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We can use our perturbation theory to calculate corrections to the Hydrogen
atom. Specifically, there are relativistic and electromagnetic effects we have
missed in our treatment of the pure Coulombic, classical approach. These
are relatively easy to put back in perturbatively. Fine structure consists of
two separate physical effects: one relativistic correction, one associated with
spin-orbit coupling.

33.1 Relativistic Hamiltonian

In classical mechanics, a free particle is described by the action:

Sc =
∫

1
2
m
(
ẋ2 + ẏ2 + ż2

)
dt (33.1)

leading to the usual Lagrangian L = 1
2 mv2. But this free particle action

can be written suggestively by noting that the distance travelled along the
dynamical trajectory (a curve x(t) parametrized by t) is

d`2 = dx2 + dy2 + dz2 =
(
ẋ2 + ẏ2 + ż2

)
dt2 (33.2)

so that the classical action is basically the length (squared) along the curve.
When we extremize Sc in the force free case, then, we expect to get “length-
exteremized” trajectories, or “straight lines” in this setting.

The same is true for relativistic mechanics – we start with a “length” given
by the relativistic line element:

ds2 = −c2 dt2 + dx2 + dy2 + dz2, (33.3)
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and then the length along a curve parametrized by λ (some parameter, not
necessarily time) is

ds =
√
−c2 ṫ2 + ẋ2 + ẏ2 + ż2 dλ. (33.4)

If we want the same basic free-particle action, one proportional to length-
along-the-curve, then we would naturally take:

Sr = α

∫ √
−c2 ṫ2 + ẋ2 + ẏ2 + ż2 dλ. (33.5)

This action is manifestly reparametrization invariant – meaning that we
can change λ without changing the fundamental interpretation of extremal
length for the solutions to the equations of motion. To see this, note that if
we had another parameter γ(λ), then the change-of-variables in the action
would be governed by:

ẋ =
dx

dλ
=
dx

dγ

dγ

dλ
, (33.6)

for example, so that

Sr = α

∫ √
−c2

(
dt

dγ

)2

+
(
dx

dγ

)2

+
(
dy

dγ

)2

+
(
dz

dγ

)2 dγ

dλ

dλ

dγ
dγ

= α

∫ √
−c2 ṫ2 + ẋ2 + ẏ2 + ż2 dγ,

(33.7)

where now dots refer to derivatives w.r.t. γ.

We can, in particular, and in order to compare with classical mechanics, take
γ = t, the coordinate time. This means that we will be using the relativistic
action, but in the context of the laboratory frame (with the clock on its
wall as our parameter for motion). With this parametrization, the action
becomes:

Sr = α

∫ √
−c2 + v2 dt = α i c

∫ √
1− v2

c2
dt. (33.8)

For this action, our relativistic Lagrangian becomes (just the integrand of
the above)

Lr = α i c

√
1− v2

c2
. (33.9)

We can set the overall constant α by taking the slow-motion limit and de-
manding that the relativistic Lagrangian reduce to the classical one:

Lr ∼ α i c
(

1− 1
2
v2

c2

)
= α i c− 1

2
i α
v2

c
. (33.10)
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Additive constants don’t change the Euler-Lagrange equations, so the con-
stant factor α i c is irrelevant to the predictions of this low-velocity limit.
From the above, we see that we must have

− i α
c

= m −→ α = im c. (33.11)

Our final form for the relativistic Lagrangian is

Lr = −mc2
√

1− v2

c2
. (33.12)

The point of all of this is to find out what the free-particle Hamiltonian is,
that way we would know how to correct the Schrödinger equation. From
the above Lagrangian, we find the Hamiltonian in the usual way, first by
identifying the relativistic momenta:

p =
∂L

∂v
=

mv√
1− v2

c2

, (33.13)

and then, forming the Hamiltonian via Legendre transform:

H = v · p− L =
mv2√
1− v2

c2

+
mc2

(
1− v2

c2

)
√

1− v2

c2

=
mc2√
1− v2

c2

. (33.14)

If we “finish the job” and write the Hamiltonian entirely in terms of the
(relativistic) momentum by inverting (33.13)

v2 =
p2 c2

p2 +m2 c2
−→ H = mc2

√
p2

m2 c2
+ 1 . (33.15)

We see that this total energy is made up of a contribution from the motion
of the particles and the rest energy of the particles (note that H = mc2 at
p = 0). To make the kinetic energy portion by itself we subtract off the rest
energy:

T = H −mc2 = mc2
√

p2

m2 c2
+ 1−mc2. (33.16)
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What we have been doing so far, with the Schrödinger equation, is taking
p2

2m as the kinetic energy (with the classical p = mv), and using the replace-
ment: p → ~

i ∇ to generate the quantum system. Now we see that there
are . . . relativistic difficulties. Our first move is to replace (in our minds)
the classical p with the relativistic form. That doesn’t change anything in
theory. The more important shift is to expand this relativistic kinetic en-
ergy (it is difficult to modify it directly with the square root in place) and
generate corrective terms based on the low-p expansion:

T ∼ mc2

(
1 +

1
2

p2

m2 c2
− 1

8

(
p2

m2 c2

)2

+ . . .

)
−mc2

=
p2

2m
− p4

8m3 c2
.

(33.17)

33.2 Hydrogen Correction

We see that our perturbation is, effectively, −ε p4 with ε = 1
8m3 c4

. If we
want to calculate the perturbed energies of the Hydrogen atom, then, we
must be able to evaluate:

∆E ≡ E′1 − E1 = −ε 〈ψn| p4 |ψn〉 . (33.18)

For most states of Hydrogen, p4 is a Hermitian operator, and we can factor
the operator into a p2 portion acting on |ψn〉 and another acting on 〈ψn|:

∆E = −ε
〈
p2 ψn

∣∣ p2 |ψn〉 . (33.19)

Now in general, finding the expectation value of p4 would require taking a
bunch of derivatives and integrating. We are going to try to avoid that, by
noting that the unperturbed Hamiltonian for Hydrogen is

H =
p2

2m
+ V (r) (33.20)

so that the operator p2 acts according to

p2 |ψn〉 = 2m (En − V (r)) |ψn〉 , (33.21)

and we can write

∆E = −ε
〈(

4m2 (En − V (r))2
)〉

= − 1
2mc4

(
〈En〉2 − 2 〈En V (r) 〉+ 〈V (r)2〉

)
,

(33.22)
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where all the expectation values are w.r.t. the state |ψn〉 – i.e. for the above,
〈En〉 = 〈ψn| En |ψn〉. The energy En is just a number, so comes out of all
expectation values. For Hydrogen, the potential is

V (r) = − e2

4π ε0 r
(33.23)

and we see that in order to evaluate the expectation values 〈V (r)〉 and its
square, we will need to know the expectation values: 〈1r 〉 and 〈 1

r2
〉.

The full target expression is

∆E =
1

2mc4

(
E2
n + 2En

e2

4π ε0

〈
1
r

〉
+
(

e2

4π ε0

)2 〈 1
r2

〉)
. (33.24)

33.2.1 Feynman-Hellmann Formula

The Feynman-Hellmann theorem concerns the change in energy of a
quantum mechanical system given a change in some parameter in the
Hamiltonian. For a Hamiltonian dependent on a parameter λ: H(λ),
we have

H(λ) |ψn〉 = En |ψn〉 , (33.25)

and both the energy and potentially the state |ψn〉 inherit dependence
on λ through the eigenvalue equation.

Suppose we perturb λ a bit: λ −→ λ + d λ, how does the energy of a
particular eigenstate respond? This is basically the same question we’ve
been asking all along in this perturbation section, so we know the answer
already:

H(λ+ dλ) = H(λ) +
∂H

∂λ
dλ+O(d λ2), (33.26)

and assuming that En −→ En + Ēn d λ, |ψn〉 −→ |ψn〉 + d λ
∣∣ψ̄n〉, we

have
En + Ēn d λ = En + 〈ψn|

∂H

∂λ
|ψn〉 dλ. (33.27)

This tells us that
Ēn = 〈ψn|

∂H

∂λ
|ψn〉 (33.28)
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to first order in d λ – but viewing En(λ) as itself a function of the
parameter λ, we can also Taylor expand: En(λ+d λ) = En(λ)+ ∂En

∂λ d λ+
. . ., leading to the final identification:

∂En
∂λ

= 〈ψn|
∂H

∂λ
|ψn〉 , (33.29)

which is the Feynman-Hellmann formula. Note that the “other” terms
in the expansion would be associated naturally with higher derivatives
of En, evaluated about the point λ.

The utility of (33.29) should be clear – think of the radial Hamiltonian for
Hydrogen:

Hr = − ~2

2m
d2

dr2
+

~2

2m
` (`+ 1)
r2

− e2

4π ε0 r
, (33.30)

the “parameter” e leads to

∂Hr

∂e
= − e

2π ε0
1
r
, (33.31)

while the derivative w.r.t. the “parameter” ` gives

∂Hr

∂`
=

~2

2m
1 + 2 `
r2

, (33.32)

and we need expectation values w.r.t. both of these r-dependencies. We also
happen to know the associated derivatives w.r.t. energy, since En is just

En = − me4

32π2 ε20 ~2 (jm + `+ 1)2
(33.33)

(where jm = n− `− 1).

From (33.31), we have

− 4me3

32π2 ε20 ~2 (jm + `+ 1)2
= − e

2π ε0

〈
1
r

〉
, (33.34)

or, reverting to n notation,〈
1
r

〉
=

4me2

16π ε0 ~2 n2
, (33.35)
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and finally, in terms of the Bohr radius, a = 4π ε0 ~2

me2
,〈

1
r

〉
=

1
an2

. (33.36)

For the r−2 expectation value, we will use (33.32)

2me4

32π2 ε20 ~2 (jm + `+ 1)3
=

~2 (1 + 2 `)
2m

〈
1
r2

〉
, (33.37)

or 〈
1
r2

〉
=

m2 e4

8π2 ε20 ~4 (1 + 2 `)n3
=

2
a2 (1 + 2 `)n3

. (33.38)

Putting it all together back in (33.24), we have:

∆E =
1

2mc4

(
E2
n + 2En

e2

4π ε0
1
an2

+
(

e2

4π ε0

)2 2
a2 (1 + 2 `)n3

)
.

(33.39)
We can clean this up a little,

∆E = − E2
n

2mc2

(
8n

1 + 2 `
− 3
)
. (33.40)
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Homework

Reading: Griffiths, pp. 266–270.

Problem 33.1

Find the first order relativistic correction to the energies for the harmonic

oscillator. Use εH ′ = − p4

8m3 c2
and note (2.69) from the book.

Problem 33.2

Here we will look at the change in motion implied by the relativistic La-
grangian.

a. For a particle of mass m that starts from rest at t = 0, moving
under the influence of gravity near the earth, the classical Lagrangian has
the form:

L =
1
2
mv2 −mg x. (33.41)

Find v(t) from the Euler-Lagrange equation of motion (this is a one-
dimensional problem). Plot v(t) as a function of time – there is a violation
of special relativity here, make sure this is clear on your plot.

b. The relativistic Lagrangian for a free particle of mass m is:

L = −mc2
√

1− v2

c2
. (33.42)

Introduce the potential from above to write the relativistic Lagrangian for
a particle of mass m moving under the influence of gravity near the earth.
Using the Euler-Lagrange equations of motion, again solve for v(t) with
v(0) = 0. Plot your result, the velocity should now be in accord with
special relativity, make sure this is demonstrated on your plot.
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