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The program of time-independent quantum mechanics is straightforward –
given a potential V (x) (in one dimension, say), solve

− ~2

2m
ψ′′ + V (x)ψ = E ψ, (31.1)

for the eigenstates. These form a complete, orthogonal basis for all functions.
Using this adapted basis, generate generic initial configurations and time
evolve them according to

Ψ(x, t) =
∞∑

j=1

αj ψj(x) e−i
Ej
~ t

αj = Ψ(x, 0) · ψj .

(31.2)

At any given time, we have the probability density for the system, and can
calculate various physically measurable properties. If we actually perform
a measurement, the wavefunction takes on one of the eigenstates (of the
operator associated with the measurement), and returns the value of the
physical measurement for that state (part of our assumption).

The problem, as we have seen, is that solving (31.1) for all but the simplest
potentials can be difficult. We turn now to the problem of approximating
solutions – our first (and only, at this stage) tool will be perturbation theory.
The technique is appropriate when we have a potential V (x) that is closely
related to a “simple” (read “solvable”) potential V̄ (x).

31.1 Perturbation – Polynomials

Before working on a full ODE like the time-independent Schrödinger equa-
tion, let’s get the basic arguments down for a polynomial equation, where
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some of the issues are simplified.

31.1.1 Distinct Roots

Consider the roots of the polynomial

a x2 + ε x+ c = 0, (31.3)

we know the solution here, just the quadratic formula

x =
−ε±

√
ε2 − 4 a c

2 a
. (31.4)

But suppose we didn’t have/remember this. Further, suppose ε is itself a
small parameter, so that the form of (31.3) is close to easily the solvable
equation:

a x2 + c = 0 (31.5)

which has roots: x = ±i
√

c
a .

The idea behind perturbation theory is to attempt to solve (31.3), given the
solution to (31.5). Operationally, we take an ansatz for x:

x = x0 + ε x1 + ε2 x2 + . . . , (31.6)

and insert that into (31.3). Note that an implicit assumption we are making
here is that the coefficients a and c are order one, and that x itself is order
one (meaning that these quantities do not scale with ε). Inputting our form
gives:(
a x2

0 + c
)

+ ε (x0 + 2 a x0 x1) + ε2
(
x1 + a x2

1 + 2x0 x2

)
+O(ε3) = 0. (31.7)

Now for the simplifying trick – we assume that the terms of different order
in ε do not talk to each other, that each order in ε must vanish separately –
5 + ε = 0 implies that ε = −5 which is not small compared to 5. Using the
independence of order, the above gives us three equations that we can solve
separately to determine the set {x0, x1, x2}:

ε0 : a x2
0 + c = 0

ε1 : x0 + 2 a x0 x1 = 0

ε2 : x1 + a x2
1 + 2 a x0 x2 = 0.

(31.8)
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We can see how the ε = 0 equation (31.5) plays a role here, it is the ε0

equation that starts off the process by allowing us to solve for x0. Notice
the cascade here, knowing x0 = ± i

√
c
a , we can solve for x1 (we don’t

actually need x0 to find x1 in the current case, but in general, we have a
hierarchy of equations and perturbative dependence):

±i
√
c

a
(1 + 2 a x1) = 0 −→ x1 = − 1

2 a
, (31.9)

and by knowing x0 and x1, we can find x2:

− 1
2 a

+
1

4 a
± 2 i a

√
c

a
x2 = 0 −→ x2 = ∓ i

8 a2
√

c
a

. (31.10)

Putting it all together, we have, through order ε2, the solution:

x = x0 + ε x1 + ε2 x2 = ±i
√
c

a
− ε

2 a
∓ i ε2

8 a2
√

c
a

. (31.11)

Here it is easy to compare with (31.4): Expanded in powers of ε via Taylor
series (31.4) is

x =
1

2 a

(
−ε±

√
4 a c i

√
1− e2

4 a c

)
∼ 1

2 a

(
−ε± i

√
4 a c

(
1− ε2

8 a c

))
= ± i

√
c

a
− ε

2 a
∓ i ε2

8 a2
√

c
a

.

(31.12)
Here everything works out well. In some cases, we need to be more careful1.

31.1.2 Degenerate Roots

In the preceding example, the roots of the “unperturbed” (ε = 0) equation
where separate, and we were effectively calculating corrections to each root
separately. There is another case that has an analogue in our quantum
mechanical calculations – suppose we had, for the unperturbed equation,
the quadratic polynomial with degenerate roots:

x2 − 2x+ 1 = 0, (31.13)
1Think of what happens when we have ε x2 + b x+ c = 0, for example.
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for which x = 1. Now if we introduce a perturbation, and define the per-
turbed equation via:

x2 − 2x+ (1 + ε) = 0, (31.14)

and take, again, x = x0 + ε x1 (this time, we will find only the first correc-
tion), then:

0 =
(
x2

0 − 2x0 + 1
)

+ ε (2x0 x1 − 2x1 − 1) +O(ε2) (31.15)

and our ε0 equation reproduces (31.13), with x0 = 1. But now, we have
no way to satisfy the ε equation, which becomes −1 = 0. What happened?
Think of the assumption we’ve made – we want x to be order unity, with
corrections coming at order ε, but this ignores the quadratic term, which
makes no contribution to ε order, we have, apparently, gone out too far in
ε without taking into account potential corrective terms. Suppose we start,
then, with

x = x0 +
√
ε x1. (31.16)

Then the perturbed equation becomes:(
x2

0 − 2x0 + 1
)

+
√
ε x1 (2x0 − 2) + ε

(
1 + x2

1

)
= 0 (31.17)

and now the original solution x0 = 1 satisfies the
√
ε equation, and we can

move on to the ε equation, where we learn that x1 = ±i, giving us two
perturbed solutions:

x0 = 1± i
√
ε, (31.18)

and splitting the degenerate root structure of the original equation (31.13).

31.2 Perturbation for ODEs

The same approach will work for ODEs, with similar caveats. Take the
unperturbed equation:

ẍ(t) + x(t) = 0 x(0) = A ẋ(0) = 0, (31.19)

a harmonic oscillator that starts from rest. The solution is x(t) = A cos(t).
Now suppose we want to solve

ẍ+ x− ε x = 0 x(0) = A ẋ(0) = 0, (31.20)

corresponding to a small frequency shift. We make the usual ansatz:

x(t) = x0(t) + ε x1(t) (31.21)
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in order to generate the first order corrections. Then the ODE becomes:

(ẍ0 + x0) + ε (ẍ1 + x1 − x0) +O(ε2) = 0. (31.22)

The solution to the ε0 equation is just x(t) = A cos(t) as in the unperturbed
case. Our ε1 equation reads:

ẍ1 + x1 − x0 = 0 (31.23)

which looks like a driven harmonic oscillator, with driving force A cos(t).
We know how to solve this equation in general, but what should we do
about the boundary conditions? In this case, the full boundary conditions
are satisfied by the x0(t) solution, so we must have: x1(0) = 0 and ẋ1(0) = 0.
Then the solution to the ε1 ODE is:

x1 =
1
2
Ax0 t sin(t) (31.24)

and our full solution is

x(t) = A cos(t) +
1
2
Aε sin(t) t (31.25)

We can compare this with the Taylor expansion of the exact solution in this
case:

A cos
(√

1− ε t
)
∼ A cos(t) +

1
2
εA sin(t) t. (31.26)

So to order ε, we have the correct answer.

31.3 Perturbation for Eigenvalue Problem

We have seen how perturbation theory works, and what we need to do
to get ODE solutions, the final element we need to consider to approach
Schrödinger’s equation perturbatively is to look at the perturbation of the
eigenvalue equation itself. The twist is that we are looking for both eigen-
vectors and eigenvalues, and it is easiest to see how this will work out in the
finite matrix case.

Take a symmetric real matrix, A = AT (so that we know the eigenvectors
are complete and can be made orthonormal) in IRN×N . Suppose we know
the eigenvectors and eigenvalues of this matrix:

Axi = λi xi, (31.27)
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for i = 1 → N , and we know that each eigenvalue has a distinct eigen-
vector (no degeneracy). We have constructed our eigenvectors so as to be
orthonormal: xi ·xj = δij . Now we make a small perturbation to the matrix,
A −→ A + ε Ā, and we want to know how the eigenvalues and eigenvectors
change under this perturbation. So introduce λ̄i and x̄, that are themselves
order ε corrections:

xi −→ xi + ε x̄i λi −→ λi + ε λ̄i, (31.28)

then the eigenvalue problem reads:(
A + ε Ā

)
(xi + ε x̄i) =

(
λi + ε λ̄i

)
(xi + ε x̄i) . (31.29)

Expanding this, and keeping only those terms of order ε, we have:

A x̄i + Āxi = λi x̄i + λ̄i xi. (31.30)

This seems like it will not be enough to determine both λ̄i and x̄i. But wait,
since x̄i ∈ IRN , it has a decomposition in terms of the set {xi}Ni=1:

x̄i =
N∑

j=1

αj xj , (31.31)

so that we can rewrite the first order equation as

N∑
j=1

αj λj xj + Āxi = λi

N∑
j=1

αj xj + λ̄i xi. (31.32)

Take the dot product of this equation with xi, keeping in mind the presumed
orthonormality:

αi λi + xT
i Āxi = λi αi + λ̄i, (31.33)

and we see that we can solve the above for λ̄i:

λ̄i = xT
i Āxi. (31.34)

Now for the eigenvector, we want to find, effectively, all of the coefficients
αj in the decomposition (31.31). Returning to the equation (31.32), we can
take the dot-product w.r.t. all xk, not just the ith one – multiplying both
sides by xT

k gives
αk λk + xT

k Āxi = λi αk, (31.35)
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and we can solve this for the αk:

αk =
xT

k Āxi

λi − λk
. (31.36)

The only potential problem comes when we have λi = λk – the equation
corresponding to this case is the one we used to determine the correction to
λi, and evidently, the equation itself is degenerate there. How, then, to find
αi itself? The whole perturbation analysis is neutral to the contribution of
xi, that’s what (31.33) says. And we are, in fact, free to set αi = 0.

The final eigenvector perturbation is

x̄i =
N∑

k=16=i

xT
k Āxi

λi − λk
xk. (31.37)

Homework

Reading: Griffiths, pp. 249–254.

Problem 31.1

For the ODE:

ẋ(t)− x(t) + ε x(t)2 = 0 x(0) = A, (31.38)

a. Take x(t) = x0(t) + ε x1(t) and solve for x0(t) and x1(t) to find the
first-order perturbative solution.

b. Solve (31.38) directly (use Mathematica only as a last resort), and
Taylor expand your result in ε, compare with your perturbative solution.

Problem 31.2

For the matrix:

A=̇
(

1 0
0 −1

)
, (31.39)

7 of 8



31.3. PERTURBATION FOR EIGENVALUE PROBLEM Lecture 31

find the eigenvalues and orthonormal eigenvectors.

Introduce the perturbation:

Ā=̇
(

1 0
2 0

)
, (31.40)

and calculate the first order correction to the eigenvalues (the matrix of
interest, now, is A + ε Ā) and eigenvectors.
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