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We can consider simple models of solids – these highlight some special tech-
niques.

30.1 An Electron in a Box

We begin our discussion of solids by considering a single electron confined
to a box – the three-dimensional infinite square well potential:

V (x, y, z) =
{

0 0 < x < `x, 0 < y < `y and 0 < z < `z
∞ otherwise

(30.1)

This is just three copies of the one-dimensional problem, and we quote the
result – it is, as an aside, very similar to the cavity EM modes from elec-
trodynamics. All three directions are periodic (under a separation ansatz
ψ(x, y, z) = X(x)Y (y)Z(z), and the boundary conditions at x = 0, y = 0,
z = 0 give us the following:

X(x) = A sin(kx x) Y (y) = B sin(ky y) Z(z) = C sin(kz z). (30.2)

The requirement that the wavefunction vanish outside the box, together
with continuity at the boundary also imposes X(`x) = Y (`y) = Z(`z) = 0,
which, as usual, leads to quantization of the allowed modes:

kx =
nx π

`x
ky =

ny π

`y
kz =

nz π

`z
(30.3)

for independent integers (nx, ny, nz). Now, the total energy of the configu-
ration, from Schrödinger’s equation, is

− ~2

2m
∇2 ψnx,ny ,nz = E ψnx,ny ,nz −→ E =

~2

2m
(
k2
x + k2

y + k2
z

)
. (30.4)
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So if we think of a vector k = kx x̂+ky ŷ+kz ẑ, the energy is just E = ~2 k2

2m .
In this setting (as a Fourier transform type of object), the vector k is known
as a “wave-vector”.

The actual values for the wave-vector are restricted since they must satisfy
the boundary conditions from above. For a grid of points in the vector
space defined by the axes kx, ky and kz, each integer vertex represents an
allowed single-electron state – but the vertices are equivalent to the cubes
of which they are one corner. This is easiest to see in two-dimensions as
in Figure 30.1.
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Figure 30.1: A two-dimensional lattice in k-space. We have integer spacings
in x: π

`x
and in y: π

`y
. The arrow from each box points to its associated

vertex, showing a one-to-one correspondence between vertices and boxes.

In three dimensions, we can also associate the cubical boxes (now) with a
single vertex. Hence the density of states is 1 per box of volume π

`x
π
`y

π
`z

, or

k-volume per state =
π3

`x `y `z
=
π3

V
−→ ρstates =

V

π3
(30.5)

in k-space, with V ≡ `x `y `z.

30.1.1 Multiple Electrons

Now in a solid, there are typically a few electrons associated with each
atom that are “free to roam”, contributing a sea of electrons that could,
potentially, be bound up in our box. If we have N atoms, each contributing
q electrons, then we have a huge number of atoms that can be in our box.
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Electrons are fermions, so in any particular state, we can have (at most)
two electrons paired in either a singlet or triplet state – this is a manifesta-
tion of the Pauli exclusion principle, and comes, mathematically, from the
antisymmetrized wave function of fermions: For two electron wavefunctions
occupying the same spatial state, ψ1 = ψ1,1,1 and ψ2 = ψ1,1,1, we must
have an antisymmetric spin state (singlet) to make the total wavefunction
antisymmetric, as nature demands1. Our current goal is to calculate the
total energy associated with N q electrons. Keep in mind that in k-space, a
radius corresponds to an energy, and all states at a particular radius have
the same energy.

Consider a sphere in k-space – we need only consider the kx, ky, kz > 0
octant of that sphere since our solutions are all for positive integer con-
stants. For a sphere of radius kf , the volume of our positive octant is

V+ = 1
8

(
4
3 π k

3
f

)
. The energy density of states is V

π3 from above, and N q

electrons represent 1
2 N q total states (since there can be two electrons per

state). The radius of the sphere in k-space that allows all N q electrons to
exist, two per state can be found from:

1
8

(
4
3
π k3

f

)
ρstates =

N q

2
. (30.6)

This serves to define the sphere of radius k (and hence energy) taken up by
Nq electrons, the so-called “Fermi surface” of radius kf :

kf =
(

3π2N q

V

)1/3

. (30.7)

We are imagining a large number of atoms contributing at least one electron
(N is on the order of Avogadro’s number, for example), and then even
though the “boundary” at the Fermi surface is not truly spherical, we can
approximate it as spherical in order to calculate the total energy of the
configuration. A small shell dk at radius k (one octant) has infinitesimal
volume:

dVk =
1
8

4π k2 dk, (30.8)

and the total number of electron states lying within this shell is

ds = ρstates dVk =
V

π3

π k2

2
dk. (30.9)

1You might ask whether it is possible to have, say, three electrons in the same spatial
state – then we just need a totally antisymmetric spin state for them to occupy – does
such a state exist?
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Each state has energy ~2 k2

2m and can hold two electrons, so the energy asso-
ciated with the infinitesimal volume dVk is

dE =
~2 k2

m
ds =

V k4 ~2

2π2m
dk. (30.10)

To find the total energy of the free electron gas, we integrate the energy in
each shell from k = 0→ kf :

E =
V ~2

2π2m

1
5
k5
f =

~2 π4/3 (3N q)5/3

10mV 2/3
. (30.11)

This energy is calculated in k space, but the final result depends on the
volume of our (spherical) box – we can ask, for example, what the electron
gas pressure on the walls of the box is. For an ideal gas, dW = P dV , so we
can take the energy change associated with a volume change and find the
effective pressure

P = −dE
dV

=
2
3
E/V. (30.12)

We have here a force (per unit area) not associated with any fundamen-
tal force of nature, there is nothing in this calculation but non-interacting
electrons confined to a box. Nevertheless, it is a real measurable effect.

30.2 Lattice Potential

A refinement of the free electron gas introduces fixed nuclei – we imagine
that the electrons move around under the attractive influence of the atomic
nuclei fixed on some grid. To understand the basic physics of the model (orig-
inally introduced by Kronig-Penney), we can take a simple one-dimensional,
periodic train of delta spikes.

Consider a set of equally spaced delta spikes, separated by a distance `,
and given some scale α, so that each contributes Vδ = α δ(x − j `) to the
potential (j ∈ Z). We assume that the potential continues “forever” (i.e.
that there are a large number of nuclei), and that the wave-function must
be bounded in magnitude (not going to infinity at spatial infinity). The
potential is shown in Figure 30.2.

The wave function can be thought of as a piecewise function – in between
each spike, we must satisfy − ~2

2m ψ′′(x) = E ψ(x), and we know the solution
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!
x

V (x)

Figure 30.2: An infinite string of Dirac spikes separated by equal distance
`.

for the jth wave function (the one defined for j ` ≤ x ≤ (j + 1)x):

ψj = Aj cos(k x) +Bj sin(k x) k2 ≡ 2mE

~2
(30.13)

From the boundary conditions appropriate to the delta spike, we can relate
the solution ψj+1 to ψj :

ψj((j+1) `) = ψj+1((j+1) `) ψ′j+1((j+1) `)−ψ′j((j+1) `) =
2mα

~2
ψj((j+1) `).

(30.14)

If we think of a local xj = x− j ` that goes, in each “cell” from 0→ `, then
we can write the connection between any two cells as:

ψj(xj = `) = ψj+1(xj+1 = 0)

ψ′j+1(xj+1 = 0)− ψ′j(xj = `) =
2mα

~2
ψj+1(xj+1 = 0).

(30.15)

In terms of the coefficients, we have:

Aj+1 = Aj cos(k `) +Bj sin(k `)

k Bj+1 − k Bj cos(k `) + k Aj sin(k `) =
2mα

~2
Aj+1

(30.16)

and we can write this in terms of the transfer matrix:(
Aj+1

Bj+1

)
=
(

cos(k `) sin(k `)
2mα
~2 k

cos(k `)− sin(k `) 2mα
~2 k

sin(k `) + cos(k `)

)
︸ ︷︷ ︸

≡M

(
Aj
Bj

)
.

(30.17)

Now we can move directly to the solution ψj+1 by multiplication:(
Aj+1

Bj+1

)
= Mj

(
A0

B0

)
, (30.18)
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and this multiplication is dominated by the behavior of the eigenvalues of
M – if the eigenvalues have magnitude > 1, it will diverge from some initial
set of coefficients, to infinity. So to get a well-behaved wave-function, we
must have both of the eigenvalues of M bounded in magnitude by 1.

The eigenvalues of this two-by-two matrix are easy to write out:

λ± = cos(k `)+
mα

~2 k
sin(k `)±

√
sin(k `)

(
2mα

~2 k
cos(k `) +

(
m2 α2

~4k2
− 1
)

sin(k `)
)
.

(30.19)
Without worrying about the complex magnitude, suppose we set each of
these separately equal to a function of k, f±(k) – then we can solve for
f+(x) + f−(x) by substitution

f+(x) + f−(x) = 2 cos(k `) +
2mα

~2 k
sin(k `). (30.20)

Our requirement is that the functions f±(k) be, individually, less than or
equal to one in absolute value, so that the infinite matrix multiplication
converges (to ±1 or 0), and this gives us a constraint on the energy k =√

2mE
~2 – we have admissable solutions only when∣∣∣∣ cos(k `) +

mα

~2 k
sin(k `)

∣∣∣∣ ≤ 1. (30.21)

Defining the unitless constants mα`
~2 k
≡ β, and k ` = z, our requirement is∣∣∣∣ cos(z) +
β

z
sin(z)

∣∣∣∣ ≤ 1. (30.22)

Now for the physical point – looking at the solutions to this inequality for
various β (delta strengths), we see that there are “gaps” in the energy, where
there is no valid solution for k, and “bands” where k varies continuously. As
an example, take β = 2 – we show the value of the left-hand side of (30.22),
together with a function that is 1 when there are allowed solutions, 0 oth-
erwise in Figure 30.3.

While this is a simple one-dimensional picture, the idea carries over to two
and three dimensions. In our electron gas model, there was a continuum
of energies allowed, but when we introduce a periodic potential (due to
whatever mechanism), we find that there are “continuum” regions, where
electrons can gain energy (filling the band), and then gaps, where we need
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2 4 6 8 10 12
0

1

2

3

4

z

z

β = 2

β = 8

2 4 6 8 10 12
0

1

2

3

4

Figure 30.3: The left-hand side of (30.22) and a step function to show the
allowed regimes for β = 2, 8.

to add some amount of energy to get an electron through to the next band.
Materials with significant gap structure are insulators, difficult to get elec-
trons moving (you have to input energy in a filled band to get the electron
to cross it) – materials where a band is relatively unfilled are conductors – it
takes very little energy to move an electron (since there is a local continuum
of energies for it to exist in).

Homework

Reading: Griffiths, pp. 218–229.

Problem 30.1

Griffiths 5.16. Calculation of “exclusion pressure” for copper.

Problem 30.2

We found the Hamiltonian of a classical particle of mass m and charge q
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in the presence of a magnetic field (but no electrostatic field):

H =
1

2m
(p− qA) ·(p− qA) (30.23)

where A is the magnetic vector potential.

a. For B = B0 ẑ, find an appropriate vector potential A with ∇·A = 0
– use cylindrical coordinates.

b. Write (but do not solve) the time-independent Schrödinger equation
for this Hamiltonian, using the usual identification p −→ ~

i ∇. Expand out
all terms, assuming ψ = ψ(s, φ) in cylindrical coordinates to get a second
order PDE in s and φ.

Problem 30.3

For the following polynomial:

x2 + ε x− c = 0. (30.24)

a. Find the roots using the quadratic equation. Expand the two roots,
assuming ε is small (ε� 1 and c ∼ 1) through first order in ε.

b. Go back to the polynomial, and input the ansatz: x = x0 + ε x1.
Expand the polynomial and collect terms of order ε0 and ε1. Set each of
the resulting expressions equal to zero separately to find x0 and x1 (the
argument here is that for ε small, we cannot have cancellation of terms of
different order in ε – so each order in ε must be zero separately). Compare
with your expansion from part a.
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