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For the harmonic oscillator potential in the time-independent Schrödinger
equation:

1
2m

(
−~2 d

2ψ(x)
dx2

+m2 ω2 x2 ψ(x)
)

= E ψ(x), (8.1)

we found a ground state

ψ0(x) = Ae−
mω x2

2 ~ (8.2)

with energy E0 = 1
2 ~ω. Using the raising and lowering operators

a+ =
1√

2 ~mω
(−i p+mω x)

a− =
1√

2 ~mω
(i p+mω x),

(8.3)

we found we could construct additional solutions with increasing energy
using a+, and we could take a state at a particular energy E and construct
solutions with lower energy using a−. The existence of a minimum energy
state ensured that no solutions could have negative energy and was used to
define ψ0

1:

a− ψ0 = 0 H (an+ψ0) =
(

1
2

+ n

)
~ω an+ ψ0. (8.4)

The operators a+ and a− are Hermitian conjugates of one another – for any
1I am leaving the “hats” off, from here on – we understand that H represents a differ-

ential operator given by H
`
x, ~

i
∂
∂x

´
for a classical Hamiltonian.
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8.1. NORMALIZATION Lecture 8

f(x) and g(x) (vanishing at spatial infinity), the inner product:∫ ∞
−∞

f(x)∗ a± g(x) dx =
∫ ∞
−∞

f(x)∗
(
∓~

∂g(x)
∂x

+mω xg(x)
)
dx

=
∫ ∞
−∞

(
±~

∂f(x)∗

∂x
g(x) + f(x)∗mω xg(x)

)
dx

=
∫ ∞
−∞

(a∓ f(x))∗ g(x) dx,

(8.5)
(integration by parts) or, in words, we can “act on g(x) with a± or act on
f(x) with a∓” in the inner product.

8.1 Normalization

The state ψn that comes from n applications of an+ is not normalized, nor
does the eigenvalue form of the time-independent Schrödinger equation de-
mand that it be. Normalization is the manifestation of our probabilistic
interpretation of |Ψ(x, t)|2. Consider the ground state, that has an undeter-
mined constant A. If we want |Ψ(x, t)|2 to represent a probability density,
then ∫ ∞

−∞
A2 e−

mω x2

~ dx = 1, (8.6)

and the left-hand side is a Gaussian integral:∫ ∞
−∞

A2 e−
mω x2

~ dx = A2

√
π ~
mω

, (8.7)

so the normalization is A =
(
mω
π ~
)1/4. Just because we have normalized the

ground state does not mean that ψ1 ∼ a+ψ0(x) is normalized. Indeed, we
have to normalize each of the ψn(x) separately. Fortunately, this can be
done once (and for all).

Suppose we have a normalized set of ψn, i.e.
∫∞
−∞ ψ

2
n dx = 1 for all n = 0 −→

∞. We know that ψn±1 = α± a±ψn where the goal is to find the constants
α± associated with raising and lowering while keeping the wavefunctions
normalized. Take the norm of the resulting raised or lowered state:∫ ∞

−∞
|ψn±1|2 dx = α2

±

∫ ∞
−∞

(a± ψn(x))∗ (a± ψn(x)) dx

= α2
±

∫ ∞
−∞

(a∓ a± ψn(x))∗ ψn(x) dx,
(8.8)
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8.2. ORTHONORMALITY Lecture 8

and the operator a∓ a± is related to the Hamiltonian, as we saw last time:
H = ~ω

(
a± a∓ ± 1

2

)
. Then

a∓ a± ψn =
(
H

~ω
± 1

2

)
ψn =

(
1
2

+ n± 1
2

)
ψn, (8.9)

so (8.8) becomes

α2
±

∫ ∞
−∞

(a∓ a± ψn(x))∗ ψn(x) dx = α2
±

(
1
2

+ n± 1
2

) ∫ ∞
−∞
|ψn(x)|2 dx.

(8.10)
The integral

∫∞
−∞ |ψn(x)|2dx = 1 by assumption, so we have

α+ =
1√
n+ 1

α− =
1√
n
, (8.11)

and our final relation is

ψn+1 =
1√
n+ 1

a+ ψn ψn−1 =
1√
n
a− ψn. (8.12)

Starting from the ground state, for which we know the normalization,

ψ1 = a+ψ0

ψ2 =
1√
2
a+ψ1 =

1√
1× 2

a2
+ ψ0

ψ3 =
1√
3
a+ψ2 =

1√
1× 2× 3

a3
+ ψ0.

(8.13)

The general case is

ψn =
1√
n!
an+ ψ0 (8.14)

for the appropriately normalized ψ0,

ψ0(x) =
(mω

π ~

)1/4
e−

mω x2

2 ~ . (8.15)

8.2 Orthonormality

The states described by ψn are complete (we assume) and orthonormal –
take our usual inner product for ψm and ψn:

ψn · ψm =
∫ ∞
−∞

ψn(x)∗ ψm(x) dx =
1√
m!

1√
n!

∫
−∞

(an+ψ0)∗ (am+ψ0) dx.

(8.16)
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8.2. ORTHONORMALITY Lecture 8

Now, suppose m > n, then using the fact that a+ and a− are Hermitian
conjugates, we can flip the am+ onto the other term:

1√
m!

1√
n!

∫
−∞

(an+ψ0)∗ (am+ψ0) dx =
1√
m!

1√
n!

∫
−∞

(am−a
n
+ψ0)∗ (ψ0) dx,

(8.17)
and we know that an+ ψ0 ∼ ψn and am− ψn ∼ ψn−m – but for m > n, we
have am−n− ψ0 = 0, the defining property of the ground state. In the case
n > m, we just use the conjugate in the other direction, and make the same
argument:

1√
m!

1√
n!

∫
−∞

(an+ψ0)∗ (am+ψ0) dx =
1√
m!

1√
n!

∫
−∞

(ψ0)∗ (an−a
m
+ψ0) dx = 0.

(8.18)
Only when m = n will we get a non-zero result, and of course,

∫∞
−∞ ψ

2
m dx =

1 by construction. So ∫ ∞
−∞

ψn(x)∗ ψm(x) dx = δmn. (8.19)

8.2.1 Hermite Polynomials

The prescription for generating ψn does not provide a particularly easy way
to obtain the functional form for an arbitrary n – we have to repeatedly apply
the raising operator to the ground state. There is a connection between the
Hermite polynomials and our procedure of “lifting up” the ground state.
Using the Frobenius method, it is possible to solve Schrödinger’s equation
as a power series expansion (described in Griffiths), and we won’t re-live
that argument. But it is important to understand the connection between
the algebraic, operational approach and the brute force series expansion.

Starting from the ground state, let’s act with a+ (call the normalization
constant A again, just to make the expressions more compact):

ψ1 = a+ ψ0 =
1√

2mω ~

(
−~

∂

∂x
+mω x

)(
Ae−

mω x2

2 ~

)
=

A√
2

(
2
√
mω

~
x

)
e−

mω x2

2 ~ .

(8.20)
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Consider the second state,

ψ2 =
1√
2
a+ψ1 =

1√
2

1√
2mω ~

(
−~

∂

∂x
+mω x

) [
A√
2

(
2
√
mω

~
x

)
e−

mω x2

2 ~

]
=

A

2
√

2
e−

mω x2

2 ~

(
−~

∂

∂x

)(
2x
~

)
+

1√
2

(
2
√
mω

~
x

)
1√

2mω ~

(
−~

∂

∂x
+mω x

) [
A√
2
e−

mω x2

2 ~

]
=

A

2
√

2
e−

mω x2

2 ~ (−2) +
A

2
√

2

(
2
√
mω

~
x

)2

e−
mω x2

2 ~

=
A

2
√

2

(
4
mω

~
x2 − 2

)
e−

mω x2

2 ~ .

(8.21)
The pattern continues – we always have some polynomial in x multiplying
the exponential factor. That polynomial, for the nth wave function is called
Hn, the nth Hermite polynomial. In the dimensionless variable ξ =

√
mω

~ x,
we can read off the first two – H1(ξ) = 2 ξ, and H2(ξ) = 4 ξ2−2. Normalized,
we have the expression

ψn(x) =
(mω

π ~

)1/4 1√
2n n!

Hn(ξ) e−
ξ2

2 (8.22)

with
H0(ξ) = 1
H1(ξ) = 2 ξ

H2(ξ) = 4 ξ2 − 2

H3(ξ) = 8 ξ3 − 12 ξ
...

(8.23)

This set of polynomials is well-known, and they have a number of interesting
recursion and orthogonality properties (many of which can be developed
from the a+ and a− operators). One still needs a table of these in order
to write down a particular ψn, but that’s better than taking n successive
derivatives of ψ0 – in essence, the Hermite polynomials have accomplished
that procedure for you.

Once again, we can plot the first few wavefunctions (see Figure 8.1), and as
we increase in energy, we see a pattern similar to the infinite square well case
(note that for the harmonic oscillator, we start with n = 0 as the ground
state rather than 1).
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Figure 8.1: The first four stationary states: ψn(x) of the harmonic oscillator.

8.3 Expectation Values

8.3.1 Classical Case

The classical motion for an oscillator that starts from rest at location x0 is

x(t) = x0 cos(ω t) . (8.24)

The probability that the particle is at a particular x at a particular time t
is given by ρ(x, t) = δ(x− x(t)), and we can perform the temporal average
to get the spatial density. Our natural time scale for the averaging is a half
cycle, take t = 0→ π

ω ,

ρ(x) =
1
π
ω

∫ π
ω

0
δ(x− x0 cos(ω t)) dt. (8.25)

We perform the change of variables to allow access to the δ, let y = x0 cos(ω t)
so that

ρ(x) = −ω
π

∫ −x0

x0

δ(x− y)
x0 ω sin(ω t)

dy

=
1
π

∫ x0

−x0

δ(x− y)
x0

√
1− cos2(ω t)

dy

=
1
π

∫ x0

−x0

δ(x− y)√
x2

0 − y2
dy

=
1

π
√
x2

0 − x2
.

(8.26)
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This has
∫ x0

−x0
ρ(x) dx = 1 as expected (note that classically, the particle re-

mains between −x0 and x0). The expectation value for position is then zero,
since ρ(x) is symmetric, x ρ(x) antisymmetric, and the limits of integration
are symmetric. The variance is

σ2
x = 〈x2〉 − 〈x〉2 =

∫ x0

−x0

x2

π
√
x2

0 − x2
dx =

1
2
x2

0. (8.27)

8.3.2 Quantum Case

Referring to the definition of the a+ and a− operators in terms of x and p,
we can invert and find x and p in terms of a+ and a− – these are all still
operators, but we are treating them algebraically. The inversion is simple

x =

√
~

2mω
(a+ + a−) p = i

√
~mω

2
(a+ − a−), (8.28)

and these facilitate the expectation value calculations. For example, we can
find 〈x〉 for the nth stationary state:

〈x〉 =

√
~

2mω

∫ ∞
−∞

ψn(x)∗ (a+ + a−)ψn(x) dx = 0, (8.29)

by orthogonality. Similarly, 〈p〉 = 0. Those are not particularly surprising.

The variance for position can be calculated by squaring the position operator
expressed in terms of a±

σ2
x = 〈x2〉 − 〈x〉2 =

~
2mω

∫ ∞
−∞

ψn(x)∗ (a+ a+ + a+ a− + a− a+ + a− a−)ψn(x) dx

=
~

2mω

∫ ∞
−∞

ψn(x)∗ (a+ a− + a− a+)ψn(x) dx

=
~

2mω

[∫ ∞
−∞

(n+ 1)ψn+1(x)2 dx+
∫ ∞
−∞

nψn−1(x)2 dx
]

=
(2n+ 1) ~

2mω
(8.30)

using (8.12).

It is interesting to compare the quantum variance with the classical one.
In the case of the above, we can write σ2

x in terms of the energy En =
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~ω
(
n+ 1

2

)
, just

σ2
x =

En
mω2

. (8.31)

For the classical variance, we had σ2
x = 1

2 x
2
0, but this is related to the

classical energy. Remember we start from rest at x0, so the total energy
(which is conserved) is just E = 1

2 mω2 x2
0, indicating that we can write the

variance as
σ2
x =

E

mω2
. (8.32)

This is interesting, but we must keep in mind a number of caveats: 1. the
classical density is time-dependent, and we have chosen to average over the
“natural” timescale in the system, if no such scale presented itself, we would
be out of luck making these comparisons, 2. Our classical temporal aver-
aging is very different in spirit than the statistical information carried in
the quantum mechanical wavefunction – remember that “expectation val-
ues” and variances refer to observations made multiple times on identically
prepared systems, and most definitely not observations made over time for
a single system. We will return to this point later on, for now, the com-
parison between quantum and classical probabilities is mainly a vehicle for
motivating the notion of density as a good descriptor of physics.

Finally, we should ask where n needs to be to achieve a particular classical
energy. For example, if we have a mass m with spring constant k = mω2 and
initial extension x0, then the total energy of the oscillator is E = 1

2 mω2 x2
0.

For what n is this equal to En =
(
n+ 1

2

)
~ω? If we put an m = 1 kg mass

on the end of a spring with frequency ω = 2π
5 1/s and full extension at

x0 = 1 m, then we can get a sense of the classical energy range (E ∼ .8
J) . At what value of n would a quantum mechanical system approach this
energy? Using ~ ∼ 1.05× 10−34 J s, we have n ∼ 6× 1033. We can compare
the classical and quantum probability densities in the “large n” quantum
limit, an example is shown in Figure 8.2.

8.4 Mixed States

The stationary states of the harmonic oscillator are useful in characterizing
some of the peculiarities of the statistical interpretation, but as with the
infinite square well, the utility of these states is in their completeness, and
our ability to construct arbitrary initial waveforms. Again, let’s look at
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0.005

0.010

0.015

0.020

0.025

0.030

ρ(x)

x

QM

CM

Figure 8.2: The quantum mechanical density (for n = 50) compared to the
classical density (black).

a two state admixture, just to get a feel for the time-dependence of the
expectation values. Take

Ψ(x, t) = α e−i
3
2
ω t ψ1(x) + β e−i

5
2
ω t ψ2(x) (8.33)

with α2 + β2 = 1. Then the expectation value for x is

〈x〉 =
∫ ∞
−∞

Ψ(x, t)∗ xΨ(x, t) dx

=
∫ ∞
−∞

[
α2 ψ1 xψ1 + αβ e−i ω t ψ1 xψ2 + αβ ei ω t ψ2 xψ1 + β2 ψ2 xψ2

]
dx.

(8.34)
Using our relation for x in terms of raising and lowering operators: x =√

~
2mω (a+ + a−), we can see that the integral of ψ1 xψ1 will be zero (we

will end up with a term like ψ1 ψ0 which integrates to zero by orthogonality,
and another term that goes like ψ1 ψ2, similarly zero). The same is true for
ψ2 xψ2, so we only need to evaluate the integral of ψ1 xψ2∫ ∞

−∞
ψ1 xψ2 dx =

√
~

2mω

∫ ∞
−∞

ψ1

(√
2 + 1ψ3 +

√
2ψ1

)
dx

=

√
~
mω

(8.35)

using orthogonality. The integral
∫∞
−∞ ψ2 xψ1 dx is also

√
~
mω , and we can

put these together

〈x〉 = 2αβ

√
~
mω

cos(ω t). (8.36)
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A similar calculation for the operator p = i
√

~mω
2 (a+ − a−) gives

〈p〉 = −2αβ
√

~mω sin(ω t). (8.37)

Notice that this expectation values satisfies Newton’s second law:

d〈p〉
dt

=
〈
−dV
dx

〉
(8.38)

for our potential V = 1
2 mω2 x2 (so that the derivative is linear in x, and

〈−dV
dx 〉 = −mω2 〈x〉). This correspondence is an example of Ehrenfest’s

theorem, relating expectation dynamics to classical dynamics.

Homework

Reading: Griffiths, pp. 47–59 (we will return to the series method later on).

Problem 8.1

The infinite square well supports the idea of a “revival” time – a repetition
of the wavefunction that is guaranteed from the quantization of energy. In
this problem, we will find the time t∗ for any waveform associated with the
infinite square well, such that Ψ(x, t+ t∗) = Ψ(x, t).

a. First, we’ll guess the target quantity – what we need is a constant,
obtainable from the inputs to the infinite square well: ~, m and a (Planck’s
constant, the mass of the particle and the width of the well), with units of
time. Find the combination that has the correct units.

b. Now for a generic waveform:

Ψ(x, t) =
∞∑
n=1

cn ψn(x)e−i
En
~ t (8.39)

find the time t∗, independent of n, such that:

Ψ(x, t+ t∗) = Ψ(x, t) (8.40)

using En = n2 ~2 π2

2ma2 , the energy spectrum of the infinite square well.
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Problem 8.2

a. For the stationary states of the harmonic oscillator, we know σ2
x

from (8.31). Rewrite the momentum operator p in terms of the operators
a+ and a− and use that to calculate σ2

p.

b. Evaluate σ2
x σ

2
p, the product of the position and momentum variances

– what is the minimum value this product can take?

Problem 8.3

Griffiths 2.15. The probability of finding a quantum mechanically described
particle in a harmonic well outside of the classically allowed region.
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