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We can manipulate operators, to a certain extent, as we would algebraic
expressions. By considering a factorization of the Hamiltonian, it is pos-
sible to efficiently generate quantum mechanical solutions to the harmonic
oscillator potential – today we will begin that process by finding the ground
state and an operator prescription for generating excited states (that is,
wavefunctions satisfying the time-independent Schrödinger equation with
successively higher energy).

This algebraic approach is meant to complement the analytical approach
we used for the infinite square well. There, energy quantization manifest
itself through a boundary condition. For our algebraic construction, energy
quantization comes from the existence of a ground state1, and a procedure
for building excited states that brings with it a natural, finite energy scale.

7.1 Operators

We are now viewing the replacement of momentum: p −→ ~
i

∂
∂x as a quan-

tum mechanical assignment. Instead of being a dynamical variable, even a
constant of the motion at times, momentum in quantum mechanics is an
operator that acts on the wave function. There is a still more abstract view
of operators that we will discuss at the appropriate time, but for now, if we
have a wavefunction (or a piece of one) f(x), then pf(x) = ~

i f
′(x). Simi-

larly, x itself is an operator in this context, although it is not as obvious –
x tells us to “multiply by x”. This makes sense when we think of expecta-
tion values and variances, where x is the variable over which integration is

1The existence of a lowest energy state (ground state) is equivalent to the requirement
that the wavefunction vanish at spatial infinity, in this case.
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performed.

It is interesting to discuss these operators in the language of linear algebra
– from this point of view, p is Hermitian – that is to say that it can act on
either the right or the left in an inner product – for any f(x) and g(x) that
vanish at spatial infinity2 :∫ ∞

−∞
f(x)∗ p g(x) dx =

∫ ∞
−∞

(p f(x))∗ g(x) dx (7.2)

in loose language. In the same way, x is also Hermitian, and both operators
have continuous spectra (indeed, the eigenvector equation for p now reads:
~
i

∂
∂x f(x) = p̄ f(x) for continuous p̄).

From any pair of operators, we can form the commutator – remember that
the commutator in linear algebra is the difference between the product of
two matrices taken in both orderings: [A,B] = A B− B A. The same is true
for the functional generalization here – but we need to be careful – what
does:

[x, p] = x
~
i

∂

∂x
− ~
i

∂

∂x
x (7.3)

mean? To keep track, we can put a “test function” f(x) to the right of the
commutator operator:

[x, p] f(x) = x
~
i
f ′(x)− ~

i

(
f(x) + x f ′(x)

)
= i ~ f(x), (7.4)

and we say that [x, p] = i ~ for short. The point is that when we manipulate
the quantum mechanical operators x and p, we can do so while ignoring
the differential operator nature of p, provided we understand that “order
counts”. So, unlike classical mechanics, our algebraic manipulations involve
this added complexity, or “fun factor”, depending on your point of view (you
can always leave ~

i
∂
∂x in for p and get the correct expressions, of course).

2This can be established via integration-by-parts – for:Z ∞
−∞

„
~
i

df(x)

dx

«∗
g(x) dx = i ~

Z ∞
−∞

df∗(x)

dx
g(x) dx

= −i ~
Z ∞
−∞

f∗(x)
dg(x)

dx
dx

=

Z ∞
−∞

f∗(x)

„
~
i

dg(x)

dx

«
dx,

(7.1)

where we have assumed f∗(x) and/or g(x) vanish at spatial infinity.
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The commutator is useful in algebraic manipulation – if we had a form like
x p f(x) and we wanted to reverse the order of x and p as they operate on
f(x), then we know:

x p f(x) = p x f(x) + [x, p] f(x)
= p x f(x) + i ~ f(x) −→ p x f(x) = x p f(x)− i ~ f(x).

(7.5)

7.2 Factoring Operators

Factoring a differential operator is not trivial – take the wave equation (with
fundamental velocity set to one):(

− ∂2

∂t2
+

∂2

∂x2

)
f(x, t) = 0, (7.6)

for some function f(x, t). This looks like “the difference of two squares”, so
we are tempted to factor the wave operator:(

∂

∂x
− ∂

∂t

)(
∂

∂x
+
∂

∂t

)
“=”︸︷︷︸

?

(
− ∂2

∂t2
+

∂2

∂x2

)
. (7.7)

Again, it is useful to introduce a test function f(x, t), then we can figure
out what we mean unambiguously. The above is(

∂

∂x
− ∂

∂t

)(
∂f

∂x
+
∂f

∂t

)
=
∂2f

∂x2
+

∂2f

∂x∂t
− ∂2f

∂t∂x
− ∂2f

∂t2
, (7.8)

so indeed, this is a legitimate factorization of the wave equation. In fact, a
very useful one – it is easy to see that the other order is also a factorization:(
∂

∂x
− ∂

∂t

)(
∂

∂x
+
∂

∂t

)
f(x, t) =

(
∂

∂x
+
∂

∂t

)(
∂

∂x
− ∂

∂t

)
f(x, t), (7.9)

so that if either “root” of the wave equation is satisfied, we have a valid
solution:(
∂

∂x
− ∂

∂t

)
f(x, t) = 0 or

(
∂

∂x
+
∂

∂t

)
f(x, t) = 0 (7.10)

where the first equation has solution f(x, t) = φ(x + t) and the second has
f(x, t) = φ(x − t) for any scalar φ(y), so we conclude that the solutions to
the wave equation are of the form φ(x± t), as we know they are.
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It is hard to see what the big deal is – but now consider an operator of the
form:

α2 ∂2

∂x2
− q(x)2, (7.11)

or, acting on our “test function” f(x):(
α2 ∂2

∂x2
− q(x)2

)
f(x) = α2 f ′′(x)− q(x)2 f(x). (7.12)

It is clear, because of the x-dependence in q(x) that the “obvious” factor-
ization will not work:(
α
∂

∂x
+ q(x)

)(
α
∂

∂x
− q(x)

)
f(x) =

(
α
∂

∂x
+ q(x)

)(
α f ′(x)− q(x) f(x)

)
= α2 f ′′(x)− α q′(x) f(x)− α q(x) f ′(x) + α q(x) f ′(x)− q(x)2 f(x)

= α2 f ′′(x)− α q′(x) f(x)− q(x)2 f(x).
(7.13)

There is a cross-term in the above that is not in the actual expression (7.12),
so this is not a valid factorization of the operator (7.11). Of course, the
ordering makes a difference – we have no reason to prefer + for the first
factor, − for the second in the first line of the above, we might just as easily
have written (

α
∂

∂x
− q(x)

)(
α
∂

∂x
+ q(x)

)
f(x) (7.14)

and expected to get a valid result. Notice what happens for this operator,
when we write out its action on f(x)(
α
∂

∂x
− q(x)

)(
α
∂

∂x
+ q(x)

)
f(x) = α2 f ′′(x) + α q′(x) f(x)− q(x)2 f(x).

(7.15)

The sum of the two gives us just the right result

1
2

[(
α
∂

∂x
+ q(x)

)(
α
∂

∂x
− q(x)

)
+
(
α
∂

∂x
− q(x)

)(
α
∂

∂x
+ q(x)

)]
= α2 ∂2

∂x2
− q(x)2.

(7.16)
The anticommutator of two matrices is, as one might expect: {A,B} ≡
A B + B A, and in this notation, the operator analogy allows us to write the
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above as
1
2

{(
α
∂

∂x
+ q(x)

)
,

(
α
∂

∂x
− q(x)

)}
= α2 ∂2

∂x2
− q(x)2. (7.17)

The commutator of the two orderings gives the residual (“bad”) piece, from
which we can still construct the correct operator, of course (by subtracting
the offending term from either (7.13) or (7.14))[(

α
∂

∂x
+ q(x)

)
,

(
α
∂

∂x
− q(x)

)]
= −2α q′(x) f(x). (7.18)

7.3 Harmonic Oscillator

Now we can study a new physical system – we saw how the wavefunction
was generated by a potential and boundary conditions for the simple case
of an infinite square well. What about a “mass on a spring”? We have
the obvious potential here V (x) = 1

2 k x
2, so we can form the Hamiltonian.

Then there’s the question of boundary conditions: Classically, we would fix
the maximal extension of the spring, either from initial values (set x(t =
0) = a, ẋ(t = 0) = 0), or by specifying the energy. On the quantum side,
we have no obvious boundary, except the implicit condition that ψ(x →
±∞) = 0 for the spatial portion of the wave function. That will lead to
some interesting predictions, but for now, let’s write out the Hamiltonian
for use in Schrödinger’s equation.

Remember that for Ψ(x, t) = φ(t)ψ(x), Schrödinger’s equation, which reads
in general:

i ~
∂Ψ
∂t

= − ~2

2m
∂2Ψ
∂x2

+ V (x) Ψ, (7.19)

has the separable solution: φ(t) = e−i E
~ t with ψ(x) solving the time-

independent Schrödinger equation

− ~2

2m
d2ψ

dx2
+

1
2
mω2 x2 ψ = E ψ (7.20)

where we have input the relevant potential, defining ω2 = k
m as usual.

7.3.1 Factoring the Hamiltonian

To the extent that the Hamiltonian operator is made up of x’s and p’s, it
can be viewed as a differential operator that acts on a wavefunction. We
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just saw how to deal with factorization of simple one-dimensional operators.
Consider, then, the simple relation provided by taking the Hamiltonian op-
erator

Ĥ =
1

2m

(
−~2 ∂2

∂x2
+m2 ω2 x2

)
(7.21)

and factoring the term in parentheses with α = ~, and q(x) = mω x (with
obvious sign replacement), we get one ordering:

1
2m

(
−~

∂

∂x
+mω x

)(
~
∂

∂x
+mω x

)
=

1
2m

(
−~2 ∂2

∂x2
− ~mω +m2 ω2 x2

)
= Ĥ +

i ω

2
[x, p].

(7.22)
The other ordering gives:

1
2m

(
~
∂

∂x
+mω x

)(
−~

∂

∂x
+mω x

)
= Ĥ − i ω

2
[x, p]. (7.23)

Then we can form the commutator of the two terms:

1
2m

[
~
∂

∂x
+mω x,−~

∂

∂x
+mω x

]
= −i ω[x, p] = ~ω, (7.24)

and for ease-of-use, we normalize the above to get[
1√

2m ~ω

(
~
∂

∂x
+mω x

)
,

1√
2m ~ω

(
−~

∂

∂x
+mω x

)]
= 1. (7.25)

These two operators are called a− and a+ respectively, and can be written
in terms of the momentum operator p = ~

i
∂
∂x

a− =
1√

2m ~ω

(
~
∂

∂x
+mω x

)
=

1√
2m ~ω

(i p+mω x)

a+ =
1√

2m ~ω

(
−~

∂

∂x
+mω x

)
=

1√
2m ~ω

(−i p+mω x),
(7.26)

with [a−, a+] = 1 and, from (7.23)

a−a+ =
Ĥ

~ω
+

1
2

(7.27)

and

a+a− = a−a+ − 1 =
Ĥ

~ω
− 1

2
. (7.28)
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There is a point to all of this – using the last two equations, the Hamiltonian
operator can be factored into products of a− and a+

Ĥ = ~ω
(
a± a∓ ±

1
2

)
. (7.29)

Now, using Schrödinger’s equation, we have Ĥ ψ = E ψ. Suppose we have
a solution ψ for some energy E, then consider the operator a− acting on ψ
(i.e. a−ψ), this state solves Schrödinger’s equation with a new energy

Ĥ a− ψ =
[
~ω
(
a−a+ −

1
2

)]
a−ψ

= ~ωa− a+ a− ψ −
1
2
a− ψ

= a−

[(
~ω (a+ a− −

1
2

)]
ψ

= a− (H − ~ω)ψ
= (E − ~ω) a− ψ.

(7.30)

This shows that a−ψ is itself a solution to the Schrödinger equation, and
that the energy of this new state is the energy of the ψ state minus ~ω.
That’s fine, but we still have the problem of finding a single ψ that solves
Ĥ ψ = E ψ (and, of course, the value of E associated with this). We know
that the energy E must be greater than zero for any physically accessible
wavefunction (i.e. one that is normalizable, and hence can be interpreted
in the statistical sense). If we continually apply a− to a state ψ, we will
eventually achieve a state with negative energy, which will then not be a valid
solution. In this case, then, there must exist a state ψ0 such that a− ψ0 = 0,
but from the definition of the a− operator, ψ0 solves the differential equation:

1√
2m ~ω

(
~
∂

∂x
+mω x

)
ψ = 0 −→ Ae−

m ω x2

2 ~ , (7.31)

and the procedure stops – we have a lowest energy state ψ0 with energy:

H ψ0 = ~ω
(
a+a− +

1
2

)
ψ0 =

1
2

~ω ψ0 = E0 ψ0, (7.32)

allowing us to set E0 = 1
2 ~ω.

With a bit of notational foreshadowing, it will come as no surprise that for
a solution ψ with energy E, a+ ψ is another solution with energy E + ~ω,
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and we can start with the lowest state ψ0 and work our way up in energy.
For this reason, a± are called raising/lowering operators. If we apply the
raising operator to ψ0, we will obtain arbitrarily large energy solutions to
Schrödinger’s equation.

Keep in mind, though, that the eigenvalue equation itself tells us nothing
about normalization – the fact that a particular ψn has Ĥ ψn = En ψn is
independent of the normalization of the wave function, and so we must work
directly with the ψn state to ensure that it is appropriately normalized.

Homework

Reading: Griffiths, pp. 40–47.

Problem 7.1

Here are a few quick problems providing practice with commutators (remem-
ber the game plan: Put in a test function T (x), evaluate the commutator
acting on T (x), then remove T (x) to write your answers in terms of the x
and p operators):

a. Evaluate [Ĥ, x] for a generic potential V (x).

b. Evaluate [xn, p] using [x, p] = i ~ successively (to reduce the degree).

c. Show that [p, f(x)] = p f(x), and use this to reproduce your result
from the previous section.

Problem 7.2

Griffiths 2.8. Here we are interested in the decomposition of an initial
wavefunction in the eigenfunctions of the infinite square well.

Problem 7.3

Prove that the infinite square well has no solutions with E < 0 (i.e. you
cannot solve the relevant ODE and boundary conditions for these cases).
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Problem 7.4

For an eigenstate: Ψ(x, t) = Ψn(x, t) of the infinite square well:

Ψn(x, t) =

√
2
a

sin
(nπ x

a

)
e−i En t

~ . (7.33)

Find 〈x2〉 and 〈p2〉, and use these, together with your result from last week
to compute the variances σ2

x ≡ 〈x2〉 − 〈x〉2 and σ2
p ≡ 〈p2〉 − 〈p〉2. What

is the value of the product of these two? What is the minimum value this
product can take? This says that the variance of measurement of position
and momentum in quantum mechanics are related.
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