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We have the matrix form of the first order perturbative result from last
time. This carries over pretty directly to the Schrödinger equation, with
only minimal replacement (the inner product and finite vector space change,
but notationally, the results are identical). Because there are a variety of
quantum mechanical systems with degenerate spectra (like the Hydrogen
eigenstates, each En has n2 associated eigenstates) and we want to be able
to predict the energy shift associated with perturbations in these systems,
we can copy our arguments for matrices to cover matrices with more than
one eigenvector per eigenvalue. The punch line of that program is that we
can use the non-degenerate perturbed energies, provided we start with the
“correct” degenerate linear combinations.

32.1 Degenerate Perturbation

Going back to our symmetric matrix example, we have A ∈ IRN×N , and
again, a set of eigenvectors and eigenvalues: Axi = λi xi. This time, suppose
that the eigenvalue λi has a set of M associated eigenvectors – that is,
suppose a set of eigenvectors yj satisfy:

Ayj = λi yj j = 1 −→M (32.1)
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32.1. DEGENERATE PERTURBATION Lecture 32

(so this represents M separate equations) that are themselves orthonormal1.
Clearly, any linear combination of these vectors is also an eigenvector:

A
M∑

k=1

βk yk = λi

M∑
k=1

βk yk. (32.2)

Define the general combination of {yi}Mi=1 to be z ≡ ∑M
k=1 βk yk, also an

eigenvector of A with eigenvalue λi. Now going back to our perturbation:
We’re going to perturb the matrix A via A + ε Ā, and we will perturb the
linear combination z −→ z + ε x̄i, so we do not yet know what particular
linear combination we are referring to, but nevertheless, we can do them all
at once. Our perturbed eigenvalue equation reads, through first order in ε:

A z + εA x̄i + ε Ā z = λi z + ε λi x̄i + ε λ̄i z. (32.3)

Regardless of our decomposition within the degenerate subspace (i.e. the
particular values of βk), the e0 terms cancel. That leaves us with the usual:

A x̄i + Ā z = λi x̄i + λ̄i z. (32.4)

We once again assume that the perturbed eigenvector can be written as a
linear combination of the original eigenvectors. We will split the contribu-
tions

x̄i =
N−M∑
k=1

αk xk +
M∑

k=1

γk yk. (32.5)

Inputting this into (32.4), together with the decomposition of z, we have

(A− λi I)

(
N−M∑
k=1

αk xk +
M∑

k=1

γk yk

)
+
(
Ā− λ̄i I

) M∑
k=1

βk yk = 0, (32.6)

and we can act on the first term with A(
N−M∑
k=1

αk (λk − λi) xk

)
+
(
Ā− λ̄i I

) M∑
k=1

βk yk = 0. (32.7)

1What we have is a subspace of IRN , defined by the degenerate eigenvectors. These are
all orthogonal to the rest of the eigenvectors, and we can find a basis spanning the subspace
that will be orthogonal within the subspace. Think of partitioning the eigenvectors so that
{xj}N−M

j=1 are non-degenerate, and then {yi}M
i=1 = {xi+(N−M)}M

i=1 are the eigenvectors
sharing the eigenvalue λi.
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Finally, if we take the dot product w.r.t. yj , we have

M∑
k=1

yT
j Āyk βk = λ̄i βj . (32.8)

The above can be written as a matrix equation – define the matrix W by its
entries: Wjk = yT

j Āyk – notice that this is symmetric, then we have

W β = λ̄i β. (32.9)

Now we see the point – if you chose a linear combination of the degenerate
vectors, z defined in terms of coefficients βk, then if, as a vector, β was an
eigenvector of W, we have a “good” choice of initial unperturbed vector z2,
and we know the correction to the energy that results from perturbation.
This is an example of “lifting the degeneracy” of the initial set yk.

32.1.1 Example

As an example, take the matrix

A =

 1 1 0
1 1 0
0 0 0

 , (32.10)

this has eigenvalues λ1 = 2, λ2 = 0, and λ3 = 0, and eigenvectors:

x1 =
1√
2

 1
1
0

 y1 =
1√
2

 −1
1
0

 y2 =

 0
0
1

 . (32.11)

In this case, yT
1 y2 = 0 already, so we do not have to go through a process

of orthogonalization.

Take the perturbation matrix to be

Ā =

 0 0 0
0 0 1
0 1 1

 , (32.12)

2Of course, this begs the question: “When can you find a simultaneous eigenvector of
the matrices W, A and Ā” . . .
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then we have the matrix W given by

W =
(

yT
1 Āy1 yT

1 Āy2

yT
2 Āy1 yT

2 Āy2

)
=

1√
2

(
0 1
1
√

2

)
. (32.13)

We are trying to find the linear combination z = β1 y1 + β2 y2, so what we
want to do, referring to (32.9) is find the eigenvectors and eigenvalues of W –
the eigenvalues themselves are the perturbations to the original degenerate
eigenvalue of A (i.e. λ2 = λ3 = 0) – for W, we have

λ̄i =
1
2

(
1±
√

3
)
, (32.14)

with eigenvectors:

β± ∼
(

1√
2

(−1±√3
)

1

)
(32.15)

(we have left the eigenvectors unnormalized). This tells us that the partic-
ular linear combinations we should have started with, z are

z± =
1√
2

(
−1±

√
3
)
y1 + y2, (32.16)

while these are both eigenvectors of A with eigenvalue 0, they become sep-
arate eigenvectors of A + ε Ā. Notice that if we are smart, we can choose
“good” z from the start (i.e. without going through all of this), but it would
have been difficult to motivate the choice of starting vectors: x1, z+, and
z−.

Finishing the job, we have, for the matrix A + ε Ā (using primes to denote
these new eigenvalues):

λ′2 = 0 +
1
2
ε
(

1 +
√

3
)
, λ′3 = 0 +

1
2
ε
(

1−
√

3
)
. (32.17)

Returning to the original perturbation, we have

A z̄± + Ā z± = λ2 z̄± + λ̄i z±. (32.18)

To find the corrections z̄±, we can dot both sides of the above into x1:

λ1 xT
1 z̄± + xT

1 Ā z± = λ2 xT
1 z̄±. (32.19)
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Since, by assumption, the eigenvector perturbation has no contribution in
the z± directions, we have:

z̄± =
xT

1 Ā z±
λ2 − λ1

x1, (32.20)

so we expect to get the new eigenvectors:

z′+ = z+ + ε
xT

1 Ā z+

λ2 − λ1
x1

z′− = z− + ε
xT

1 Ā z−
λ2 − λ1

x1.

(32.21)

The key element in all of this was our ability to diagonalize W. For the
quantum mechanical analogue of this procedure, we often have a clue about
“good” combinations within the degenerate subspace – if there was, here,
a matrix B that commuted with both A and Ā, then we know that B has
eigenvectors that are shared with A and Ā, and it is these eigenvectors that
will guide our choice of z±, rather than the matrix W (although we are
always free to work from there).

32.2 Perturbation Theory and Quantum Mechan-
ics

All of our discussion so far carries over to quantum mechanical perturbation
theory – we could have developed all of our formulae in terms of bra-ket
notation, and there would literally be no difference between our finite real
matrices and the Hermitian operator eigenvalue problem. For example, take
the non-degenerate, first order perturbative result: For a matrix A with
eigenvectors/values Axi = λi xi, and a perturbing matrix Ā, the solution to(

A + ε Ā
)

(xi + ε x̄i) =
(
λi + ε λ̄i

)
(xi + ε x̄i) (32.22)

is
λi + ε λ̄i = λi + εxT

i Āxi

xi + ε x̄i = xi + ε

N∑
k=16=i

xT
k Āxi

λi − λk
xk

(32.23)
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If we rewrite this entire problem in bra-ket notation, what we have is:
A |xi〉 = λi |xi〉, and the perturbation results are:

λi + ε λ̄i = λi + ε 〈xi| Ā |xi〉

|xi〉+ ε |x̄i〉 = |xi〉+ ε
N∑

k=16=i

〈xk| Ā |xi〉
λi − λk

|xk〉 .
(32.24)

Our particular interest is in a Hamiltonian H and a perturbing Hamilto-
nian H ′, so that for a complete set of wavefunctions with H |ψn〉 = En |ψn〉,
we have the first order corrections forming the approximation to the eigen-
states/energies of H + εH ′:

E′i ≈ Ei + ε Ēi = Ei + ε 〈ψi| H ′ |ψi〉∣∣ψ′i〉 ≈ ∣∣ψ′i〉+ ε
∣∣ψ̄′i〉 = |ψi〉+ ε

∞∑
k=16=i

〈ψk| H ′ |ψk〉
Ei − Ek

|ψk〉 . (32.25)

There is, functionally, no difference in the argument here. One has to be a
little careful about inner products (which are now complex), and convergence
for the infinite sum, but those are details for particular cases.

32.3 Example

Let’s calculate the eigenstates and energies of the following potential:

V (x) =
{
ε x (x− a) 0 < x < a
∞ x < 0 x > a

. (32.26)

Our first question: What are H and H ′? We want to choose H so that the
unperturbed states are easy to calculate. In this case, the natural choice for
the unperturbed problem is the infinite square well. We know the solution
here, we have:

ψ′′(x) = −2mE

~2
ψ(x) (32.27)

so the solutions are

ψn(x) =

√
2
a

sin
(nπ x

a

)
n ∈ Z (32.28)

with

En =
~2 n2 π2

2 a2m
(32.29)
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as usual.

Now for the perturbation – for the energies, we need the appropriate per-
turbing Hamiltonian– in this case, H ′ = x (x− a), and (32.25) read:

E′n = En + ε

∫ a

−a
ψn(x)x (x− a) ψn(x) dx

=
~2 n2 π2

2 a2m
+ ε

∫ a

−a
x (x− a)

(
2
a

sin2
(nπ x

a

))
dx

=
~2 n2 π2

2 a2m
− ε
(
a2

6
+

a2

2π2 n2

) (32.30)

This works out well – using a simple numerical solution, we can plot the dif-
ference in the first twenty eigenvalues of the “exact” (but numerical) solution
to the perturbed problem, and compare with our theoretical prediction, the
result is shown in Figure 32.1 (for a = 1, ε = 10, in units where ~2 = 1,
m = 1

2).

n

E′
n − En

0 5 10 15 20

!1.90

!1.85

!1.80

!1.75

!1.70

Figure 32.1: The difference E′n − En computed numerically (using 100 grid
points) is shown as points, and the predicted function (32.30) is shown as a
continuous line.

The eigenvector perturbations are harder to compute, and not as dramatic.
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Homework

Reading: Griffiths, pp. 255–266.

Problem 32.1

Griffiths 6.1 a. Calculating the energy adjustments for a delta perturbation
in an infinite square well.

Problem 32.2

Griffiths 6.2. Perturbing the harmonic oscillator. Remember to write the
operator x2 in terms of raising and lowering operators.

Problem 32.3

Here, we will look at the Stern-Gerlach Hamiltonian perturbatively. Ignoring
the kinetic term, we can write:

H = −γB · S (32.31)

with
B = −αx x̂ +(B0 + α z) ẑ. (32.32)

a. Assuming α “small”, split the Hamiltonian into a piece of order α0

and one of order α (identifying H0 and H ′, effectively). Find the eigenvalues
and eigenvectors of the unperturbed Hamiltonian.

b. Calculate the correction to the two energies (associated with the
spin-up and spin-down states) implied by the H ′ term.

Problem 32.4

For the matrix:

A=̇

 0 0 0
0 0 0
0 0 1

 (32.33)
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with perturbation

Ā=̇

 1 0 0
0 2 0
0 0 0

 , (32.34)

we argued in class that the perturbed eigenvalues of A + ε Ā depended on
our choice of eigenvectors for the null space of A (which is degenerate). In
particular, we used a third matrix Q that commutes with both A and Ā and
hence shared their eigenvectors to choose a linear combination that gave
the correct answer. In this problem, you will show that this process is highly
constraining.

a. Construct a matrix Q with

[A,Q] = [Ā,Q] = 0 (32.35)

and Q 6= αA (i.e. Q is not a simple multiple of A).

b. Find the eigenvectors of the matrix Q and using these, compute λ̄1

and λ̄2, the first order corrections to the λ = 0 eigenvalue of A associated
with the perturbed matrix A + ε Ā.
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