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We consider the physical effects of spin, and for this we need an interaction
that couples to spin. A uniform, or weakly non-uniform magnetic field can
be used to calculate approximate solutions to Schrödinger’s equation that
involve the spin of the electron (say).

With spin in place, we need to explore composite angular momentum sys-
tems. For example, in Hydrogen, we have orbital angular momentum (as-
sociated with the quantum numbers ` and m) in addition to the intrinsic
spin of the electron. What, then, are the allowed values of total angular
momentum J = L + S?

26.1 Spin and the Magnetic Field

As noted at the end of last time, there is a relation between microscopic,
point particle spin and a more macroscopic picture (the story we tell our-
selves). The most important connection is in the interaction with an external
magnetic field. This provides a Hamiltonian, and therefore definite energies
associated with the spin up and spin down configurations.

The spin of the electron allows us to think of an electron’s intrinsic mag-
netic dipole moment. We have charge e spread out through a sphere (of
zero radius) that is spinning with some angular velocity. Then the usual
Hamiltonian for a dipole moment in a magnetic field holds;

H = −γ S ·B (26.1)

where γ is the “gyromagnetic ratio” for the electron (since the electron is
a point particle, we have no clean way, classically, to calculate its dipole
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26.1. SPIN AND THE MAGNETIC FIELD Lecture 26

moment, so we simply assume the dipole is proportional to the angular
velocity and depends on the amount of charge carried by the electron) –
this turns out to be γ = − e

m . Regardless, suppose we take a homogenous
magnetic field pointing in the ẑ direction: B = B0 ẑ, then the Hamiltonian
is H = −γ B0 Sz, and we can write this in matrix form:

H=̇− γ B0 ~
2

(
1 0
0 −1

)
. (26.2)

This Hamiltonian clearly commutes with Sz (since it is, itself, proportional
to Sz and [Sz, Sz] = 0) and S2 (since [Sz, S2] = 0). Then the eigenstates of
the Hamiltonian are eigenstates of Sz, i.e. χ+ and χ−, and the eigenvalues
(allowed energies) can be determined via

Hχ+ = −γ B0 ~
2

(
1 0
0 −1

) (
1
0

)
= −1

2
B0 γ ~

(
1
0

)
, (26.3)

so that E± = ∓1
2 B0 γ ~. The lower eigenvalue is associated with spin up,

or parallel alignment (true also for classical magnetic dipole orientations).
Then a generic initial state

χ(t = 0) = cos(α)χ+ + sin(α)χ− (26.4)

(where we are ensuring that χ†χ = 1 by using a trigonometric one-parameter
family defined by α) has time-dependence given by Schrödinger’s equation:
i ~ ∂

∂t χ(t) = H χ(t):

χ(t) = cos(α) e−
i E+ t

~ χ+ + sin(α) e−
i E− t

~ χ−. (26.5)

The expectation values are given by 〈S〉, just matrix multiplication here –
take 〈Sx〉 first,

〈Sx〉 =
(

cos(α) e
i E+ t

~ sin(α) e
i E− t

~

)(~
2

) (
0 1
1 0

) (
cos(α) e−

i E+ t

~

+ sin(α) e−
i E− t

~

)
= ~ cosα sinα cos(B0 γ t).

(26.6)
By identical calculation for Sy and Sz, we obtain:

〈Sy〉 = −~ cosα sinα sin(B0 γ t) 〈Sz〉 =
1
2

~ cos(2α). (26.7)
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If we define β ≡ 2α, then sinα cosα = 1
2 sinβ, and our expectation values

are

〈Sx〉 =
1
2

~ sin(β) cos(B0 γ t) 〈Sy〉 =
1
2

~ sin(β) sin(B0 γ t) 〈Sz〉 =
1
2

~ cos(β).

(26.8)
These equations define a vector that points towards a circle of radius 1

2 ~ sinβ
and goes around the circle with frequency ω = B0 γ, the Larmor frequency.

26.2 Stern-Gerlach Experiment

Since spin interacts with the magnetic field just as classical dipole moments
do, we expect the usual sort of predictions from electrodynamics to hold –
in particular, for a dipole in a magnetic field, there is a force F = ∇ (γ S ·B).
Suppose we construct a magnetic field that points in the ẑ direction, and
has magnitude B = (B0 +αz) ẑ – note that this cannot be the full magnetic
field since ∇·B = α 6= 0, but we can ignore the other components since our
Hamiltonian is going to be determined, in this case, by Sz, that’s where the
physics plays a role.

We imagine a packet of electrons (attached to atoms, for example), moving
through a field region. From the point of view of the electrons, we have the
following time-dependent Hamiltonian:

H =
{

0 t < 0 and t > T
−γ(B0 + α z)Sz 0 < t < T

, (26.9)

so that the electrons are at rest in a region with no field (t < 0), then they
are subjected to a field (0 < t < T ), and finally, the field is turned off
(T > 0) . When in the field, the up and down spins take on two different
energies,

E± = ∓1
2

~ γ (B0 + α z). (26.10)

At time t = 0, the electrons are in some initial spin state, χ(t = 0) =
αχ+ + β χ−. Once inside the field, the spin state evolves in time according
to the usual

χ(t) = Ae−
i E+ t

~ χ+ +B e−
i E− t

~ χ− (26.11)
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and here, there is position dependence coming from the energies themselves1.
When the field is then turned off:

χ(t) = Ae
i γ B0 T

2 ei
αγ z

2
T χ+ +B e−

i γ B0 T
2 e−i

αγ z
2

T χ−. (26.12)

Now, we are thinking of a Gaussian wavepacket representing the electron,
technically, since for t < 0 and t > T , the zero-potential Hamiltonian acts,
and the solutions there are plane waves. But we know that a wavepacket
with the phase factor e±i

αγ z
2

T carries momentum in the z direction given by
〈pz〉 = ±αγT ~

2 – again, we need to think of the spin sector of the problem as
combined with “the rest” of the wavefunction, which we have not specified
explicitly. The point is, the beam will split into two beams, in this case
(where we are imagining a spin one half particle), and we will get two spots
on a screen behind the magnetic field, one where the spin up components
go, one for the spin-down components.

This experiment shows, decisively, the quantization of spin, and was an
early indicator of the quantum mechanical point of view. It gets better –
if we take the upper beam, corresponding to the (z) spin up electrons, and
measure the x-component of the spin, we will again split the beam in two,
there are two components to Sx (up and down). That’s no surprise – but if
we now take the x-spin-up beam and measure the component of spin in the
z direction, we will get . . . two beams. This is an experimental verification
of the uncertainty principle. We took only the original z-spin-up beam,
so you would expect to get no z-spin-up the second time around, but the
measurement of the x-spins somehow re-introduced z-spin-up (and down)
components.

26.3 Addition of Angular Momentum

Classically, angular momenta add, so we can talk about the total angular
momentum of, for example, a spinning, orbiting body as the sum of the
spin and orbital angular momentum vectors. The same is true for quantum
mechanical angular momentum. For Hydrogen, we can have electrons that
are in an orbital state ` = 0, 1, 2, . . . and, of course, carry there usual intrinsic

1You should be wary of such an expression – we have cobbled together a state from
a position-dependent free-particle solution and a time-dependent spinor, using an expres-
sion for “energy” that is spatially dependent. Does χ(t) in (26.11) satisfy Schrödinger’s
equation, the only metric for a successful wavefunction?
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spin s = 1
2 – we would say the total angular momentum vector operator is

J = L + S.

Of course, we need to go back one step, since in Hydrogen, the electron is
not the only particle with spin. We have been ignoring the nucleus, with its
one proton, on the grounds that Hydrogen is really a one-body problem –
the proton is heavy enough that we can consider its position fixed compared
to the electron. The proton’s spin, however, is one half (s = 1

2), just like
the electrons, and so to study the total angular momentum of Hydrogen, we
must first know how to calculate the total spin angular momentum of the
combined electron-proton system. Take Hydrogen in its ` = 0 ground state,
so there is no orbital angular momentum to confuse the issue.

The proton and electron each have spin 1
2 , so what is the total spin of

Hydrogen? Well the vector operator is

S = S1 + S2, (26.13)

as advertised, just the sum of the operators for particles one and two (the
electron and proton in this case, but we are actually in the process of gener-
ating more general addition rules). Now, the S1 operator acts only on the 1
particle, so these two operators don’t actually talk to one another. We can
form the raising and lowering operators, S± in the obvious way

S± = (S1
x ± i S1

y) + (S2
x ± i S2

y) (26.14)

and similarly for the rest of the operators of interest: S2, Sz, etc. Now sup-
pose we have a state in which both particles are “up” w.r.t. their individual
Sz operators – what is the total spin of this state, and what is its composite
Sz angular momentum? Let’s write |s1m1〉 |s2m2〉 to denote a state with
particle one in |s1m1〉 and particle two in |s2m2〉, then

Sz

(∣∣∣∣12 1
2

〉 ∣∣∣∣12 1
2

〉)
=
(
S1
z

∣∣∣∣12 1
2

〉) ∣∣∣∣12 1
2

〉
+
∣∣∣∣12 1

2

〉
S2
z

∣∣∣∣12 1
2

〉
= ~m1

∣∣∣∣12 1
2

〉 ∣∣∣∣12 1
2

〉
+ ~m2

∣∣∣∣12 1
2

〉 ∣∣∣∣12 1
2

〉
= ~

∣∣∣∣12 1
2

〉 ∣∣∣∣12 1
2

〉
.

(26.15)

Already, knowing only the z-component, we know that this state, made up
of two particles, cannot be spin 1

2 – it could be spin 1, 3/2 or higher, but we
cannot have a spin 1

2 particle with z-component of spin angular momentum
larger than s = 1

2 .
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To find out what s for the system is, we can use S2. It’s easy to construct,
although it looks bad:

S2 =
(
S1
)2 +

(
S2
)2 + S1 · S2 + S2 · S1. (26.16)

The dot product is tricky – it involves components S1
x, for example, for

which we have an explicit representation for s = 1
2 , and so we can calculate

them in that context, but what about the general case? Well, we know how
the raising and lowering operators work on generic states, so let’s write S1

x

and S2
y in terms of these:

Six =
1
2

(Si+ + Si−) Siy =
1
2
i (Si− − Si+) i = 1, 2. (26.17)

Then the dot products are:

S1 · S2 =
1
4
[(
S1

+ + S1
−
) (
S2

+ + S2
−
)
−
(
S1
− − S1

+

) (
S2
− − S2

+

)]
+ S1

z S
2
z

=
1
2
(
S1

+ S
2
− + S1

− S
2
+

)
+ S1

z S
2
z

(26.18)
and this is the same for the S2 ·S1 product (these operators commute, since
they act on different particles). Then we have

S1 · S2 |s1m1〉 |s2m2〉 =
1
2

~2
√
s1 (s1 + 1)−m1 (m1 + 1)

√
s2 (s2 + 1)−m2 (m2 − 1)×

|s1m1 + 1〉 |s2m2 − 1〉

+
1
2

~2
√
s1 (s1 + 1)−m1 (m1 − 1)

√
s2 (s2 + 1)−m2 (m2 + 1)×

|s1m1 − 1〉 |k2m2 + 1〉
+ ~2m1m2 |s1m1〉 |s2m2〉 .

(26.19)
We see the beginnings of a potential “problem” – it is not clear that just
any old pair of spin states, though they are eigenstates of their individual
operators

(
S1
)2 and

(
S2
)2, will be eigenstates of the composite operator S2.

As you can also, pretty clearly see, this won’t matter for our chosen state,
but it begs the question: When are a pair of states in a definite spin state?
And related: How can we construct states that are composite eigenstates?

Let’s return to our system, which, since it is a “top” state (w.r.t. m1 and
m2) has a much simpler product:

S1 · S2

∣∣∣∣12 1
2

〉 ∣∣∣∣12 1
2

〉
= ~2 1

4

∣∣∣∣12 1
2

〉 ∣∣∣∣12 1
2

〉
(26.20)
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(this is because S1
+

∣∣1
2

1
2

〉
= 0 and similarly for S2

+

∣∣1
2

1
2

〉
). The total S2 is

S2 |s1m1〉 |s2m2〉 = ~2

(
1
2

(
1
2

+ 1
)

+
1
2

(
1
2

+ 1
)) ∣∣∣∣12 1

2

〉 ∣∣∣∣12 1
2

〉
+ ~2 1

2

∣∣∣∣12 1
2

〉 ∣∣∣∣12 1
2

〉
= ~2 2

∣∣∣∣12 1
2

〉 ∣∣∣∣12 1
2

〉
,

(26.21)
from which we conclude s = 1. We may then write the relation:

|11〉 =
∣∣∣∣12 1

2

〉 ∣∣∣∣12 1
2

〉
, (26.22)

the combination of the two states has yielded a state with spin s = 1 and
z-component of angular momentum m = 1.

But now we are in good shape – we know how to lower the z-component of
angular momentum for a state like this, just apply the lowering operator:

S−

∣∣∣∣12 1
2

〉 ∣∣∣∣12 1
2

〉
=
(
S1
−

∣∣∣∣12 1
2

〉) ∣∣∣∣12 1
2

〉
+
∣∣∣∣12 1

2

〉(
S2
−

∣∣∣∣12 1
2

〉)
= ~

√
1
2

(
1
2

+ 1
)
− 1

2

(
1
2
− 1
)(∣∣∣∣12 1

2
− 1
〉 ∣∣∣∣12 1

2

〉
+
∣∣∣∣12 1

2

〉 ∣∣∣∣12 1
2
− 1
〉)

= ~
(∣∣∣∣12 − 1

2

〉 ∣∣∣∣12 1
2

〉
+
∣∣∣∣12 1

2

〉 ∣∣∣∣12 − 1
2

〉)
.

(26.23)
This state has m = 0 and S2 acting on it gives us s = 1 again, so it is
the |1 0〉 state, and represents an equal admixture of “up-down” and “down-
up” for the two particles. We can normalize it by introducing a factor of

1√
2 ~ , but that’s not too important. Hitting the above with S− again yields

the m = −1 state, |1 0〉 ∼
∣∣1
2 −

1
2

〉 ∣∣1
2 −

1
2

〉
, and that exhausts the spin 1

contributions.

The set of combinations that yield overall s = 1 states is called, for obvious
reasons, the “triplet”, and we can write out the fully normalized states as
follows:

|1 1〉 =
∣∣∣∣12 1

2

〉 ∣∣∣∣12 1
2

〉
|1 0〉 =

1√
2

(∣∣∣∣12 − 1
2

〉 ∣∣∣∣12 1
2

〉
+
∣∣∣∣12 1

2

〉 ∣∣∣∣12 − 1
2

〉)
|1 − 1〉 =

∣∣∣∣12 − 1
2

〉 ∣∣∣∣12 − 1
2

〉
.

(26.24)
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There is one more state of interest, and it comes from considering the “or-
thogonal” (to the above) linear combination of up-down states:

|0 0〉 =
1√
2

(∣∣∣∣12 − 1
2

〉 ∣∣∣∣12 1
2

〉
−
∣∣∣∣12 1

2

〉 ∣∣∣∣12 − 1
2

〉)
. (26.25)

This is a state whose components both have m = 0, but it is a total eigen-
state s = 0 of S2. That’s not entirely obvious, but if you think about the
dot-product terms from above, it is pretty easy to verify.

So we see that in this case, the combination of two particles, each of spin 1
2

yielded four different states, with two different total spin angular momenta
(s = 1, 0). The question becomes: How, by linear combination of composite
states, is it possible to generate eigenstates of S2? Suppose, for example,
that we have two spin 1 particles. Is there a combination that gives, for
example, |1 0〉 in there (i.e. s = 1, m = 0)? First of all, note that all we need
is the |1 1〉 case, then we can apply the lowering operator. Let’s think of
making a sum of states |1m1〉 |1m2〉, and pick m1, m2 and the coefficients
in the sum so as to construct an s = 1 eigenstate of S2. From (26.19), we
know that there will be combinations in the S2 operator that look like:

S1 · S2 |1m1〉 |1m2〉 =
1
2

~2
√

2−m1 (m1 + 1)
√

2−m2 (m2 − 1) |1m1 + 1〉 |1m2 − 1〉

+
1
2

~2
√

2−m1 (m1 − 1)
√

2−m2 (m2 + 1) |1m1 − 1〉 |1m2 + 1〉

+ ~2m1m2 |1m1〉 |1m2〉 .
(26.26)

There are really only a few choices we need to consider, since we want
m = m1 +m2 = 1, we can only have m1 = 1, m2 = 0 or m1 = 0, m2 = 1,

S1 · S2 |1 1〉 |1 0〉 = ~2 |1 0〉 |1 1〉
S1 · S2 |1 0〉 |1 1〉 = ~2 |1 1〉 |1 0〉 .

(26.27)

Now, it is clear that we must have a special combination, since the action of
the dot product on |1 1〉 |1 0〉 yields |1 0〉 |1 1〉 and vice versa. Take the full
S2 operator:

S2 |1 1〉 |1 0〉 = 2 ~2 1 (1 + 1) |1 1〉 |1 0〉+ 2 ~2 |1 0〉 |1 1〉
S2 |1 0〉 |1 1〉 = 2 ~2 1 (1 + 1) |1 0〉 |1 1〉+ 2 ~2 |1 1〉 |1 0〉 .

(26.28)

In order to form an eigenstate, we take χ ≡ α |1 1〉 |1 0〉+ β |1 0〉 |1 1〉, then

S2 χ = 2 ~2 (2α |1 1〉 |1 0〉+ α |1 0〉 |1 1〉+ 2β |1 0〉 |1 1〉+ β |1 1〉 |1 0〉)
= 2 ~2 ((2α+ β) |1 1〉 |1 0〉+ (2β + α) |1 0〉 |1 1〉)

(26.29)
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and this will be proportional to χ itself provided 2α+ β = α or β = −α, so
we take, with normalization,

χ =
1√
2

(|1 1〉 |1 0〉 − |1 0〉 |11〉) (26.30)

which has S2 χ = 2 ~2 χ, so is (correctly) spin s = 1, and has z-component
Szχ = 1 ~χ.

Finally, we can act on this state with S− = S1
− + S2

− to get the desired |1 0〉
state:

S−χ =
1√
2

(
~
√

2 |1 0〉 |1 0〉 − ~
√

2 |1 − 1〉 |1 1〉+ |1 1〉 ~
√

2 |1 − 1〉 − |1 0〉 ~
√

2 |1 0〉
)

(26.31)
suggesting that the final state of interest, normalized, is

|1 0〉 =
1√
2

(− |1 − 1〉 |1 1〉+ |1 1〉 |1 − 1〉) . (26.32)

26.4 There’s Got to be A Better Way!

There is: Given a two spin state combination |s1m1〉 |s2m2〉, the compos-
ite state that is an eigenstate of S2 and Sz, |sm〉 is given by the linear
combination:

|sm〉 =
∑

m1+m2=m

Cs1 s2 sm2m2m |s1m1〉 |s2m2〉 , (26.33)

precisely the sort of linear combination we had above – we sum over states
that give the target m (i.e. take all m1 and m2 such that m1 +m2 = m) and
weight them so as to pick out the appropriate terms for pure S2 eigenstate
with target s. The coefficients, which we calculated by hand above, are
called “Clebsch-Gordon” coefficients. For our case with s = 1, m = 1,
which we calculated first, the relevant coefficients are: 1√

2
for |1 1〉 |1 0〉 and

− 1√
2

for |1 0〉 |1 1〉, leading to

|1 1〉 =
1√
2

(|1 1〉 |1 0〉 − |1 0〉 |1 1〉) . (26.34)

The coefficients for the |1 0〉 state are 1√
2

for |1 1〉 |1 − 1〉 and − 1√
2

for
|1 − 1〉 |1 1〉, giving

|1 0〉 =
1√
2

(|1 1〉 |1 − 1〉 − |1 − 1〉 |1 1〉) . (26.35)
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Homework

Reading: Griffiths, pp. 178–184.

Problem 26.1

Some issues associated with the Stern-Gerlach wave function.

a. Suppose you take the solution (26.11), and treat it as a (potential)
solution to Schrödinger’s equation:

− ~2

2m
∂2

∂z2
χ(t)− γB · Sχ(t) = i ~

∂χ(t)
∂t

. (26.36)

Calculate the left and right-hand sides of this expression (set B = 0 for
simplicity – so no χ− contribution, and take just the z-component of the
magnetic field), and show that they differ by terms of order α2.

b. The magnetic field for the Stern-Gerlach experiment has an x
component. Find the energies of the spin-portion of the Hamiltonian:
H = −γB · S if B = −αx x̂ + (B0 + α z) ẑ. Show that they reduce
to the Stern-Gerlach energies when α is small (technically, we can compare
αx to B0, and the statement is B0 � αx – Taylor expand your energies).

Problem 26.2

Griffiths 4.33. A time-varying magnetic field.

Problem 26.3

The Lagrangian associated with the electric and magnetic vector potentials
that gives the Lorentz force law upon variation is:

L =
1
2
mv · v − q V + qA · v (26.37)

where A is the magnetic vector potential and V is the electrostatic po-
tential. Find the canonical momenta for this Lagrangian (remember that
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pi = ∂L
∂q̇i

) and Legendre transform to find the Hamiltonian (H = pi q̇i − L
with q̇i written in terms of pi). It is easiest to do this in Cartesian coor-
dinates, but be sure to write your final answer in coordinate-free form (i.e.
involving only dot products of vectors).
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