N logN)N−1

1

2N−2(N − 1)!

N !

5!
(logN + log logN)N−5.

The right-hand side is easily seen to be < 1/NN for N ≥ 28. QED

The problem now is to estimate N . Baillie et al. [5] estimated, on the basis of the Mertens
theorem ∑

p≤x

1

p
= log log x+B + o(1),

with B being the Mertens constant, that the threshold N and the prime pN are very large—in
fact, each turns out to well exceed a googol (10100), as we shall eventually prove. Incidentally,
B is resolvable to high precision, for example

B = 0.26149721284764278375542683860869585905156664826119920619206421392 . . .

accrues easily from an algorithm of E. Bach that, curiously enough, does not employ primes
directly, rather using Riemann-zeta evaluations at integers [12, Ex. 1.90].

Let us first approach this threshold problem on the assumption of the Riemann hypothesis
(RH), under which it is known that for x ≥ 13.5,∣∣∣∣∣∑

p≤x

1

p
− log log x−B

∣∣∣∣∣ < 3x+ 4

8π
√
x
,

and that the prime count π(x) is, for x ≥ 2.01, well approximated by the logarithmic integral
li, in the sense

|π(x)− li(x)| <
√
x log x.

These facts are found in [1, Equ. 7.1] and [12, Ex. 1.37], and all date back to the celebrated
work of Schoenfeld and Rosser. From these (RH-conditional) bounds, one can derive

2π + δ − log log pN −B ∈ [−ε, ε],

and so
ee

2π−B+δ−ε
< pN < ee

2π−B+δ+ε

,

where ε is certainly less then 10−50. It follows—again, under the RH—that at threshold, the
prime and index are bounded in the forms

pN ≈ 10179.05±0.01,
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N ≈ 10176.44±0.01.

These offsets ±0.01 are quite conservative, yet it follows from Theorem 11 that the Baillie–
Borwein–Borwein error has, again on the RH,

ρN < 10−10178 .

Let us endeavor, then, to make such arguments unconditional (independent of the RH), to
rigorously analyze this fascinating “primes” ROOF walk. We start with

Theorem 12 (Unconditional, no RH) There exist nonnegative, monotone-nonincreasing
sequences (c1, c2, . . . ), (d1, d2, . . . ), both converging to zero, such that for a fixed m the reciprocal-
prime sum is constrained for all n > m by

n∑
j=1

1

pj
− log log n ∈ [B − cm, B + dm].

In particular, for n > 3 · 108, the constraint interval can be taken to be [B − 0.047, B + 0.147],
while for n > 4.41 · 1016 we may use [B − 0.025, B + 0.093].

Remark: Even though the Mertens theorem standardly says
∑

p≤x 1/p− log log x−B = o(1),
i.e. the log log argument is the upper limit on primes and not their upper index, the notion
that both cm, dm → 0 is equivalent to said theorem, since log log(x := pn) − log log n = o(1).
Also, the present author conjectures that the cm can all be taken to be 0; equivalenetly, for
n > 1 the difference

∑
j≤n 1/pj − log log n is always ≥ B.

Proof: It is elementary that for h(x) positive, continuous, and monotone decreasing on [k, n],∫ n+1

k+1

h(x) dx ≤
n∑

j=k+1

h(j) ≤
∫ n

k

h(x) dx.

(This can be shown quickly by replacing h(j)→ h(bxc) in the summation, then converting to
an integral over h(bxc).) Take an integer k ∈ [6, n − 1]. The integral bounds can be applied
along with pn > n log n from (23), taking h(x) := 1/(x log x), to obtain

n∑
j=1

1

pj
≤ log log n+B + inf

k∈[6,n−1]

(
k∑
j=1

1

pj
− log log(k)−B

)
.

But we also have, using the other bound pn > n(log n+ log log n) from (23),

n∑
j=1

1

pj
≥ 1

2
+

1

3
+ · · ·+ 1

pk−1

+

∫ n+1

k

dx

x(log x+ log log x)
.
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Now we observe∫ b

a

dx

x(log x+ log log x)
=

∫ log b

log a

du(1 + 1/u)

u+ log u
−
∫ log b

log a

du

u(u+ log u)
.

It follows that

n∑
j=1

1

pj
≥ log log n+B + sup

k∈[6,n−1]

(
k−1∑
j=1

1

pj
− log(log k + log log k)− 1

log k
−B

)
.

Now, cm, dm for m ≥ 6 can simply be defined respectively as the infk∈[6,m]( ), supk∈[6,m]( ) above,
so the existence of properly monotonic cm, dm is established; the classical Mertens theorem says
cm, dm → 0. Taking k = m = 3·108 in the argments of the sup, inf terms, we can settle by direct
summation of 1/p the bounding interval [−0.047, 0.147]. Taking k = m corresponding to the
Bach–Sorenson prime pm = 1801241230056600523 (see text), we have from (24) the constraint
m = π(pm) ∈ [4.39 · 1016, 4.41 · 1016] and this, used in the sup, inf terms, is enough to achieve
the final explicit constraint interval of the theorem.

QED

These bounds on reciprocal-primes sums leads to a rigorous resolution of the threshold problem,
in the form

Corollary 5 (Unconditional) The threshold index N from (22) satisfies

10163 < N < 10184,

and hence, the Baillie–Borwein–Borwein error satisfies

ρN < 10−10165 .

Moreover, the “primes” ROOF walk has ultimate probability density decaying at least triply
superexponentially; indeed, for x ≥ 2,

0 < f(x) < e−e
2(x−1.36)ee

x−1.36

.

In particular,
0 < f(2π) < 10−1063 .

Thus, for any n exceeding the threshold N , we have

0 < ρn < 10−1062 .
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Remark: These results mean, unconditionally, that the threshold N exceeds a googol, and the
threshold error ρN is less than 1/googolplex.

Proof: The bound on N is an easy computation from Theorem 12 with its specific interval
[B − 0.025, B + 0.093]; we have

ee
2π−B+0.0251

> N > ee
2π−B−0.093

.

Then the bound on ρN follows from Theorem 11. The bound on f(x) is a consequence of
Corollary 1, with the assignment

m :=
⌊
ee
x−1−B−0.093

⌋
,

the only extra bound needed being

∞∑
j=m

1

p2
j

<
1

(m− 1) log2m
,

as follows from the lower bound on pj from (23). The last bound on ρ(n>N) follows from
Theorem 8.

QED

Incidentally, the situation in regard to exact knowledge of reciprocal-prime sums is not
infinitely hopeless. Recently, E. Bach and J. Sorenson [1] devised a clever scheme for assessing
the threshold index m for such as

1

2
+

1

3
+

1

5
+ · · ·+ 1

pm
= 4 + δ,

with δ < 1/pm, where one notes here a change of our previous threshold 2π → threshold 4.
They found the precise threshold prime as

pm = 1801241230056600523,

for which those authors derived

m∑
j=1

1

pj
≈ 4.00000000000000000021,

as we used in the computations for the proof of our Theorem 12 above. The authors of [1]
did not need to determine the exact m for their purposes, although they could have. This is
why we used for our Theorem 12 the unconditional bounds (24) on π(x) to sufficiently closely
estimate the index m.
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Can the Baillie–Borwein–Borwein threshold be assessed by sieving, then? The authors of
[1] do say:

“We note that [the threshold prime for reciprocal-prime sum > 5] is about 4.2 · 1049, so its
precise value may remain unknown for all eternity.”

Those authors are, of course, referring to the shortcomings of prevailing sieve methods and ma-
chinery in 50-digit regions. This having been said, the notion of locating the explicit threshold
for
∑

1/p > 2π, as is fundamental to the theory of the “primes” ROOF walk, looms even more
stultifying.

Figure 3: Probability density for a “primes” ROOF walk. On its n-th step the walker jumps
uniformly an increment [−1/pn, 1/pn] where pn is the n-th prime number. The upper-left plot
is the density f1, the lower-left is f2. (The x-axis is compressed; the initial density f1 is positive
on x ∈ [−1/2, 1/2].) The lower-right plot is for f := f∞, the everywhere-positive, ultimate
density for this walk. The decay of f is triply superexponential; for example, we prove that
f(2π) < 1/ exp(exp(exp(4.99))) (Corollary 5).
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8 Open problems

• What is an exact evaluation of the discrepancy 1/2− f(0) for the canonical (or for that
matter, any!) class-D2 walk? (In the canonical case, an equivalent question is, what is
the Mares integral M0 in closed form?) Is the situation—that we do not know any closed
forms for a single f(x)–for class-D1 walks—just as dificult?

• What can be said about the class-D2 walk with cn = 1/n? In the present paper this
particular “fuel assignment” was not touched upon at all. There could—or could not—be
a trivial scaling to analyze this walk in previous terms.

• It is possible to calculate higher moments of ROOF walks. For example, the canonical
class-D1 walk (bn := 1/(2n) is the jump length) has, as we know, 〈x2

∞〉 = 1
4
ζ(2). It can be

derived [15] that 〈x4
∞〉 = 3

4
ζ(2)2 − 1

8
ζ(4), and so on. The question is, how can knowledge

of the structure of f(x) accrue from, say, the knowledge of many such moments?

• We advise that ROOF walks outside class D, e.g. walks with converging sum
∑
〈|∆j|〉,

are difficult to analyze and many mysteries abound. Though our example walk with ∆n =
±1/2n was easy, intuitive, a walk with ∆n = ±1/3n is already intricate, conjuring up such
entities as the Cantor set of fractional dimension and evidently intractable characteristic.
The references [17] [15] discuss some open problems for such ROOF classes.

• When is a class-D1 walk equivalent to a class-D2 walk, in the sense of the two walks’
ultimate density functions coinciding at all x? Equivalence does hold if for every positive
integer n we have ∑

j≥1

c2n
j = (4n − 1)

∑
j≥1

b2n
j ,

as is certainly true for our canonical cases cj := 1/(2j − 1), bj := 1/(2j).

• Presumably there is a ROOF walk of class D having quadruply superexponential decay—so
how does one develop a theory of ROOF walks that have arbitrary, cascaded superexpo-
nential bounds?

• One aspect of density-function dynamics we have not addressed at all is diffusion theory.
Heuristically, for the canonical class-D1 ROOF walk, having bn := 1/(2n), we might
approximate

fn(x) ≈ 1

2
fn−1(x− 1/(2n)) +

1

2
fn−1(x+ 1/(2n)).

This leads to the heuristic differential equation (setting n := t, a “time”):

∂f

∂t
=

1

8t2
∂2f

∂x2
.
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An exact solution is

f(x, t) =
1√

a− 1/t
e−2x2/(a−1/t),

for constant a. But this suggests a limiting Gaussian distribution as t → ∞, which we
know to be incorrect (the true f(x,∞) decays superexponentially in x, after all). Perhaps
this exact solution should be used as a propagation kernel, connecting successive finite t
values.

• What is the “natural” quantum potential V (x) such that the canonical class-D2 density
f(x) is the Schrödinger ground state of V ? We demand that the Schrödinger equation
holds, i.e.

−d
2f

dx2
+ V f = E0f,

where the energy scale is set by V (0) := 0. This means that the potential V is given
explicitly by

V (x) = E0 +
f ′′(x)

f(x)
,

with eigenvalue E0 = −f ′′(0)/f(0). This appears to be a difficult problem. What we can
say is that this “natural” energy E0 is given by

E0 =
4

M0

∫ ∞
0

ω2C(ω) dω,

where C is the Mares kernel as in Corollary 2. D. Bailey [2] has calculated this funda-
mental quantum energy as

E0 ≈ 0.01399035911714773451134657528322775954387866101090634135035.

(Actually, Bailey can obtain hundreds of digits beyond this.) Also of interest: The graph
of V (x) apparently itself has zero-crossings.

• How would one develop a physics theory of a fundamental ROOF particle—say in a
full, 3-dimensional setting—that, upon photon-energy absorption, dissipates the absorbed
energy in the style of a ROOF walk, thus ending up at a probabilistic position?

9 Appendix

For the numerical and symbolic results herein, we adopt the canonical prescription

π(n)(ω) :=
n∏
j=1

sinc

(
ω

2j − 1

)
,
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and define the sinc-sums and sinc-integrals, respectively:

Sn :=
∑
k∈Z

π(n)(k), In :=

∫
ω∈R

π(n)(ω) dω.

9.1 Exact sinc-sums

We recall that for the canonical assignments cj := 1/(2j − 1) the sinc sums are

S1, S2, ..., S7 = π.

Use of relations (17), (18), (19) give the following, for n ∈ [8, 16] in the form

Sn
π

=
num

den
,

where num, den are integers—and the prime factorization of num is given when known. We
observe that separately interesting is the factorization of the numerator of 1− num/den; we do
not report these herein, although we do caution researchers that the first few such factorizations
are trivial—and that triviality is misleading. (We do give one instance of factorization of
1− num/den, for the last example n = 16 below.)

S8/π =
467807924713440738696537864469

467807924720320453655260875000
,

num = 4322433877 · 108227896140339439297.

S9/π =
17708695183056190642497315530628422295569865119

17708695394150597647449176493763755467520000000
,

num is prime.

S10/π =
8096799621940897567828686854312535486311061114550605367511653

8096800377970649960875919032857634716820075076062381575000000
,

num = 109 · 307 · 241962753546929371778641689457386829821326871904808456131,

S11/π =
2051563935160591194337436768610392837217226815379395891838337765936509

2051564503724359411435325207087513361930253427318374450656960000000000
,

num = 5167 · 397051274464987651313612689880083769540783204060266284466486891027.
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S12/π = 37193167701690492344448194533283488902041049236760438

302965167901187323851384840067287863

/

37193188390019359679267753038304609065247968318560293442237

453760993482625662395625000000,

num = 457 · 704477 · 423614372509 · 4481160013802705926237·

60858187091174596111127755006778790325196275699.

S13/π = 543110896461169846307682746504491201561304453085191

9375146717905359757626631320494345073453990439959820124079

/

5431113911376064346013898379192680475298012990888015359

173701456675706968166358939600745000000000000000000000,

num is composite.

S14/π = 9366857936825477002290153827767926294101436803025549111

419906759022132314440122224808071752786767054588693413527429468069

/

93668702988747470522353716916858309344196014509267648553881576518

61384159096513425566936779901793136947631835937500000000,

num is composite.

S15/π = 1106582751656712690705396324011154259207526438324181587

1175360598932707646475545146809143069869689811730022358993

095681649696986439478753395458751047887537

/

1106584704540421452539632837696465219054283911745133113615

555073406768770441455630777503276489200691675415901830608
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3163567786135133750000000000000000000000,

num = 313 · 1031 · 2903 · 5569 · 482011381136627·

49022141298582194203 · 15265526308002685361·

248354591081554756028581364947·

23676804871341396440001782199839412040105062573952696269811.

S16/π = 1028857424145516197573669059438287196204625399240253519

7816517848763998706942245397899741082721890416148925398988

8708350661660077440524186385916602375910630200453822268852

643263934963

/

10288597198853770766051905974175726554827930036088790172

46869000333362583611156571323372752785299454209591370945

435907838981606429475270406888624733780606156179428100

58593750000000000,

num is composite.

For S16/π above, the factorization of the numerator of 1− num/den is

449 · 20310271 · 47617241426617180429 · P,

where P is prime. It does appear that factoring 1− num/den is generally easier than factoring
num/den (see Theorem 7 for hints in such a direction), but this ease may well vanish for large
n.
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9.2 D. Bailey’s calculations and probability densities

D. Bailey’s computed values [2] [8, p. 101] [3, p. 220] for the Mares integrals Mq (see our
Corollary 2) are as follows:

M0 = 0.78538055729863287349258301146733252476165283080347360800414

691769933523547905214760366208536560250650904570919783495931746316003603427665

465579307047831741121973530229110127585230476680962482126986674840744837467789

119299765689060387992411930041173474412134025183504312067531232751845115941662

632805150039797969274686767754964900877151205004741175153742608608643414127346

234020343290485670236529812078685498482364545707186872838942078147303025440518

515375759834490183474894245260192233482609683185 ...

M1 = 0.39269908169872415480783042290993786052464543418723159592681

228516209324713993854617901651274745536677750739557312389840358202715485688760

936509341934448986921345247454887633321939927480869776614285612056018616627483

409218692277622673687237679213072113312270198904062690726232070655634843283152

846783573233898059471104157139597962969898069792545071045085979676550955539886

651698821686714081774640884165053767665111199338842259445367394476127437532497

167621503652055131153493810442925133590321031422...,

M2 = 8.8030494077180615389171762715981438197595201514236197946151

888094330462500510266733104849633802432456562152428086721551505581766844516377

733907769014340714178616921916772120425721730562087313643713498771846192960842

672310107272833858360086943712711454007395150220159691346672674486211992179786

334653743859794160145405366702241344870916181373869997979606515612997763140147

748848631661958306141431565524248978228695038873369074164189398631810635002356

614877948480011522239215564331511436166575... * 10^(-6),

M3 = 7.4073465663169505578887638380364583757864948784042030926672

026111524103638992730470342133693516960057650667157027046783303828886598191879

568076917085322344162499341520568340758857913667980248647551886676951751008336

887639191666904447012447032576807600267482348323439523107840695046421048542137

295883601371009512677702949186091745208557009830587755124628010952859448214460

795560571392881099879681519976281484683309276097479238438404761466136006758906

25622...* 10^(-43),

M4 = 1.4254869538660011054011962115777747557010022304590327341768

171385742382197942574762915224148607435095431482216254593190009582987372569676

75105280447773922905712332170849356078030552...* 10^(-319).
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Numerical values for f(q) = (2/π)Mq follow. To get the data below, we used our relation
(14) with the (naive—see text) choice m(ω) := 100 and L = 128, the latter counting the degree
to which the log-sin series is taken. (Note these next values are radically less precise than
D. Bailey’s equivalent values above; we cite the values below just to indicate what happens
with given m,L parameters in the alternative, log-sin method of the text.)

f(0) = 0.49998879160937983591179672655936274390974036542331027985

12165103759527779130761632750121865916814102713490742096739287915...

f(1) = 0.2499999999999999999999999999999999999999995284336715103517

6566288447952278896539736624087359644335652108526603810367036228395181...

f(2) = 5.60419531008204410163672031862804512981728834486007439174481

2023611043461918362493906704159294864325462895163035604211685... * 10^(-6)

f(3) = 4.715663284896482343371155204772110346026337591264035566434

789147339618963296377160... * 10^(-43).

As for the integrity of all the above data,

• All the approximations (f(0), f(1), f(2), f(3)) above are consistent with D. Bailey’s values
for the corresponding Mares integrals, to the displayed precision(s). We remind ourselves
that D. Bailey’s method is somewhat different—he used the original, log-cos scheme, with
more powerful routines and machinery to get his extreme-precision values.

• D. Bailey’s values above actually imply (recall Mares-integral/probability-density equiv-
alence)

0 <
1

2
− f(0)− 2f(2)− 2f(4) < 10−500,

0 <
1

4
− f(1)− f(3) < 10−500,

all consistent with the sum rules in Theorem 2 and Corollary 2.

• Values for f(5) and beyond have been quite difficult to obtain, and in view of the su-
perexponential decay of f that we have proven, this difficulty makes sense. After all, we
know as in-text that f(2π) < 10−13680. Even with f(5), it is not so much the computa-
tional complexity as the severe dynamic range of terms that hampers us. So we are still
without a reasonably precise value for f(5) and beyond. We do know from Corollary 1
that f(5) < 10−1000, and D. Bailey has already inferred f(5) < 10−500 numerically.
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• It is fascinating that modern experimental mathematics still has not achieved a closed
form for the canonical probability density f(0) = (2/π)M0. The continued fraction dis-
played below shows at least that f(0) is quite close to 1/2, and is calculated from D. Bai-
ley’s extreme-precision value above for M0:

{0, 2, 22304, 4, 1, 1, 2, 1, 25, 6, 9, 1, 1, 1, 2, 1, 2, 34, 4, 10, 29, 9, 1,

33, 1, 2, 1, 1, 6, 1, 2, 9, 21, 1, 12, 1, 6, 1, 9, 14, 9, 8, 5, 7, 1, 2, 27,

2, 1, 14, 5, 2, 1, 3, 1, 1, 1, 1, 5, 30, 2, 1, 1, 2, 2, 96, 1, 1, 12, 5, 1,

2, 3, 2, 2, 2, 1, 18, 7, 4, 1, 2, 1, 15, 1, 1, 2, 41, 1, 1, 17, 1, 35, 1,

307, 18, 14, 1, 134, 1, 13, 12, 1, 3, 33, 2, 1, 11, 1, 7, 5, 2, 1, 1, 19, 2,

27, 88, 11, 1, 7, 1, 1, 4, 11, 1, 2, 8, 1, 1, 2, 1, 1, 5, 1, 1, 1, 1, 17, 55,

1, 4, 2, 4, 3, 1, 1, 1, 1, 3, 5, 2, 88, 44, 53, 2, 7, 1, 2, 7, 4, 1, 1, 1,

33, 2, 1, 31, 6, 1, 1, 1, 4, 348, 3, 1, 1, 33, 1, 8, 1, 1, 5, 1, 79, 2, 7, 2,

1, 1, 2, 31, 1, 1, 9, 1, 3, 3, 2, 3, 5, 1, 1, 2, 2, 1, 2, 8, 2, 1, 1, 1, 1,

474, 29, 3, 1, 1, 4, 15, 1, 12, 1, 3, 1, 6, 1, 19, 1, 1, 1, 1, 1, 114, 1, 1,

2, 5, 2, 2, 2, 1, 9, 1, 12, 2, 1, 2, 3, 4, 1, 1, 2, 4, 1, 1, 2, 3, 1, 3, 3,

50, 1, 3, 9, 9, 1, 1, 1, 1, 2, 1, 5, 1, 1, 3, 1, 3, 1, 1, 1, 1, 1, 6, 2, 1,

1, 6, 1, 1, 1, 5, 1, 1, 1, 3, 1, 10, 7, 1, 1, 1, 1, 21, 1, 3, 4, 3, 1, 1, 5,

1, 18, 1, 3, 3, 1, 1, 30, 4, 1, 1, 8, 1, 1, 4, 1, 2, 1, 2, 6, 1, 1, 88, 5, 1,

1, 2, 3, 3, 4, 3, 1, 22, 6, 2, 1, 45, 1, 1, 27, 2, 1, 8, 3, 2, 1, 6, 3, 1, 1,

2, 1, 6, 1, 1, 3, 1, 1, 1, 3, 3, 4, 1, 2, 1, 21, 1, 1, 2, 1, 4, 1, 1, 511, 1,

1, 15, 4, 12, 1, 235, 4, 2, 10, 4, 1, 4, 12, 16, 7, 1, 1, 1, 3, 1, 1, 17, 1,

1, 1, 2, 6, 1, 4, 1, 6, 1, 3, 3, 2, 1, 2, 13, 1, 2, 1, 1, 1, 4, 5, 1, 1, 3,

1, 1, 4, 1, 2, 20, 897, 4, 4, 2, 13, 3, 13, 7, 52, 1, 1, 1, 1, 1, 1, 5, 2, 3,

1, ...}
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