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From separation of variables, we move to linear algebra. Roughly speak-
ing, this is the study of vector spaces and operations on vector spaces. Our
primary goal is to review the basic features of linear algebra and introduce
Dirac’s “Bra-ket” notation. This is a purely notational shift, but one that
allows us to make the more profound move from finite dimensional vec-
tor spaces to infinite dimensional (function) vector spaces in a transparent
manner. That this transparency glosses over some interesting differences
between finite and infinite dimensional vector spaces is its primary point, so
don’t be surprised if someone points out glaring inconsistencies.

2.1 A Vector

2.1.1 Definition

A vector is an object, a vector space, a collection of these objects, together
with two basic operations and a set of scalars. The most familiar vector
space, and one which we will refer to as an example, is IRN – this has
operations + and ·, and we draw scalars from IR. We denote a vector p
in IRN by p ∈ IRN . The “components” of the vector are real, and the real
numbers act as the scalars underlying the defining operations: take a ∈ IR,
p, q, s ∈ IRN , then

p + q ∈ IRN p + q = q + p (p + q) + s = p + (q + s). (2.1)

The first expression defines the operation “+” that takes two vectors in
the space and generates a third vector in the space. The second expression
defines + to be commutative (order doesn’t matter), and the third makes +
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2.1. A VECTOR Lecture 2

associative (grouping doesn’t matter). The final property of the operator +
is the existence of a “zero”, and hence inverses. We define 0 via: p+0 = p,
and then we demand that for every p, there exist q such that p + q = 0 –
typically, then, we can write q = −p.

We can also take one of the scalars, a ∈ IR and “multiply”, those are still in
IRN : ap ∈ IRN . The multiplication is distributive (over vector addition) and
associative (w.r.t multiplication by another b ∈ IR): a (p + q) = ap + aq,
a (bp) = a bp. The zero vector has a0 = 0 (it must, after all, be a vector),
and 0 p = 0. Finally, the inverse of p can be written as −1 p as suggested
by the analogy with addition.

2.1.2 Inner Product, Basis, and Decomposition

There is an operation that takes two vectors and returns a scalar – in our
defining example of IRN , we say: · : (IRN , IRN ) −→ IR. The properties of an
inner product (of which, you should be thinking in the back of your mind,
the dot product is an example) are (for p, q, r ∈ IRN , a, b ∈ IR):

p · p ≥ 0
p · p = 0 iff p = 0

p · (aq + b r) = ap · q + bp · r.
(2.2)

Define “linear combination” of vectors as a scalar-weighted sum of vectors:
p = aq+b r, for example. Then we say that two vectors p and q are linearly
independent if: p · q = 0. For p = aq + b r with q · r = 0 (i.e. q and r are
linearly independent), we have, assuming q 6= 0:

p · q = aq · q + bq · r = aq · q 6= 0, (2.3)

so p and q are linearly dependent (meaning “not linearly independent”). If
we instead take p = b r, then p ·q = 0, so p and q are linearly independent.
The story we tell ourselves in the case of two linearly independent vectors
is: “there is no q in p.”

Basis

Suppose we have a linearly independent set of vectors {ei}Ni=1 in IRN . If
∀p ∈ IRN , we can write p as a linear combination of the set {ei}Ni=1, then
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we say that this set forms a basis for IRN . In other words, we have, for some
set of coefficients {ai}Ni=1 with ai ∈ IR:

p =
N∑
i=1

ai ei ∀p ∈ IRN . (2.4)

If we have such a basis set, then the vector p can be represented by its
“components”, that is, by specifying the basis and the coefficients {ai}Ni=1.
This gives us the standard representation in IRN , we set

e1=̇


1
0
0
...

 e2=̇


0
1
0
...

 . . . , (2.5)

and then the vector p can be described by the column vector:

p=̇


a1

a2

a3
...

 = a1


1
0
0
...

+ a2


0
1
0
...

+ a3


0
0
1
...

+ . . . (2.6)

Notice that the dot product is now clearly identified with a “projection” – if
we want to know the “amount of e4 in p”, given (2.4), then p ·e4 = a4 is the
answer. The decomposition of two vectors p and q gives us the more familiar
(computationally useful) definition of the dot product – since ei · ej = δij

1

(we can scale the basis vectors so that ei · ei = 1), if we have

p =
N∑
i=1

ai ei

q =
N∑
i=1

bi ei

(2.8)

then

p · q =
N∑
i=1

ai bi. (2.9)

1Remember the definition of the Kronecker delta:

δij =


1 i = j
0 i 6= j

. (2.7)
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Finally, given a vector p and a basis set {ei}Ni=1, we can pick out the ej
component of p via ej · p, so we can write the vector as the sum:

p =
N∑
i=1

(ei · p) ei, (2.10)

this is obvious if we already know the decomposition in terms of the basis
{ei}Ni=1, but a useful form if we do not.

2.1.3 Examples

Cartesian vectors (IR3)

We can take the usual Cartesian vectors from, for instance, your studies
of electricity and magnetism – a generic vector is given by its decompo-
sition into x̂, ŷ, and ẑ (these are the basis vectors, e1, e2 and e3) – take
two such vectors

p = x̂ + 2 ŷ − ẑ

q = −ŷ + 5 ẑ,
(2.11)

in this case, p · q = −7. We can find the “component of p in the x̂
direction” by taking p · x̂ – this is = 1. As a check of (2.10), consider
the dot products of q:

x̂ · q = 0 ŷ · q = −1 ẑ · q = 5, (2.12)

then it is trivially the case that:

q = (x̂ · q) x̂ + (ŷ · q) ŷ + (ẑ · q) ẑ. (2.13)

A Vector Space of Functions

Consider the space of all functions decomposable into a cosine series (suffi-
ciently smooth, with some finite domain x ∈ [0, 1]). That is, functions f(x)
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for x = 0→ 1 that have:

f(x) =
∞∑
n=1

αn cos(nπ x), (2.14)

which we will denote f . All of the requirements for a vector space are met:
We can add two such functions to get a third, we can multiply by real
or complex numbers, etc. Suppose we think of the functions cos(nπ x),
themselves in the space, as a basis (infinite dimensional). That is, define:

ej = cos(j π x). (2.15)

For our inner product, define:

f · g = 2
∫ 1

0
f(x) g(x) dx. (2.16)

Then the basis vectors satisfy:

ej · ek = 2
∫ 1

0
cos(j π x) cos(k π x) dx = δjk. (2.17)

Given an arbitrary function in the space, we know (by definition here) that
it can be written as:

f =
∞∑
i=1

αi ei, (2.18)

and, as always, ej · f tells us “how much ej there is in f”. Now we can see
the utility of (2.10). For example, take

f=̇f(x) = cos(π x)3 − 3 cos(π x) sin2(π x). (2.19)

As a vector in the space, it has a decomposition in terms of the basis, and
we can pick out components by taking inner products. The first few are:

e1 · f = 2
∫ 1

0

(
cos(π x)3 − 3 cos(π x) sin2(π x)

)
cos(π x) dx = 0

e2 · f = 2
∫ 1

0

(
cos(π x)3 − 3 cos(π x) sin2(π x)

)
cos(2π x) dx = 0

e3 · f = 2
∫ 1

0

(
cos(π x)3 − 3 cos(π x) sin2(π x)

)
cos(3π x) dx = 1

e4 · f = 2
∫ 1

0

(
cos(π x)3 − 3 cos(π x) sin2(π x)

)
cos(4π x) dx = 0.

(2.20)
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We could keep going, but as a basic trigonometric identity, it is indeed the
case that:

f(x) = cos(π x)3 − 3 cos(π x) sin2(π x) = cos(3π x). (2.21)

In this form, it is obvious that e3 · f = 1 and all others are zero.

This inner product on a function space is what Griffiths refers to as “Fourier’s
Trick”. Going back to our infinite slot potential from last time, our poten-
tial, in terms of functions that satisfied all other boundary conditions, was

V (x, y) =
∞∑
n=1

Qn sin
(nπ x

d

)
e−

nπ y
d . (2.22)

The final boundary condition we needed to set was for y = 0, where the
above is just an infinite sum of sines. Just as there is a space of functions
decomposable in terms of cosines, there is a similar vector space for sines.
Now we need functions on x ∈ [0, d], but we can still define a basis:

ej = sin
(
j π x

d

)
, (2.23)

and an inner product f · g = 2
d

∫ d
0 f(x) g(x) dx such that:

ej · ek = 2
∫ d

0
sin
(
j π x

d

)
sin
(
k π x

d

)
dx = δjk. (2.24)

We had the boundary condition V (x, 0) = V0 sin
(

2π x
d

)
, and this is a trivial

decomposition, a pure basis function. Suppose instead we held the connect-
ing plate at a constant potential f = V0 – then we need the set:

ej · f =
∫ d

0
V0 sin

(
j π x

d

)
dx =

2V0(1− cos(j π))
j π

=
{

0 j even
4V0
j π j odd ,

(2.25)

and we have decomposed the function f in terms of the sine basis – then,
noting (2.10), we can write:

f=̇V0 =
∞∑

j=1,odd

4V0

j π
sin
(
j π x

d

)
. (2.26)
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Comparing this with the value of the potential at y = 0, we see that the Qn
should be:

Qn =
{

0 n even
4V0
nπ n odd

(2.27)

so that the potential solving the problem is:

V (x, y) =
∞∑

n=1,odd

4V0

nπ
sin
(nπ x

d

)
e−

nπ y
d , (2.28)

and a contour plot of this for the first 50 non-zero components is shown
in Figure 2.1.
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Figure 2.1: Parallel plates grounded on either side with a constant potential
V0 along the connecting plate. The first fifty odd terms in (2.28) are shown.
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2.2 Notation

So far, all of this is review. Now we move on to a notational shift. Dirac’s
“Bra-ket” notation provides a nice, homogenous treatment of vector spaces,
finite and not. But notation is all it is. We begin by translating the above
definitions – there are two basic objects in Bra-ket notation: a Bra, denoted
〈α| and a ket, written |α〉. The kets are elements of a vector space with
scalars drawn from the complex numbers – they can be thought of as our
p in IRN from (2.6) (although the entries are now complex numbers). The
bras are elements of a dual space, and are something like the row form of a
column vector – so they are still vectors, but a slightly different sort (you
cannot, for example, add a column vector and a row vector, and similarly,
you cannot add a bra to a ket). This association is motivated by the notation
for inner product – we can form the bra-ket:

(〈α|)(|β〉) = 〈α||β〉 , (2.29)

and this is a complex number, with the further requirement that 〈α||β〉 =
(〈β||α〉)∗ (necessary to get 〈α||α〉 ≥ 0 and real).

We have basis bras and kets – suppose we have a (maximal) set of linearly
independent kets: {|ei〉}Ni=1 that form a basis, so that any ket can be written
as:

|α〉 =
N∑
i=1

ai |ei〉 , (2.30)

for ai complex. Similarly, we have basis bras, so that

〈β| =
N∑
i=1

bi 〈ei| (2.31)

(bi complex). As bases, we have the inner product 〈ei||ej〉 = δij (I have
taken an orthonormal basis here – think of ei · ej), so, using the defining
properties of inner products, we can compute the bra-ket 〈α||β〉 in terms of
the coefficients of the decomposition of |α〉 and 〈β|. If we take the simplest
possible case, letting: 〈β| = u 〈ei| and |α〉 = v |ei〉 with u, v complex,
then in order to satisfy the requirement 〈β||α〉 = (〈α||β〉)∗, we must have:
〈α||β〉 = u∗ v.

We can extend this inner product computation to the more general decom-
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position of bras and kets:

〈α||β〉 =
N∑
i=1

bi 〈ei|
N∑
j=1

aj |ej〉 =
N∑
i=1

b∗i ai, (2.32)

and of course,

〈α||α〉 =
N∑
i=1

a∗i ai ∈ IR. (2.33)

It is this inner product view that provides the association with row and
column vector representations – in a basis, we can represent a vector in
terms of its decomposition coefficients:

|α〉 =̇


a1

a2

a3
...

 (2.34)

then if we take 〈α| ≡̇
(
a∗1 a∗2 a∗3 . . .

)
, the bra-ket can be naturally thought

of as a vector-vector multiplication of the form:

〈α||α〉 =
(
a∗1 a∗2 a∗3 . . .

)


a1

a2

a3
...

 =
N∑
j=1

a∗j aj . (2.35)

Finally, we have a handy way to represent (2.10) in this notation – the
coefficient of |α〉 w.r.t. the basis vector |ei〉 is just 〈ei||α〉, so we can write
any |α〉 as:

|α〉 =
N∑
i=1

〈ei||α〉 |ei〉 =
N∑
i=1

|ei〉 〈ei||α〉 (2.36)

where the second equality comes from the fact that 〈ei||α〉 is just a number.
We sometimes define the operator:

1 =
N∑
i=1

|ei〉 〈ei| . (2.37)

Notice that this object is neither a bra nor a ket, and we will pick up this
discussion of operators, objects that act on vectors in vector spaces, next
time.
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Homework

Reading: Griffiths, pp. 435–440.

Problem 2.1

From “Euler’s formula”: ei α = cos(α) + i sin(α), we have

sin(α) =
1
2 i
(
ei α − e−i α

)
. (2.38)

a. Using this expression, evaluate:∫ d

0
sin
(
j π x

d

)
sin
(
k π x

d

)
dx (2.39)

for j 6= k.

b. Do the same thing for j = k, this establishes the orthonormality of
the sine basis: You are showing that:

2
d

∫ π

0
sin
(
j π x

d

)
sin
(
k π x

d

)
dx =

{
1 j = k
0 j 6= k

(2.40)

Problem 2.2

In two dimensions, we have the usual basis vectors x̂ and ŷ, and any vector
can be written as a linear combination of these two: v = vx x̂ + vy ŷ.
Suppose we introduce two vectors:

v = 3 x̂ + ŷ w = −2 x̂ + 6 ŷ. (2.41)

a. Show that v · w = 0, and normalize each vector (i.e. find v̂ that
points in the same direction as v and has v̂ · v̂ = 1, and similarly for ŵ) to
get a new pair of orthogonal unit vectors.
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b. This new pair can itself be used as the basis – find the decomposition
of a = 10 x̂− 3 ŷ in terms of v̂ and ŵ, i.e. fill in ? below:

a = ? v̂ + ? ŵ. (2.42)

Problem 2.3

Griffiths A.1. Note: He is using î, ĵ and k̂ instead of x̂, ŷ and ẑ.
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