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There is an intrinsic characteristic of “point” particles that has an analogue
in (but no direct derivation from) classical rigid body rotation. On the
classical side, the partitioning of kinetic energy into center of mass and
rotational is just a matter of book-keeping. In quantum mechanics, we are
forced to accept a fundamentally new descriptor of particles: Spin. The
mathematical formulation of spin is just a copy of the commutators for
orbital angular momentum (since spin is an angular momentum of sorts,
and we must be able to add the spin representation to the orbital portion, it
is almost required that it have identical form). While we can experimentally
motivate/verify the existence of spin, it is natural to ask why, if electrons
possess this property, there has been no discussion of it during our studies
of Hydrogen.

25.1 Classical Description

Classically, there is a a natural separation between orbital (center of mass)
angular momentum, and “spin” angular momentum (the earth rotates about
an axis). But in the classical setting, that’s all it is, a separation. There is
no new physics in the observation that the motion of a piece of mass consists
of two parts. Indeed, if we think of the kinetic term in any Lagrangian for
an extended body:

T =
1
2

∫
ρ(r′) v · v dτ ′ (25.1)

is the end of the story. We can, for computational reasons, distinguish
between motion associated with a point ṙcm and a local “rotation” piece
associated with motion about some dynamically determined axis Ω. The
rotation induces a change dr′ = Ω × r′ dt and then we can decompose the
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velocity of a parcel of mass into these two elements

v = vcm + Ω× r′. (25.2)

If we input this into the kinetic term from above:

T =
1
2

∫
ρ(r′)

(
vcmi + εijk Ωj r

′
k

) (
vcmi + εimnΩm r

′
n

)
dτ ′, (25.3)

then this can be separated into pieces by expanding the quadratic:

T =
1
2

vcm·vcm
∫
ρ(r′) dτ ′︸ ︷︷ ︸
=M

+vcm·
[
Ω×

∫
ρ r′ dτ ′︸ ︷︷ ︸
≡p

]
+

1
2

Ωj Ωm

∫
ρ
(
δjm r

′2 − r′j r′m
)
dτ ′︸ ︷︷ ︸

=Ijm

.

(25.4)
We naturally associate these terms with the monopole (total mass), dipole
and quadrupole of the mass distribution making up the rigid body. If we let
r′ = r− rcm, so that we are calculating the dipole moment about the center
of mass, then

p =
∫
ρ r′ dτ ′ =

∫
ρ r dτ −

∫
ρ rcm dτ = 0 (25.5)

since the center of mass is defined to be: 1
M

∫
ρ r dτ (with respect to the

original, non-center-of-mass origin). So the dipole term goes away provided
we work in center of mass coordinates. The kinetic energy of the system is
then

T =
1
2
M vcm · vcm +

1
2
Ijm Ωj Ωm, (25.6)

and this is the familiar breakup of center of mass and “rotational kinetic
energy” (1

2 I ω
2) from introductory physics. But here, we emphasize the

notion that this comes from the total kinetic energy in a natural way. All of
the usual Newton’s laws for center of mass and angular momentum of rigid
bodies derive from a Lagrangian involving the above. In this way, “spin” or
rigid body rotation, is truly just a bookkeeping device, and has no intrinsic
physical meaning.

Not so, in quantum mechanics. We must consider a completely new prop-
erty of matter, on a par with mass and electric charge, the spin defines
experimentally verifiable physics that is not naturally associated with the
macroscopic discussion above (being possessed by point particles, for ex-
ample, which have no moment of inertia – the center of mass defines the
particle position, and there is no extent over which to integrate for rigid
body rotation).
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25.2 Spin in Quantum Mechanics

Nevertheless, the intrinsic spin of a body is built out of an angular-momentum-
like structure. Spin is naturally a vector, it gives a direction of sorts to a
point particle, and the theory of spin is modeled precisely on the theory
of angular momentum (also a vector operator). This is accomplished by
defining the commutators of the spin operators to be structurally identical
to those of L. These new spin operators, being Hermitian, represent the
act of measuring this new property of matter, and we define S with three
components, satisfying

[Si, Sj ] = i ~ εkij Sk. (25.7)

The eigenstates of the spin operator are indexed by s and m, and we choose
Sz as the component that will commute with S2 in defining the numbers s
and m (with s playing the role of ` from angular momentum), and have,
in bra-ket notation now (since we do not yet have a natural representa-
tion for the eigenstates – in the case of the orbital angular momentum, the
wavefunction itself provided the representation):

S2 |sm〉 = ~2 s (s+ 1) |sm〉 Sz |sm〉 = ~m |sm〉 . (25.8)

As with the angular momentum, we take m = −s . . . s in integer steps, so
that s is integer or half-integer. We can define spin raising and lowering
operators S± analagous to L±:

S± = Sx ± i Sy. (25.9)

These act as we expect: S+ |sm〉 ∼ |s (m+ 1)〉, and we can get the normal-
ization constant in the same manner as for the raising and lowering operators
from the harmonic oscillator or orbital angular momentum (they are, mod-
ulo the letter name, identical to L±). Assume the state |sm〉 is normalized
(i.e. 〈sm||sm〉 = 1), then

S± |sm〉 = α± |s (m± 1)〉 . (25.10)

Since S†+ = S−, the magnitude squared of the altered state is:

(S± |sm〉)† S± |sm〉 = 〈sm| S∓S± |sm〉 (25.11)

but just as for angular momentum, we have

S± S∓ = S2 − S2
z ± ~Sz (25.12)
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The normalization condition then reads

α2
± = ~2 (s (s+ 1)−m2 ∓m) −→ α± = ~

√
s (s+ 1)−m (m± 1), (25.13)

so the operators act as

S± |sm〉 = ~
√
s (s+ 1)−m (m± 1) |s (m± 1)〉 . (25.14)

25.3 Spin and Representation

The angular momentum of a state is related to classical, orbital angular
momentum, and it is possible to change ` by interacting with the system.
In contrast, the spin of a particle is a fundamental property of the particle,
it cannot change. We know that half-integer steps are allowed, so in theory
we can study spin 0 (no spin at all), spin 1

2 , spin 1 etcetera. Unlike angular
momentum `, there are a finite number of interesting spins: all electrons,
for example, are spin 1

2 , so to understand the spin of an electron, we need
only understand s = 1

2 .

For s = 1
2 , we have m = ±1

2 , so there are only two states: “up” or “down”
with spin Sz eigenvalues: 1

2 ~ and −1
2 ~. We can represent these two options

in vector format:∣∣∣∣s =
1
2
m =

1
2

〉
=̇
(

1
0

) ∣∣∣∣s =
1
2
m = −1

2

〉
=̇
(

0
1

)
, (25.15)

χ+ and χ− in the book’s language. Now the operators S and those derived
from them can be represented as two-by-two matrices, those act via matrix-
vector multiplication.

Our job now is to construct a matrix representation for the operators that is
a manifestation of the defining relation (25.7). The first step in our ansatz
is that of Hermiticity, each of the matrices must be Hermitian in the matrix
sense (conjugate transpose equal to the matrix itself). The most general
form of a Hermitian matrix is

Si=̇
(

ui vi + i wi
vi − i wi zi

)
(25.16)

with ui, zi, wi and vi real. We can adapt our choice to the representation
of the up and down states – remember that we want: Sz

∣∣1
2

1
2

〉
= 1

2 ~
∣∣1
2

1
2

〉
,
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and similarly for the down state, then(
u3 v3 + i w3

v3 − i w3 z3

)(
1
0

)
=
(
u3

v3 − i w3

)
, (25.17)

from which we learn that u3 = 1
2 ~ and v3 = w3 = 0. From the down con-

straint, we find z3 = 1
2 ~, and our matrix representation of the Sz operator

is

Sz=̇
1
2

~
(

1 0
0 −1

)
. (25.18)

Now consider the commutator:

[Sx, Sz] = −i ~Sy. (25.19)

From the matrix multiplication:

[Sx, Sz] =
(

0 −~ (v1 + i w1)
~ (v1 − i w1) 0

)
(25.20)

and we can set the components of Sy appropriately:

Sy =
(

0 w1 − i v1
w1 + i v1 0

)
. (25.21)

Finally, we can use the commutator [Sx, Sy] = i ~Sz(
2 i (v2

1 + w2
1) (u1 − z1) (w1 − iv1)

−i (u1 − z1) (v1 − iw1) −2 i (v2
1 + w2

1)

)
=
(

1
2 i ~

2 0
0 −1

2 i ~
2

)
(25.22)

to set u1 = z1 = 0 (the last equality actually follows from consistency with
the [Sy, Sz] commutation relation) and v2

1 +w2
1 = ~2

4 . At this point, we have
three matrices satisfying our commutation relations, and “normalized” so
that Sz |sm〉 = ~m |sm〉. In addition, the operator S2 is independent of
the particulars of v1 and w1 (besides the constraint above) and has the form:

S2=̇
3 ~2

4

(
1 0
0 1

)
. (25.23)

How to select the ratio of v1 to w1? This comes, in the end, from our raising
and lowering relations:

S+

∣∣∣∣12 − 1
2

〉
= ~

√
3/4− (−1/2) (−1/2 + 1)

∣∣∣∣12 1
2

〉
= ~

∣∣∣∣12 1
2

〉
. (25.24)
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When we construct S+ in matrix representation, and act on
∣∣1
2 −

1
2

〉
, we get

S+ χ− = (Sx + i Sy)χ−=̇
(

0 2 (v1 + i w1)
0 0

)(
0
1

)
=
(

2 (v1 + i w1)
0

)
(25.25)

so that we need w1 = 0 and then v1 = 1
2 ~ (notice that then v2

1 + w2
1 = ~2

4
as it must.

Our final set of matrices is completely fixed:

Sx=̇
1
2

~
(

0 1
1 0

)
Sy=̇

1
2

~
(

0 −i
i 0

)
Sz=̇

1
2

~
(

1 0
0 −1

)
.

(25.26)

There is no further freedom, and we have an appropriate representation
for spin 1

2 vectors and operators. The matrices in the above are the Pauli
“sigma” matrices.

25.4 Comments

While we are being careful to distinguish between the classical and quantum
forms of spin, the fact is, terms involving spin show up in Hamiltonian’s in
much the same way as classical spin. For example, a macroscopic, charged
spinning body has a net magnetic dipole moment that can interact with
magnetic fields in the usual way, via the potential −m ·B. A similar term
arises for quantum spin – that is, even though it is a real, separate physical
quantity, it couples to magnetic fields as if it were the dipole moment of a
macroscopic body. This leads to measurable effects that establish both the
eigenvalues for spin and the quantum mechanical theory of measurement.

Finally, we record the interpretation here – for a particle in a spin state
χ = αχ++β χ−, we obtain a z-component of spin measurement of either 1

2 ~
or −1

2 ~. The probabilities are as usual, |α|2 and |β|2 (this is a finite discrete
basis – our “usual” infinite sums over basis functions like sin are replaced
by a simple sum of weighted components). We cannot yet talk about the
temporal evolution of a generic spin state, since we have no Hamiltonian, but
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we will find the usual sort of separation applies (provided the Hamiltonian
is time-independent). Schrödinger’s equation is, as always, i ~ dχ

dt = H χ
and if we have a Hamiltonian that commutes with S2 (as the spherically
symmetric Hamiltonian does with L2), then we would have

Hχ = E+ αχ+ + E2 β χ− −→ χ(t) = α e
i E+ t

~ χ+ + β e
i E− t

~ χ− (25.27)

where E+ and E− are the energies associated with the up and down spins
respectively.

Expectation values and variances proceed as usual, with 〈Q〉 = 〈s|Q |s〉
equal to the vector-matrix-vector form for the Hermitian operator Q repre-
sented as a matrix. For generic Q

Q=̇
(

q0 q1 + i q2
q1 − i q2 q3

)
(25.28)

and |s〉 given by

|s〉 =̇
(
α
β

)
, (25.29)

we have

〈s|Q |s〉 =̇
(
α∗ β∗

)( q0 q1 + i q2
q1 − i q2 q3

)(
α
β

)
(25.30)

with the side-constraint that 〈s||s〉 = 1.

Keep in mind that it is possible to have a Hamiltonian with both spatial
terms (our usual one) and spin terms, so it must also be possible to describe
a wavefunction for an electron, say, that combines the position or momentum
space functional form with the spin state. We can take the “full” wavefunc-
tion (barring any surprising new electron properties) to be ψ̄n`m = ψn`m χ,
where we have just combined the spatial wavefunction ψn`m with the spin
portion, χ.
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Homework

Reading: Griffiths, pp. 171–178.

Problem 25.1

Griffiths 4.27. Here you can practice computing expectation values with a
particular χ. Since spin and the “usual” spatial portion of the Hamiltonian
are independent (so far, anyway), there is a statistical interpretation for spin
that relies only on χ and its response to the operators S.

Problem 25.2

Griffiths 4.31. Constructing the matrix representation for s = 1.

Problem 25.3

Given that spin combines with the orbital angular momentum L to form
a “total” angular momentum operator J = L + S, and that J is itself
“an angular momentum” (meaning that it is a set of three operators that
satisfy the commutators [Ji, Jj ] = i ~ εkij Jk and has all the usual properties
familiar from the Li), find the allowed values of Jz for a particle that has
spin s = 1

2 and orbital angular momentum ` = 1.

Problem 25.4

Here, we will establish the correctness of the infinitesimal rotation expression
dr′ = Ω× r. Referring to the figure below, we have a vector r lying in the
x− z plane with r = R x̂ + z ẑ. We rotate through an angle φ about the ẑ
axis as shown to obtain r′. Write all three components of r′ in terms of sinφ
and cosφ, then make the small angle approximation for these trigonometric
quantities, and show that r′ − r = Ω× r with Ω ≡ φ ẑ.
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r = R x̂ + z ẑ r′ = ?

φ

x̂

ŷ

ẑ
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