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Just as quantum mechanics in one dimensions is meant to motivate and
inform (and, in some specific cases, to model), quantum mechanics applied
to a single particle in an external field is a fundamentally incomplete, albeit
useful, exercise. After all, an electron is not alone in the universe with a
Coulomb field. Something is generating the Coulomb field, and we are honor
bound to treat the entirety of the system, not just the electron in isolation.
Indeed, we can establish the relative correctness of an electron in isolation
only by considering its relation to other electrons and particles.

This is the task we now undertake: A description of wavefunctions of sys-
tems. Particles in isolation is itself a classical concept – fundamentally,
quantum particles and more generally, quantum fields are all part of the
“master wave-function of the universe”. Think of the program of multi-
particle classical mechanics: We have a position vector r(t) ∈ IR3N for N
particles, and the goal is to find the motion of each particle from Newton’s
second law (or some Euler-Lagrange equivalent). In the quantum mechan-
ical analogue of this problem, the wave function is still the goal, but it is
not as if there are ψ ∈ IR3N wavefunctions to find, instead we want a wave
function with 3N coordinates (plus time, of course).

28.1 Multi-Particle Wave Functions

It is easy to think about what we mean by multiple particles interacting
in quantum mechanics. Take two particles with some interaction potential
V (r1, r2) for particle coordinates r1 and r2. Then the classical Hamiltonian

H =
p2
1

2m1
+

p2
2

2m2
+ V (r1, r2) (28.1)
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becomes the quantum mechanical operator

H = − ~2

2m1
∇2

1 −
~2

2m2
∇2

2 + V (r1, r2) (28.2)

where ∇1 is the gradient operator w.r.t. the first particle’s coordinates, ∇2

refers to the second particle’s. Our wave function is now Ψ(r1, r2, t), a func-
tion of the six coordinates and time. The statistical interpretation carries
over:

|Ψ(r1, r2, t)|2 dτ1 dτ2 (28.3)

is the probability of finding particle 1 in the volume dτ1 about r1 and particle
2 in the volume dτ2 about r2. The normalization is over all possible locations
of the first and second particles∫

|Ψ|2 dτ1 dτ2 = 1. (28.4)

Finally, provided the potential is time-independent, we can separate Schrödinger’s
equation as usual, letting Ψ(r1, r2, t) = e−i E t

~ ψ(r1, r2) with ψ solving the
time-independent eigenvalue equation:(

− ~2

2m1
∇2

1 −
~2

2m2
∇2

2 + V

)
ψ = E ψ. (28.5)

28.2 Distinguishable and Indistinguishable Parti-
cles

Consider a separable potential, i.e. one which acts only on one particle or the
other, V (r1, r2) = V1(r1) + V2(r2), then Schrödinger’s equation itself sepa-
rates, and we can consider a wavefunction that is a multiplicative separation
ψ(r1, r2) = ψ1(r1)ψ2(r2). The two particles are each in some individual
state of the sort we have been considering (in our one-particle discussions),
and they only combine in the sense that a full system’s Hamiltonian must
include all particles in the system.

The above separation assumes it is possible to distinguish between the par-
ticles somehow: They have different masses, or interact differently with a
potential. For indistinguishable particles (like any two electrons, same mass,
same interaction), we can have either particle in either state (just a rela-
belling r1 ↔ r2, ultimately integrated over anyway). So which should be put

2 of 9



28.2. DISTINGUISHABLE AND INDISTINGUISHABLE PARTICLESLecture 28

in which state? There are two obvious choices, adjusted by normalization:

ψ±(r1, r2) = A (ψ1(r1)ψ2(r2)± ψ1(r2)ψ2(r1)) . (28.6)

The two choices are fundamentally different, particles that combine accord-
ing to the positive sign are called bosons and particles that combine accord-
ing to the bottom one are called fermions. There is an easy (but deep)
way to characterize fermions and bosons by their spins – all particles with
integer spin are bosons, all particles with half-integer spin are fermions. So
nature tells us which sign to choose based on which type of particle we are
considering. Fermions, using the minus sign above, cannot occupy the same
state, since then ψ1 = ψ2 and ψ− = 0, a statement of the Pauli exclusion
principle. No such restriction holds for bosons.

If we define the exchange operator P that acts on the composite wavefunc-
tion via: P ψ(r1, r2) = ψ(r2, r1), then if a Hamiltonian is defined for the
indistinguishable particles, it must have m1 = m2 and V (r1, r2) = V (r2, r1)
so that H(1↔ 2) = H. In this case, the Hamiltonian commutes with P :

[P,H] f(r1, r2) = H(1↔ 2) f(r2, r1)−H f(r2, r1) = 0. (28.7)

Then there are mutual eigenstates of P and H. The eigenstates of P have
eigenvalue ±1 – to see this, suppose we have an eigenstate ψ(r1, r2) – that
is, P ψ(r1, r2) = αψ(r1, r2), then applying P again (to any function, eigen-
function or not) gives back ψ(r1, r2) (exchange twice), so

P (Pψ(r1, r2)) = α2 ψ(r1, r2) −→ α = ±1. (28.8)

We see that the symmetry/antisymmetry of a wavefunction is allowed since
ψ is a simultaneous eigenstate of P and H, so it is possible to find eigenstates
of H that have

ψ(r1, r2) = ±ψ(r2, r1). (28.9)

In fact, this is strengthened by the natural observation that eigenstates of
H for identical particles must be in either a symmetric or antisymmetric
state – not just can be. So our “choice” of bosons or fermions is forced, and
exhaustive.
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28.3 Identical, Non-Interacting Electrons

We have not included spin as a part of the wavefunction yet, but it is easy
to do. Consider two non-interacting electrons, so that the Hamiltonian is(
− ~2

2m
∇2

1 −
~2

2m
∇2

2 + V1(r1) + V2(r2)
)
ψ(r1, r2) = E ψ(r1, r2), (28.10)

for the spatial wavefunction. But this H commutes with the total spin oper-
ator S2, so that we must be able to find eigenstates of each. The eigenstates
of S2 for two electrons are just the singlet and triplet configurations that we
saw last time. The exchange operator P is not just a matter of interchang-
ing the spatial positions, we must also interchange the spins, and it is the
combination of the two that must be antisymmetric or symmetric. To be
explicit, we can write P = Pr Pm, the spatial and spin exchanges together
form the full exchange.

The wavefunction can be thought of as ψ(r1, r2) = φ(r1, r2)χ where χ is
the spin portion1, and φ(r1, r2) is the spatial portion satisfying the above
time-independent Schrödinger equation. Now suppose we choose the singlet
configuration for the spins, i.e.

χ =
1√
2

(∣∣∣∣12 1
2

〉 ∣∣∣∣12 − 1
2

〉
−
∣∣∣∣12 − 1

2

〉 ∣∣∣∣12 1
2

〉)
(28.11)

then Pmχ = −χ, since χ is antisymmetric in the interchange of the two
electrons. Since electrons are fermions, the entire wavefunction must be
antisymmetric, which tells us that Prφ = +φ, i.e. we take the symmetric
combination for the spatial wavefunction (denoted by + to indicate that it
is the zero-total-spin singlet form – symmetric):

φ+(r1, r2) =
1√
2

(φ1(r1)φ2(r2) + φ1(r2)φ2(r1)) (28.12)

where φ1(r1) is the solution to the 1 portion of the above Hamiltonian (a
one-particle state) and φ2(r2) is the solution to the 2 portion.

The triplet, s = 1 eigenstates of S2 are all symmetric in interchange of
the two electrons, hence the spatial wavefunction must be antisymmetric to
make the entire wavefunction antisymmetric: Prφ = −φ, and here we take

φ−(r1, r2) =
1√
2

(φ1(r1)φ2(r2)− φ1(r2)φ2(r1)) . (28.13)

1Notice that the χ spin part of the wavefunction does not itself separate multiplicatively.
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Now, the point – if we ask what is the probability that one particle is
in vicinity dτ1 of r1 and that the second particle is in vicinity dτ1 of r2,
the answer, according to our statistical interpretation, is (this is a spatial
question, spins don’t matter)

|φ|2 dτ1 dτ2 =
1
2

[
|φ1(r1)|2 |φ2(r2)|2 + |φ1(r2)|2 |φ2(r1)|2

±(φ∗1(r1)φ1(r2)φ∗2(r2)φ2(r1) + φ1(r1)φ∗1(r2)φ2(r2)φ∗2(r1))
]
dτ1 dτ2

=
1
2

[
|φ1(r1)|2 |φ2(r2)|2 + |φ1(r2)|2 |φ2(r1)|2

± 2 Re(φ∗1(r1)φ1(r2)φ∗2(r2)φ2(r1))
]
dτ1 dτ2.

(28.14)
It is only the final term that distinguishes between the singlet and triplet
states. In the triplet (minus sign) case, the probability of finding the elec-
trons at the same location (r1 = r2) is zero, and the electrons “avoid”
each other. For the singlet, it is more likely to find the electrons occupying
the same spatial location. In addition, we can see why a free electron on
one side of the room can be taken as spatially distinct from an electron on
the other – if we think of r1 and r2 as widely separated, with φ1(r) large
near r1 and φ2(r) large around r2, then the dominant term above is just
|φ1(r1)|2 |φ2(r2)|2. But this is the probability density for two independent
particles – meaning that we can treat them separately.

28.4 Exchange “Force”

The above calculation (28.14) has a term that depends on the symmetriza-
tion or antisymmetrization of the state, and it is called the “exchange den-
sity”. In general, there will be an observable difference associated with the
symmetry requirements. If we ignore spin, and consider just the spatial
wavefunction ψ± with ψ+ for bosons, ψ− for fermions, we can character-
ize a sort of symmetry pressure by considering the expectation value of the
distance between the two particles (squared so we don’t get cancellation) –
we’ll work in one dimension here for simplicity:

〈(x1 − x2)2〉 = 〈x2
1〉+ 〈x2

2〉 − 2 〈x1 x2〉. (28.15)
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28.4.1 Distinguishable Particles

If ψ = ψ1(r1)ψ2(r2), so that we are talking about two different particles,
then we just need the usual expectation values:

〈x2
1〉 =

∫
ψ1(x1)∗ x2

1 ψ1(x1) dx1

∫
ψ∗2(x2)ψ2(x2) dx2 = 〈x2〉1

〈x2
2〉 = 〈x2〉2

〈x1 x2〉 = 〈x〉1 〈x〉2

(28.16)

where the top line shows how the calculation goes, and we write 〈x2〉1 (and
similarly for 〈x2〉2) to indicate that we just have the x2 expectation value
w.r.t. the state ψ1(x). Our distinguishable particles are then, on average,

〈(x1 − x2)2〉di = 〈x2〉1 + 〈x2〉2 − 2 〈x〉1 〈x〉2. (28.17)

28.4.2 Indistinguishable Particles

Here, we have

ψ± =
1√
2

(ψ1(x1)ψ2(x2)± ψ1(x2)ψ2(x1)) . (28.18)

The relevant expectation values are

〈x2
1〉 =

1
2

[
〈x2〉1 + 〈x2〉2 ±

∫
ψ∗1(x1)x2

1 ψ2(x1) dx1

∫
ψ∗2(x2)ψ1(x2) dx2

±
∫
ψ∗2(x1)x2

1 ψ1(x2) dx1

∫
ψ∗1(x2)ψ2(x2) dx2

]
,

(28.19)
and provided ψ1(x) 6= ψ2(x) (in the fermion case, at least, they cannot) –
then orthonormality gives

∫
ψ∗1(x)ψ2(x) dx = 0, and the above reduces to

〈x2
1〉 = 1

2 (〈x2〉1 + 〈x2〉2). The expectation value 〈x2
2〉 = 〈x2

1〉 since there is
no distinguishing between the particles.
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The difference comes in the cross-term, of course:

〈x1 x2〉 =
1
2

[ ∫
ψ∗1(x1)x1 ψ1(x1) dx1

∫
ψ∗2(x2)x2 ψ2(x2) dx2

+
∫
ψ∗1(x2)x2 ψ1(x2) dx2

∫
ψ∗2(x1)x1 ψ2(x1) dx1

±
∫
ψ∗1(x1)x1 ψ2(x1) dx1

∫
ψ∗2(x2)x2 ψ1(x2) dx2

±
∫
ψ∗2(x1)x1 ψ1(x1) dx1

∫
ψ∗1(x2)x2 ψ2(x2) dx2

]
= 〈x〉1 〈x〉2 ± 〈x〉212

(28.20)

where the last term is just the obvious
∫
ψ∗1(x)xψ2(x) dx. Written in terms

of the distinguishable case, we have

〈(x1−x2)2〉ind± = 〈x〉21+〈x〉22−2
(
〈x〉1 〈x〉2 ± 〈x〉212

)
= 〈(x1−x2)2 〉di∓2 〈x〉212,

(28.21)
so for the bosonic + case, the particles are slightly closer together than
distinguishable particles, and for fermions, they are slightly further apart.
Again, we see that the cross term goes away if the wave functions do not
significantly overlap, another indication that localization (i.e. a classical in-
terpretation) works at some level.

The “force” is fictitious in a classical sense, but we can think of a bosonic at-
tractive force pulling two electrons closer together, and a fermionic repulsive
force tending to push two particles apart, this is the so-called “exchange”
force.

28.5 Atoms and the Periodic Table

The discussion of non-interacting electrons in the presence of some central
potential is the crudest possible model for multi-electron atoms. Electrons,
of course, interact via electrostatics (at the very least), so throwing out the
interaction potential cannot be quite right. Yet, the basic physics of spin
and statistics does inform atomic structure, up to a point.
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Homework

Reading: Griffiths, pp. 201–210.

Problem 28.1

Form the eigenstates of J2 for J = L + S with ` = 1, s = 1
2 (think of an

electron in some ` = 1 state of Hydrogen, while ignoring the proton spin) –
you will get four states of angular momentum 3

2 and two states of angular
momentum 1

2 (that’s j = 1+ 1
2 and j = 1− 1

2). Use the ladder approach to
explicitly construct all states by finding the “top” state and working down
to the bottom. Check your decompositions using the Clebsch-Gordon table
(Table 4.8 on p. 188).

Problem 28.2

For two particles in an infinite well (with length a), we can calculate the
expectation value of the distance between them: 〈(x1−x2)2〉. Here, you will
work out the expectation values explicitly for three separate configurations
(these are purely spatial examples, do not worry about the spin):

a. Take the two particles to have distinct masses, m1 and m2 (unre-
lated). Write the wave function for the stationary state with energy

E =
π2 ~2

2 a2

(
1
m1

+
4
m2

)
, (28.22)

and compute 〈(x1 − x2)2〉 for this state (don’t forget to integrate over all
possible values for x1 and x2).

b. Now assume the particles are indistinguishable (so m1 = m2), then
we can form, from your wavefunction in part a., the symmetric and anti-
symmetric states (under particle interchange):

ψ±(x1, x2) =
1√
2

2
a

(
sin
(π x1

a

)
sin
(

2π x2

a

)
± sin

(π x2

a

)
sin
(

2π x1

a

))
.

(28.23)
For each of these stationary states, find 〈(x1 − x2)2〉.
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c. If the two particles in the well are non-interacting electrons (now you
must think of the role spin is playing), and we are in the spin singlet state,
which one of the three expectation values you computed applies?
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