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With our relativistic equations of motion, we can study the solutions for x(t)
under a variety of different forces. The hallmark of a relativistic solution, as
compared with a classical one, is the bound on velocity for massive particles.
We shall see this in the context of a constant force, a spring force, and a
one-dimensional Coulomb force.

This tour of potential interactions leads us to the question of what types of
force are even allowed – we will see changes in the dynamics of a particle, but
what about the relativistic viability of the mechanism causing the forces?
A real spring, for example, would break long before a mass on the end of it
was accelerated to speeds nearing c. So we are thinking of the spring force,
for example, as an approximation to a well in a more realistic potential.
To the extent that effective potentials are uninteresting (or even allowed in
general), we really only have one classical, relativistic force – the Lorentz
force of electrodynamics.

11.1 Free Particle Motion

For the equations of motion in proper time parametrization, we have

ẍµ = 0 −→ xµ = Aµ τ +Bµ. (11.1)

Suppose we rewrite this solution in terms of t – inverting the x0 = c t
equation with the initial conditions that t(τ = 0) = 0, we have

τ =
c t

A0
(11.2)

and then the rest of the equations read:

x = A1 c t

A0
+B1 y = A2 c t

A0
+B2 z = A3 c t

A0
+B3, (11.3)

1 of 8



11.2. MOTION UNDER A CONSTANT FORCE Lecture 11

and we can identify the velocities:

vx =
A1 c

A0
vy =

A2 c

A0
vz =

A3 c

A0
. (11.4)

Remember that we always have the constraint that defines proper time:

dt

dτ
=

1√
1− v2

c2

(11.5)

and this can be used to relate A0 to the rest of the constants:

A0 =
c√

1− v2

c2

. (11.6)

The “lab” measurements, which proceed with a clock reading coordinate
time, give back constant velocity motion with velocity v and we pick up a
relation between the coordinate time and the proper time of the particle (in
its own rest frame).

11.2 Motion under a Constant Force

Constant force, according to Newton’s second law, is one for which dp
dt = F

with constant F . In one spatial dimension, we can describe relativistic
constant forcing by interpreting p as the spatial, relativistic momentum, i.e.
p = mv√

1−v2/c2
. From this point of view, the solution is straightforward – to

avoid confusion, let v(t) = x′(t) ≡ dx(t)
dt , then

d

dt

(
mx′(t)√

1− x′(t)2/c2

)
= F −→ x′(t) =

F t

m
√

1 + F 2 t2

m2 c2

(11.7)

which can be integrated again – if we set x(t = 0) = 0, then

x(t) =
mc2

F

√1 +
(
F t

mc

)2

− 1

 , (11.8)

the usual hyperbolic motion.
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If we start with the relativistic free particle Lagrangian in proper time
parametrization, L = −mc

√
−ẋµ ηµν ẋν , then we’d like to add a “poten-

tial” that gives us the constant force case. We know such a potential will
be . . . strange – after all, it must be a scalar, meaning here that it will
have to be constructed out of vectors (specifically, combinations of xµ(τ)
and its τ derivatives). In this two-dimensional setting, about the only thing
that suggests itself is the cross product of xµ and ẋµ. As we shall see, the
Lagrangian:

L = −mc
√
−ẋµ ηµν ẋν +

1
2
F

c
εµν ẋ

µ xν (11.9)

corresponds to the constant force as defined above. Let’s work out the
equations of motion – written out, the Lagrangian is

L = −mc
√
c2 ṫ2 − ẋ2 + F (x ṫ− t ẋ). (11.10)

Remember, from the definition of proper time, we have c2 = c2 ṫ2−ẋ2, which
we can solve for ẋ, for example – then

ẋ = c
√
ṫ2 − 1 ẍ =

c ṫ ẗ√
ṫ2 − 1

. (11.11)

Using the proper time relation, we get equations of motion as follows:

d

dτ

∂L

∂ṫ
− ∂L

∂t
= 0 −→ mc ẗ =

F

c
ẋ

d

dτ

∂L

∂ẋ
− ∂L

∂x
= 0 −→ mẍ = F ṫ.

(11.12)

Upon introducing the equalities (11.11), these degenerate to the single equa-
tion:

ẗ =
F

mc

√
ṫ2 − 1 (11.13)

with solution:

t(τ) = α+
mc

F

(
cosh(β) sinh

(
F τ

mc

)
+ sinh(β) cosh

(
F τ

mc

))
, (11.14)

setting α = β = 0 (our choice) to get t(τ = 0) = 0, we have

t(τ) =
mc

F
sinh

(
F τ

mc

)
−→ τ(t) =

mc

F
sinh−1

(
F t

mc

)
. (11.15)
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Meanwhile, we can solve ẋ from (11.11):

x(τ) = α+
mc2

F
cosh

(
F τ

mc

)
, (11.16)

this is the spatial coordinate in proper time parametrization – to find x(t),
we can use the inverse relation τ(t) and just replace:

x(t) = α+
mc2

F

√
1 +

F 2 t2

m2 c2
(11.17)

and our lone integration constant α can be used to set x(t = 0) = 0, the
physical boundary condition. When all is said and done, we recover (11.8).

11.3 Motion Under Hookean Potential

We can also consider a relativistic spring – here the difficulty is that for
an arbitrary displacement, the maximum velocity can be arbitrarily large
classically. We expect our relativistic mechanics to take care of this, pro-
viding a maximum speed < c. This time, we will start from the relativistic
Lagrangian written in coordinate time parametrization:

L = −mc2
√

1− x′(t)2

c2
− 1

2
k x(t)2 (11.18)

and the potential is the usual one with spring constant k. As a check, this
gives the correct Newton’s second law form upon variation:

d

dt

∂L

∂x′(t)
− ∂L

∂x(t)
= 0 −→ d

dt

 mx′(t)√
1− x′(t)2

c2

 = −k x(t). (11.19)

We could integrate this directly (not easy). Instead, we can use the Hamil-
tonian associated with L:

H =
∂L

∂x′(t)
x′(t)− L =

mx′(t)2√
1− x′(t)2

c2

−

(
−mc2

√
1− x′(t)2

c2
− 1

2
k x(t)2

)

=
mc2√

1− x′(t)2

c2

+
1
2
k x(t)2,

(11.20)
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no surprise. But it does tell us that numerically, this particular combination
is a constant, we’ll call it the total energy (notice that it contains the rest
energy as well as the kinetic and potential energies). Setting H = E gives
us a first integral of the motion, and we could solve it1 – instead, we can
take the total time derivative to recover a second order ODE analagous to
the equation of motion itself:

mx′′(t)(
1− x′(t)2

c2

)3/2
= −k x(t). (11.21)

From here, it is easiest to find the solution numerically – we’ll use initial
conditions x(t = 0) = x0, x′(t = 0) = 0, so we’re starting at maximum am-
plitude, then the position and velocity for a few different starting locations
are shown in Figure 11.1 and Figure 11.2. Notice that the “low-velocity”
case, corresponding to the smallest starting position looks effectively just
like a classical spring, both in position and velocity. As the initial ampli-
tude is increased, the solution for x(t) begins to look more like a sawtooth
as the velocity turns into a step function close to c.

 

4 8 12 16 20x0 = .5

x0 = 1

x0 = 2

x0 = 4
x(t)

t

−2

−4

Figure 11.1: Position for a relativistic spring (this is the result of numerical
integration, with k = 1, c = 1 and x0 shown).

1To get the asymptotic behavior, solve H = E for v in terms of x and send E →∞ –
the relation you will recover is v = ±c, i.e. the sawtooth motion is predictable from the
Hamiltonian
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Figure 11.2: Velocity for the relativistic spring potential (here, k = 1, c = 1,
and we start at a variety of maximum amplitudes as shown).

11.4 Infall

Consider the one-dimensional infall problem for a test charge moving under
the Coulomb field coming from a point charge at the origin. The total energy
of the test charge is

E =
1
2
mẋ2 − q2

x
. (11.22)

If we start a particle from rest at spatial infinity at time t = −∞, then the
energy is E = 0, and this is conserved along the trajectory. We can easily
solve the above with E = 0 and integration constant written in terms of t∗,
the time it takes to reach the origin (starting from t = 0):

x(t) =
(

3
2

)2/3
(√

2
m
q (t∗ − t)

)2/3

. (11.23)

The problem, as always, with this classical solution is that the velocity grows
arbitrarily large as t −→ t∗:

v(t) =
dx

dt
∼ (t∗ − t)−1/3, (11.24)

allowing the test particle to move faster than light.

Once again, the relativistic Lagrangian, written in temporal parametriza-
tion, provides dynamics with a cut-off velocity. The relativistic Hamiltonian
(total energy) reads

E =
mc2√

1− x′(t)2

c2

− q2

x
. (11.25)
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Now for a particle starting at rest at spatial infinity, we have E = mc2, not
the classical zero. Once again, we can solve the above with E = mc2 to get
the dynamics, The full form of the solution is not particularly enlightening
– what is important, and different from the classical case, is the behavior of
the velocity at t∗: For our relativistic solution, the velocity at the origin is
−c. In Figure 11.3, we have the relativistic (black lines) and classical (blue
lines) position and velocities for the same t∗.

 

0 .2 .4 .6 .8 1

t (in units of t∗)

0 .2 .4 .6 .8 1
t (in units of t∗)

-c

-2 c

v(t)x(t)

Figure 11.3: Position (left) and velocity (right) for t = 0 → t∗ for classical
(blue) and relativistic (black) infall trajectories.

11.5 From Whence, The Force?

We have just covered some of the canonical set of forces that can be studied
in relatively closed form relativistically. But more than that, there is the
question of what forces are even consistent with special relativity, let alone
nicely solvable. Thus begins our journey – the only force entirely in accord
with the demands of special relativity is the Lorentz force of electrodynam-
ics. As the theory which, to a certain extent, inspired Einstein towards a
spacetime view, it is not surprising that the Lorentz force is the one (and
only, on the classical side) that provides a consistent description.

There are two immediate requirements for special relativity when it comes
to a force associated with a field theory. The first is that the force be
robust enough to offer the same prediction in two different inertial frames.
The second (related) is that the mediator of the force (to wit: the field)
respond to changes in its source with finite propagation speed (a causality
issue). These are just rewrites of the usual two postulate approach to special
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relativity – equivalence of inertial frames and finite information propagation.

This is the source of the original issue that would appear to be at the heart
of this course: General relativity is a theory of gravity. What’s wrong with
the Newtonian theory? As we shall see next time, Newtonian gravity fails
both postulates of special relativity. Given the success of electrodynamics
(passes both), it is tempting to construct an analagous gravitational theory,
and such a linear vector theory is successful up to a point, but cannot address
the unique qualities of gravity as an observational phenomenon: Everything
is influenced by gravity, and the gravitational “force” between two objects
is attractive (only one flavor of “charge”).
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