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At the end of last time, we had the general Dirac equation for a charged
particle in the presence of an electromagnetic field (below, we use q φ −→ φ
without assuming q is itself negative – this just gives us fewer constants to
carry around):

0 =
[(
i
∂

∂t
− φ

)
− a ·(−i∇− qA)− αm

]
Ψ(r, t)

I = aj · aj = αα

0 = ak a` + a` ak k 6= `

0 = aj α+ αaj .

(35.1)

All that’s missing is a specification of the potential of interest, and operators
(α,a) acting on the spin space of Ψ(r, t). Once we have those, we can
perform the usual temporal separation, and solve the eigenvalue problem to
find the energy spectrum of the full relativistic form of Hydrogen.

35.1 Dirac Matrices

We had a set of (Pauli) spin matrices that acted on the spin state of the
electron. Remember that for our non-relativistic Schrödinger equation, the
spin of the electron was provided by tacking on a spinor, a combination of:

χ+ =
(

1
0

)
χ− =

(
0
1

)
. (35.2)

Then, while the Schrödinger equation did not directly involve the spin, we
had the Pauli matrices that allowed us to operate on the spinor portion.
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35.2. CENTRAL POTENTIAL Lecture 35

There, the spin and “orbital” wave functions were completely decoupled. In
the relativistic Dirac setting, the “Hamiltonian” itself can potentially involve
some analogue of the Pauli matrices. In fact, because of the expanded notion
of “angular momentum” that exists in four-dimensional space-time, these
end up being spinors with four components. The “Dirac” matrices serve to
define the coefficients (α,a), and can be built from the Pauli matrices.

First let’s review the Pauli matrix properties. These were constructed as
a representation of angular momentum (meaning that the operators satisfy
[Si, Sj ] = i εkijSk)

σx=̇
(

0 1
1 0

)
σy=̇

(
0 −i
i 0

)
σz=̇

(
1 0
0 −1

)
. (35.3)

As they stand, these are fine candidates for the components of a, since:

{σi , σj} = 2 δij σi σi = I. (35.4)

But we do not have room, in this setting (two dimensional) to add in a
fourth matrix α that satisfies the final anticommutation relation.

The Dirac matrices are defined via (the matrices themselves are four-dimensional,
and we are displaying them in two-by-two sub-blocks):

γ0=̇
(

1 0
0 −1

)
γi=̇

(
0 σi
−σi 0

)
, (35.5)

and these can be used to define:

α = γ0 a =
(
γ0
)−1

γ. (35.6)

These matrices satisfy the relations above, so that the Dirac equation, in
4 × 4 representation can be given an explicit form. This is not, strictly
speaking, necessary, but makes working with the equation simpler.

35.2 Central Potential

Suppose we have the typical, time-independent Coulomb field φ(r) = − e2

r
as our electromagnetic contribution. Working in spherical coordinates, and
separating out the time-dependence, Dirac’s equation reads:

E ψ(r) = φ(r)ψ(r)− ia · ∇ψ(r) + αmψ(r). (35.7)
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Keep in mind that ψ(r) has four components, and the a and α matrices are
given above. There’s not much we can do with the equation in its current
form, so our first job is to find operators that commute with the Hamiltonian:

HD = φ(r)− ia · p + αm. (35.8)

Since the potential is spherically symmetric, we should check L, the angular
momentum operator. Does this commute with HD? If so, we will be able to
find simultaneous eigenfunctions, and this would be useful since it implies
that the wavefunction separates into an angular part and something else.

35.2.1 Angular Momentum

We know, from our work on the non-relativistic Hydrogen atom, that [L, V (r)] =
0, and the final term in HD clearly has [L, αm] = 0, since α does not talk
to the “orbital” operators. So we are left with

[L, HD] = −i [L,a · p]. (35.9)

In index notation, then, we have

[Lj , HD] = −i [εjk` rk p`, ai pi] = −i ai [εjk` rk p`, pi]. (35.10)

Evaluating the right-hand side is straightforward, keeping in mind that in
our current units, [ri, pj ] = i δij , we have

−i ai [εjk` rk p`, pi] = −i ai εjk` (rk p` pi − pi rk p`)
= −i ai εjk` (i δik p` + pi rk p` − pi rk p`)
= ai εji` p`,

(35.11)

so that
[Lj , HD] = εji` ai p` . (35.12)

That’s not “good” in the sense that L does not commute with the Dirac
Hamiltonian.

35.2.2 Spin

We know that the electron has spin, and that in the non-relativistic case,
the spin operators (precisely the Pauli matrices) trivially commute with the
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Hamiltonian, since Schrödinger’s equation acts only on the “orbital” part of
the wavefunction. So we should check the status of the commutator of HD

and S with:
S =

1
2

σ. (35.13)

How can we make a representation of σ that operates in our four-dimensional
space? It is easy to see that the four-by-four matrices:

Si =
1
2

(
σi 0
0 σi

)
(35.14)

satisfy the spin commutation relations: [Si, Sj ] = i εkij Sk as matrices. Then
the commutator with the Hamiltonian is

[Sj , HD] = −i [Sj , ai pi] +m [Sj , α] (35.15)

where once again, the potential does not play a role in the commutation rela-
tion. Using the Dirac matrices, and our four-by-four Sj , we have: [Sj , ai] =
i εjik ak and [Sj , α] = 0. Then the commutator becomes:

[Sj , HD] = −i pi [Sj , ai] = pi εjik ak = −εji` ai p`, (35.16)

precisely the opposite of (35.12) – that means that, while neither L nor S
separately commutes, the sum:

J = L + S, (35.17)

does:
[J, HD] = 0. (35.18)

The stationary states of the Hamiltonian can be taken to be total angular
momentum eigenstates. That’s good, because we can now use J2 and Jz as
usual, with eigenvalues J and M , to simplify our analysis.

35.2.3 Parity

There is a final symmetry of the Hamiltonian we can exploit in forming
our solution. The spatial reflection operator P takes: P ψ(r) = ψ(−r), i.e.
r −→ −r. So for a time-indepedent Hamiltonian:

P H(p, r) = P H(i ~∇, r) = H(−i ~∇,−r) = H(−p,−r), (35.19)
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and if the Hamiltonian is invariant under this change, then [P,H] = 0. Let’s
see how this reads for our Dirac Hamiltonian – we’ll put in a test function
this time to keep everything straight:

ψ(r) = P (φ(r)− ia · p + αm) ψ(r)−(φ(r)− ia · p + αm) ψ(−r)
=(φ(−r) + ia · p + αm) ψ(−r)−(φ(r)− ia · p + αm) ψ(−r)
= 2 ia · pP ψ(r)

(35.20)
where we have used the spherical symmetry of the potential φ(r) = φ(−r)
(this is a strange notation, but reflects the fact that the distance from the
origin for the vectors r and −r are identical).

So P itself does not commute with the Dirac Hamiltonian. But once again,
we have to consider the “spin” operators together with the spatial ones.
Note that:

[α,HD] = −i [α,a · p] = −i pj [α, aj ] = −i pj (αaj − aj α)
= 2 i pj aj α
= 2 ia · pα

(35.21)

using the defining relation for α a from (35.1).

Then if we define: P̂ ≡ αP , we have

[P̂ ,HD] = αP HD −HD αP = αP HD −(αHD − 2 ia · pα) P
= α [P,HD] + 2 ia · pα
= α 2 ia · p + 2 ia · pα
= 0,

(35.22)

and the operator P̂ does commute with HD. The eigenvalues of this operator
are ±1, as usual, since P̂ P̂ = 1, and we can take our wavefunction to be
simultaneous eigenfunctions of J2, Jz and P̂ .

35.3 Separation

Consider the wavefunction, now, split into two portions:

ψ(r)=̇


ψ1

ψ2

ψ3

ψ4

 ≡̇( Θ
Φ

)
, (35.23)
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then, the simultaneity of eigenfunctions means that J2 ψ = J (J + 1)ψ,
Jz ψ = M ψ, and P̂ ψ = ±1ψ. The advantage of the splitting above is that
we can consider just the spatial parity P :

P̂ ψ = P

(
Θ
−Φ

)
= ±

(
Θ
−Φ

)
, (35.24)

and now we see that the two different components of the wave-function have
opposite parities (opposite behavior under purely spatial reflection, in this
case).

We know that the entire wavefunction must be in an eigenstate of J2 – that
means we should be constructing eigenspinors of the usual YMJ type, and
we know that the parity of YM+

J and YM−J are opposite one another for a
given J , then we can consider a solution of the form:

ψ(r)=̇
(

F (r)YM−J

−i f(r)YM+
J

)
, (35.25)

where we now have, clearly, the angular solutions, and parities in place. The
radial functions are our eventual targets (our choice of −i in the second term
is conventional, and will make both radial equations real). Remember here
that S just acts on each sub-spinor separately, so an object like J2 is two
copies of the usual J2 for spin one half we studied earlier, one applied to Θ,
one to Φ.

Now, finally, we must look at the full operator form – if we think about the
way in which the Pauli matrices are embedded in the Dirac matrices, it is
pretty clear that we can split the Dirac equation in two:

HD Θ =(φ(r) +m) Θ− iσ · ∇Φ
HD Φ =(φ(r)−m) Φ− iσ · ∇Θ.

(35.26)

We already know to associate Θ ∼ YM−J and Φ ∼ YM+
J , and now it is clear

that we have already solved the angular portion of the problem.

What we need now is a way to evaluate the σ ·∇ terms – the angular portion
of these act on the YM±J , and the radial part will define our ODE. We can
also exploit the following identity for the Pauli matrices:

(σ ·A) (σ ·B) = A ·B + iσ ·(A×B) , (35.27)

to write:
(σ · r) (σ · p) = r · p + iσ · L. (35.28)
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In order to get (σ ·p) (reverting to p notation for ∇ to make things a little
easier) by itself, we can use (35.27) on (σ · r)(σ · r) = r2, so we have

(σ · p) =
1
r2

(σ · r) (r · p + iσ · L)

=(σ · r̂)
(
r̂ · p +

i

r
σ · L

)
.

(35.29)

Finally, the term r̂ · p = ~
i
∂
∂r as usual. We know, basically from our con-

struction of YMJ , that:

S · LYM−J =
(

~
2

)(
J − 1

2

)
YM−J

S · LYM+
J =

(
~
2

)(
−J − 3

2

)
YM+
J ,

(35.30)

and to get σ · L, we just drop the 1
2 ~. The operator σ · r̂ acts on the YM±J

via1:
σ · r̂YM±J = −YM∓J . (35.33)

Using all of this, we can write down the radial equation for the Coulomb
field:

0 =(E −m− φ) F −

(
d

dr
+
J + 3

2

r

)
f

0 =(E +m− φ) f +

(
d

dr
−
J − 1

2

r

)
F

(35.34)

This is general, for any potential φ(r) – but we have the specific attractive
1This statement can be proved in a relatively straightforward manner – if you write

σ · r =
1

2
(σ+ + σ−) sin θ cosφ+

1

2 i
(σ+ − σ−) sin θ sinφ+ σz cos θ, (35.31)

and apply the spin operators to the χ± appearing in YM±
J , you get expressions of the

form:

sin θ e±i φ Y
M± 1

2
J± 1

2
cos θ Y

M± 1
2

J± 1
2
. (35.32)

But sin θ e±i φ is Y ±1
1 and cos θ is Y 0

1 , so these products can be represented in terms of
angular momentum addition of spin J ± 1

2
and spin 1.
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Coulomb case: φ(r) = − e2

r , so we have, setting λ ≡ J + 1
2 :

0 =
(
E −m+

e2

r

)
F −

(
d

dr
+
λ+ 1
r

)
f

0 =
(
E +m+

e2

r

)
f +

(
d

dr
− λ− 1

r

)
F.

(35.35)

In our current units, where ~ = c = 1, we measure mass in units of energy,
the real term that appears above would be mc2, the rest energy of the
electron.

Going to the large r limit, where the potential and centrifugal terms are
∼ 0, we have the simplified equations

(E−m)F−f ′ = 0 (E+M) f+F ′ = 0 −→ (E2−m2) f+f ′′ = 0. (35.36)

The asymptotic solution is then

f(r) ∼ e±i
√
E2−m2 r F (r) ∼ ± i e

i
√
E2−m2 r (E +m)√
E2 −m2

. (35.37)

To get a bound state, we must have both radial functions decaying at spatial
infinity, and this suggests that E2 < m2 – that’s perfectly reasonable, a
bound state should have energy less than the rest energy of the electron.
Then both radial equations have the form

f(r) ∼ F (r) ∼ e−
√
m2−E2 r (35.38)

at spatial infinity.

With the limit in hand, we make a series ansatz:

F (r) = e−
√
m2−E2 r rρ

∞∑
j=0

αj r
j

f(r) = e−
√
m2−E2 r rρ

∞∑
j=0

βj r
j ,

(35.39)
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and the derivatives are:

F ′(r) = e−
√
m2−E2 r rρ

−√m2 − E2

∞∑
j=0

αj r
j + ρ

∞∑
j=0

αj r
j−1 +

∞∑
j=0

αj j r
j−1


= e−

√
m2−E2 r rρ

−√m2 − E2

∞∑
j=0

αj r
j +

∞∑
k=−1

(ρ+ k + 1) αk+1 r
k


= e−

√
m2−E2 r rρ

ρα0

r
+
∞∑
j=0

(
−
√
m2 − E2 αj + (ρ+ j + 1)αj+1

)
rj


(35.40)

and similarly for f ′(r). Inserting these into the first equation in (35.35), we
get:

0 = rρ
∞∑
j=0

(E −m)αj rj − rρ
ρ β0

r
+
∞∑
j=0

(
−
√
m2 − E2 βj + (ρ+ j + 1)βj+1

)
rj


+ rρ

∞∑
j=0

(
αj e

2 − βj (λ+ 1)
)
rj−1

=
∞∑
j=0

[
(E −m)αj +

√
m2 − E2 βj + e2 αj+1 −(λ+ 1 + ρ+ j + 1) βj+1

]
rj

+
1
r

(
e2 α0 − (λ+ 1)β0 − ρ β0

)
.

(35.41)
For the second:

0 =
∞∑
j=0

[
(E +m)βj −

√
m2 − E2 αj + e2 βj+1 +(ρ+ j + 1− (λ− 1)) αj+1

]
rj

+
1
r

(
e2 β0 − (λ− 1)α0 + ρα0

)
.

(35.42)
Taking the 1

r part of each of these equations, we can solve for α0 in terms
of β0, and then we find that

ρ = −1±
√
λ2 − e4. (35.43)

The negative root above leads to a singularity at the origin (remember that
we must have F 2 r2 integrable at 0). So we find ρ = −1 +

√
λ2 − e4. In

order to make sense of this equation, keep in mind that e2/` is an energy
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(in Gaussian units), so e2 has units of energy× length. Now in order to get
the unitless e2 appearing above, we need to multiply by something that has
units of 1/(energy×length) – precisely ~ c in this case, since each of those
is 1. The actual numerical value in the above equation can be recovered by
taking e = 4.8 × 10(−10) esu and forming e2/(~ c) ∼ 1

137 . The point is, for
λ = J+ 1

2 , even for J = 0, we have a positive number inside the square root.

Moving along to the recursion relation itself, we can solve for aj+1 in terms
of bj+1 – that gives:(

e2
√
m2 − E2 + (E +m) (2 + j + λ+ ρ)

)
bj+1

=
(
e2 (m+ E)−

√
m2 − E2 (2 + j − λ+ ρ)

)
aj+1.

(35.44)

By inputting this relation back into the recursion, it is possible to find aj+1

entirely in terms of aj – that analysis suggests that this series must truncate.
Suppose it does, if we have aN+2 = bN+2 = 0 for some N , then we know,
again from the individual recursion relations, that

−
√
m2 − E2 aN+1 + (m+ E) bN+1 = 0 (E −m) aN+1 +

√
−E2 +m2 bN+1 = 0

−→ βN+1

αN+1
=

√
m− E
m+ E

(35.45)
and, in addition, we can set j = N in (35.44) to get the relevant ratio there
– then we have (using ρ = −1 +

√
λ2 − e4)

e2
√
m+ E −

√
m− E

(
1− λ+

√
λ2 − e4 +N

)
e2
√
m− E +

√
m+ E

(
1 + λ+

√
λ2 − e4 +N

) =

√
m− E
m+ E

, (35.46)

which can be simplified by cross-multiplication. Set n = N + 1 to denote
the final non-zero term in the expansion (the principle quantum number),

e2E =
√
m2 − E2

(
n+

√
λ2 − e4

)
−→ E

m
=
[
1 +

e4

(n+
√
λ2 − e4)2

]−1/2

.

(35.47)
With units, we have:

E

mc2
=

1 +
α2(

n+
√

(J + 1
2)2 − α2

)2


−1/2

(35.48)
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with 1
α ∼ 137, the fine structure constant.

In order to compare with the Coulomb case, we have to subtract off the rest
energy of the electron, which is built into this expression. In addition, the n
appearing above is no the same n that labels the non-relativistic Hydrogen
wavefunction. If we expand in small α:

(E −mc2) ∼ − mc2 α2(
n+

(
J + 1

2

))2 = − me4

32π2 ε20 ~2
(
n+ J + 1

2

)2 , (35.49)

and we see that the Coulomb n is nC = n+ J + 1
2 . Then we can write the

final relativistic form for comparison:

E = mc2

1 +
α2(

nC −
(
J + 1

2

)
+
√

(J + 1
2)2 − α2

)2


−1/2

−mc2.

(35.50)
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