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19.1 Introduction

The series method for solving ODEs (Frobenius’s method) is a powerful
tool, and one which we shall use over and over in our quantum mechanical
studies. It shows up naturally in the context of spherical separation of vari-
ables, where you saw it last semester in E&M. We will review the Legendre
series expansion approach for the azimuthally symmetric (no φ dependence)
solution to Laplace’s equation, then connect the associated Legendre se-
ries, which solves the problem for non-trivial φ dependence, to the Legendre
series.

Finally, as another example of the series approach, we will look back at the
harmonic oscillator problem. The eigenvalue problem there is similar to the
ones we encounter for the radial part of Schrödinger’s equation in spherical
coordinates.

19.2 The Angular Equation(s)

The (multiplicatively) separated Laplacian in spherical coordinates is

∇2(f(r) g(θ)h(φ)) =
1
r2

d

dr

(
r2f ′

)
g h+

1
r2 sin θ

d

dθ

(
sin θ g′

)
f h+

1
r2 sin2 θ

h′′ f g,

(19.1)
where primes denote derivatives w.r.t. the necessarily single argument of
each of the relevant functions. When we solve Laplace’s equation,∇2 (f g h) =
0, we can isolate these terms in terms of their dependence:

0 =
1
f

[
d

dr
(r2 f ′)

]
+
[

1
g

1
sin θ

d

dθ

(
sin θ g′

)
+

1
sin2 θ

h′′

h

]
(19.2)
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19.3. THE CASE M = 0 Lecture 19

and we typically separate by setting:

` (`+ 1) =
1
f

[
d

dr
(r2 f ′)

]
−` (`+ 1) =

[
1
g

1
sin θ

d

dθ

(
sin θ g′

)
+

1
sin2 θ

h′′

h

]
.

(19.3)

Now taking the angular portion, we can split further:

−` (`+ 1) sin2 θ =
[

1
g

sin θ
d

dθ

(
sin θ g′

)]
+
[
h′′

h

]
. (19.4)

Of the three terms in the above expression, two depend on θ, and h′′

h is a
function only of φ. Set:

−m2 =
h′′

h
−→ h(φ) = Aeimφ

m2 =
1
g

sin θ
d

dθ

(
sin θ g′

)
+ ` (`+ 1) sin2 θ.

(19.5)

19.3 The Case m = 0

If we take the azimuthally symmetric case, withm = 0, so that f(r) g(θ)h(φ) =
f(r) g(θ), our ODE simplifies:

sin θ
d

dθ

(
sin θ g′

)
+ ` (`+ 1) sin2 θ g = 0. (19.6)

In order to get rid of the explicit trigonometric functions, suppose we take
g(θ) = g(z) with z = cos θ. We can make the change, induced by the chain
rule:

d

dθ
g(z) = − sin θ

dg

dz

d

dθ
−→ − sin θ

d

dz
. (19.7)

Making this substitution, and noting that sin2 θ = 1 − z2, we have the
equivalent ODE:

d

dz

(
(1− z2)

dg(z)
dz

)
+ ` (`+ 1) g(z) = 0. (19.8)

We know that z ∈ [−1, 1], so it is a restricted argument. But that aside, the
above is, literally begging for a series approach.
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19.3. THE CASE M = 0 Lecture 19

Writing out all terms explicitly, and setting g′ ≡ g′(z) = dg(z)
dz for visual

clarity, our target equation is

(1− z2) g′′ − 2 z g′ + ` (`+ 1) g = 0. (19.9)

The Frobenius ansatz for g(z) is:

g(z) = zp
∞∑
j=0

αj z
j , (19.10)

then the derivative and second derivative are

g′(z) = zp
∞∑
j=0

αj (j + p) zj−1

g′′(z) = zp
∞∑
j=0

αj (j + p) (j + p− 1) zj−2.

(19.11)

If we input these expansions in (19.9), we get:

0 = zp
{ ∞∑
j=0

αj (j + p) (j + p− 1) zj−2 +
∞∑
j=0

(−αj) (j + p) (j + p− 1) zj

+
∞∑
j=0

(−2αj) (j + p) zj +
∞∑
j=0

(` (`+ 1) αj) zj
}
.

(19.12)
The first term is the only problematic one – set k = j − 2, then

∞∑
j=0

αj (j + p) (j + p− 1) zj−2 =
∞∑

k=−2

αq+2 (k + p+ 2) (k + p+ 1) zk

(19.13)
and we see that there are two unbalanced terms in this sum, namely the
k = −2 and −1 contributions. If we pull out these two terms and re-label
k → j (k is a dummy index), we have the following requirements:

0 = α0 p (p− 1)z−2 + α1 (p+ 1) p z−1 +
{ ∞∑
j=0

[
αj+2 (j + p+ 2) (j + p+ 1)

− [(j + p) (j + p− 1) + 2 (j + p)− ` (`+ 1)] αj

]
zj
}
.

(19.14)
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19.3. THE CASE M = 0 Lecture 19

The first two terms must each be zero and this can be used to set p, and
then the vanishing of each term in the sum provides a recursion relation.
For example, if we take p = 0, and set α1 = 0, then our recursion is:

αj+2 =
(j + p) (j + p− 1) + 2 (j + p)− ` (`+ 1)

(j + p+ 2) (j + p+ 1)
αj

=
j (j + 1)− ` (`+ 1)

(j + 2) (j + 1)
αj

=
(j + `+ 1) (j − `)

(j + 1) (j + 2)
αj .

(19.15)

This recursion relation can start with α0 = 0 or α1 = 0. We then get even
or odd solutions. We’ll start with α1 = 0, and leaving α0 as is to provide an
eventual normalization. Consider the case ` = 1, we have:

g(z) = −
∞∑
j=0

1
j
z2j+1. (19.16)

This series becomes the harmonic series for z = 1, and that does not con-
verge. So we have the “usual” sort of argument – since the infinite series
does not converge for z = ±1, it must truncate (or we do not have an ap-
propriate solution). Because we will have z = ±1 at the poles of the sphere,
we have a family of polynomials – the αj+2 coefficient is zero when:

(j + `+ 1) (j − `) = 0 −→ j = `. (19.17)

Note that this also imposes the restriction, ` ∈ Z.

The first few Legendre polynomials are listed below –

P0(z) = α0

P2(z) = α0

(
1− 3 z2

)
P4(z) = α0

(
1− 10z2 +

35
3
z4

)
...

(19.18)

There are a few observations we might make at this point – most notable:
These series are all even functions of z, where are the odd solutions? A
second observation might be – what a strange looking set of polynomials.
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19.4. GAUSS’S TEST Lecture 19

19.3.1 Odd Solutions

We have another option for p = 0, namely α0 = 0 with α1 un-fixed. This
gives us, once again, a class of solutions that do not converge at z = ±1, so
we truncate at j = ` – this time, though, all the j values are odd, starting
with j = 1, and incrementing by 2. The same recursion formula (19.15) holds
in this case. If we leave the α1 un-fixed, then the odd Legendre polynomials
are:

P1(z) = α1 z

P3(z) = α1

(
z − 5

3
z3

)
P5(z) = α1

(
z − 14

3
z3 +

21
5
z5

)
...

(19.19)

Once again, we recover the harmonic series for ` even, z = ±1, and we con-
clude that we are to take the (necessarily truncated) even Legendre polyno-
mials from above when ` is even, and this odd set when ` is odd. In order
to get a convergent result, then, we must also require that ` ∈ Z.

19.4 Gauss’s Test

We have motivated the notion that the Legendre series expansion does not
converge for z = ±1, and particular values of `, but we can use Gauss’s test
directly to prove it. Gauss’s test reads, in our context – If

βj
βj+1

= 1 +
h

j
+
B(j)
(j)2

(19.20)

for B(j) a bounded function as j → ∞, then
∑∞

j=0 βj converges for h > 1,
and diverges for h ≤ 1.

Gauss’s test applies when the coefficients are all positive, and we need to be
a little careful in this context – if we write:

αj+2 =
j (j + 1)− ` (`+ 1)

(j + 1) (j + 2)
αj (19.21)

then there will be negative coefficients when j < `, but for j > `, we still
have an infinite series, and all coefficients have the same sign, so we are
working on that portion of the series that occurs for j > `.
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19.5. ORTHOGONALITY Lecture 19

Take βj = α2j , then

α2j

α2(j+1)
=

(2 j + 1) (2 j + 2)
2 j (2 j + 1)− ` (`+ 1)

≈ 1 +
1
j

+
1
4 ` (`+ 1)

j2
+O

(
1
j3

)
.

(19.22)

The expansion tells us that B(j) ∼ 1
j2

, so we know that B(j) satisfies our
assumption as j → ∞. The coefficient h = 1, and then Gauss’s test tells
us that the series diverges. This series is precisely the sum given by setting
z = 1, so we know that the Legendre series will diverge for z = 1, hence the
necessity of truncation.

19.5 Orthogonality

The Legendre polynomials defined by the above recursion relation and de-
noted P`(z) are defined on z ∈ [−1, 1], and satisfy (by explicit construction)
the ODE:

(1− z2)P ′′` (z)− 2 z P ′`(z) + ` (`+ 1) P`(z) = 0. (19.23)

From this, we can show that the inner product of two Legendre polynomials:

P` · P`′ =
∫ 1

−1
P ∗` (x)P`′ dx = 0 (19.24)

unless ` = `′.

Multiply the ODE for P` by P`′ and vice versa:

0 = (1− z2)P`′ P ′′` − 2 z P`′ P ′` + ` (`+ 1) P`′ P`
0 = (1− z2)P` P ′′`′ − 2 z P` P ′`′ + `′

(
`′ + 1

)
P` P`′ ,

(19.25)

and subtracting these two gives:

0 = (1− z2)
[
P`′ P

′′
` − P` P ′′`′

]
− 2 z

[
P`′ P

′
` − P` P ′`′

]
+
(
` (`+ 1)− `′

(
`′ + 1

))
P`′ P`

=
d

dz

[
(1− z2)

(
P`′ P

′
` − P` P ′`′

)]
+
(
` (`+ 1)− `′

(
`′ + 1

))
P`′ P`.

(19.26)
Finally, if we integrate this expression from z = −1→ 1, the first term dies,
since the Legendre polynomials are finite at z = ±1, and (1 − z2)|1−1 = 0,
we are left with: ∫ 1

−1
P`′ P` dz = 0, (19.27)
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19.5. ORTHOGONALITY Lecture 19

unless ` = `′, in which case the integral need not vanish.

In order to find the dot product: P` · P` to set the normalization, we note
that the generating function for the Legendre polynomials is:

G(z, γ) =
1√

1− 2 z γ + γ2
=
∞∑
j=0

γj Pj(z) (19.28)

for |γ| < 1 (try Taylor expanding G(z, γ) for γ small). The generating
function can be used to develop “recursion relations” between the various
Legendre polynomials. For example, if we take the γ and z partials of G,

∂G

∂γ
=

γ − z
(1− 2 z γ + γ2)

G(z, γ)
∂G

∂z
=

−γ
(1− 2 z γ + γ2)

G(z, γ), (19.29)

then we learn that
∂G

∂z
= − γ

γ − z
∂G

∂γ
. (19.30)

Using the infinite sum form, this relation is

∞∑
j=0

γj+1 P ′j −
∞∑
j=0

z γj P ′j +
∞∑
j=0

γj j Pj = 0, (19.31)

and re-labelling so as to collect powers of γ (which must individually vanish)

∞∑
j=1

(
P ′j−1 − z P ′j + j Pj

)
γj = 0 (19.32)

we obtain the recursion relation:

z P ′j − P ′j−1 = j Pj . (19.33)

Now we can multiply this relation by Pj and integrate to find the normal-
ization constant:∫ 1

−1
z P ′j Pj dz −

∫ 1

−1
P ′j−1 Pj dz = j

∫ 1

−1
(Pj)

2 dz. (19.34)

Taking each term in turn – we have∫ 1

−1
z Pj P

′
j dz =

1
2
P 2
j z

∣∣∣∣1
z=−1

− 1
2

∫ 1

−1
P 2
j dz (19.35)
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19.6. ASSOCIATED LEGENDRE POLYNOMIALS Lecture 19

and the Legendre polynomials have the property that their value at z = ±1
are either equal (for even polynomials), or opposite (for odd ones). More-
over, we can set the value of each of the Pj(1) = A by appropriate, indepen-
dent (in j) choice of normalization.

The next term is zero: ∫ 1

−1
P ′j−1 Pj dz = 0, (19.36)

since any polynomial can be written as a sum of Legendre polynomials up
to the same degree, we know that

P ′j−1 =
j−2∑
k=0

Ak Pk, (19.37)

and then we know that the dot product of Pj with each of the terms in the
sum is zero (from above).

Putting it together, we have:

A2 =
(
j +

1
2

) ∫ 1

−1
P 2
j dz −→

A2

j + 1
2

=
∫ 1

−1
P 2
j dz. (19.38)

Taking A = 11, the usual normalization follows, and our final orthonormality
condition reads:

Pj · Pk =
2

j + 2
δjk. (19.39)

19.6 Associated Legendre Polynomials

Now let’s return to the full problem (19.5), with our identification z = cos θ,
we have:(
1− z2

) d

dz

(
(1− z2)g′

)
+
[
(1− z2) ` (`+ 1)−m2

]
g = 0. (19.40)

Suppose we let g(z) = (1− z2)m/2f(z) in the above, then(
1− z2

)
f ′′(z)− 2 (m+ 1) z f ′(z) +(` (`+ 1)−m (m+ 1)) f(z) = 0.

(19.41)
1Think of the even solutions in (19.18) – if we require P0(1) = 1, then α0 = 1. If we

want P2(1) = 1, then we set α0 = − 1
2
. For P4(1) = 1, we need α0 = 3

8
. These are the

coefficients found in, for example Table 4.1 of Griffiths.
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19.7. HARMONIC OSCILLATOR IN ONE DIMENSION Lecture 19

Set m = 0, and we have Legendre’s equation with solution P`(z). If we
differentiate the above w.r.t. z, we get

(
1− z2

)(df
dz

)′′
−2 ((m+ 1) + 1) z

(
df

dz

)′
+(` (`+ 1)−(m+ 1) (m+ 2))

(
df

dz

)
= 0.

(19.42)
Now we can see that this is (19.41) with m→ m+1, and f(z)→ f ′(z). So if
P`(z) solves (19.41) with m = 0 (as we know it does, since this is Legendre’s
equation), then P ′`(z) solves (19.41) with m = 1. The process continues, if
we differentiate again, P ′′` (z) solves (19.41) with m = 2.

In general, then, the function:

Pm` (z) =
(
1− z2

)m/2 dm

dzm
P`(z) (19.43)

solves (19.40). These are called the “associated Legendre polynomials”.
Notice that for integer `, we can have m either positive or negative, and it
“must be” an integer. In addition, these polynomials will vanish for |m| > `
since in that case, we have differentiated x0 w.r.t. x.

19.7 Harmonic Oscillator in One Dimension

Recall the time-independent Schrödinger equation for the harmonic oscilla-
tor in one dimension:

− ~2

2m
ψ′′(x) +

1
2
mω2 x2 ψ(x) = E ψ(x). (19.44)

We want to solve this equation using a series approach.

19.7.1 Step 1

Let’s rewrite the equation in a spatially unitless form (the advantage here,
aside from cleaning up the various constants that appear, is that we can
then compare our unitless quantity to other unitless quantities). If we write
the above as:

ψ′′ − m2 ω2

~2
x2 ψ = −2mE

~2
ψ, (19.45)
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19.7. HARMONIC OSCILLATOR IN ONE DIMENSION Lecture 19

then it is clear, since each term must have units of |ψ|
L2 (look at the first term,

for example), that ∣∣∣∣m2 ω2

~2

∣∣∣∣ = L−4. (19.46)

Define the unitless quantity (meant to replace x):

x̄ =
√
mω

~
x, (19.47)

then

1
~
mω

∂2ψ(x̄)
∂x̄2

− m2 ω2

~2

~
mω

x̄2 ψ(x̄) = −2mE

~2
ψ(x̄). (19.48)

Finally, we can multiply to get (understanding ψ as a function of x̄, now):

ψ′′ − x̄2 ψ = − 2E
~ω︸︷︷︸
≡α

ψ, (19.49)

and each term in this expression has the units of ψ only.

19.7.2 Step 2

Next, we take our equation:

ψ′′ −
(
x̄2 − α

)
ψ = 0 (19.50)

and introduce the desired behavior at spatial infinity. If we take x̄� α (see
the advantage of unitless x̄?), then

ψ′′(x̄) ∼ x̄2 ψ −→ ψ ∼ e±
1
2
x̄2
, (19.51)

where we are only approximating the behavior at spatial infinity – this is,
however, what we expect. The danger is that we will pick up the growing
exponential, so we make an ansatz:

ψ(x̄) = e−
1
2
x̄2
ψ̄(x̄). (19.52)

There is nothing lost in making this initial guess, it is only motivated by the
desired behavior at spatial infinity.
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19.7. HARMONIC OSCILLATOR IN ONE DIMENSION Lecture 19

We rewrite our scaled (19.50) in terms of ψ̄ by noting:

ψ′ = −x̄ e−
1
2
x̄2
ψ̄ + e−

1
2
x̄2
ψ̄′

ψ′′ = −e−
1
2
x̄2
ψ̄ + x̄2 e−

1
2
x̄2 − 2 x̄ e−

1
2
x̄2
ψ̄′ + e−

1
2
x̄2
ψ̄′′

(19.53)

and inputting in (19.50), we have:

ψ̄′′ − 2 x̄ ψ̄′ +(α− 1) ψ̄ = 0 . (19.54)

19.7.3 Step 3

We are ready to make the series expansion ansatz and input into the final
form (19.54). We will, of course, be making the expansion in x̄ for the func-
tion ψ̄(x̄). In order to cover general series, which may not have leading term
x̄0, we introduce a factor of x̄p in front of the infinite sum, allowing our series
to start with x̄p – p must be determined in the process of solving (19.54).
Take

ψ̄(x̄) = x̄p
∞∑
j=0

aj x̄
j =

∞∑
j=0

aj x̄
j+p. (19.55)

We need the first and second derivatives, and it’s easiest to tabulate all the
ingredients before putting them into the ODE, so

ψ̄′ =
∞∑
j=0

aj (j + p) x̄j+p−1

x̄ ψ̄′ =
∞∑
j=0

aj (j + p) x̄j+p

ψ̄′′ =
∞∑
j=0

aj (j + p) (j + p− 1) x̄j+p−2.

(19.56)

In order to combine terms, we pull an overall factor of x̄p out,

x̄p

 ∞∑
j=0

aj (j + p) (j + p− 1) x̄j−2 +
∞∑
j=0

aj (−2 (j + p) + (α− 1)) x̄j

 = 0.

(19.57)
The first term, coming from the second derivative, is not written in terms of
x̄j – remember, the idea behind the Frobenius method is to kill each power
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of x̄ in the infinite sum separately. But we can rewrite the offending term
by setting q = j − 2, to get

∞∑
j=0

aj (j + p) (j + p− 1) x̄j−2 =
∞∑

q=−2

aq+2 (p+ q + 2) (p+ q + 1) x̄q

= a0 p (p− 1) x̄−2 + a1 (p+ 1) p x̄−1

+
∞∑
q=0

aq+2 (p+ q + 2) (p+ q + 1) x̄q

(19.58)
and then rellabeling the dummy index q → j, we can combine with the rest
of the terms in the sum:

0 = a0 p (p− 1) x̄−2 + a1 (p+ 1) p x̄−1

+
∞∑
j=0

[aj+2 (p+ j + 2) (p+ j + 1)− aj (2 (p+ j)−(α− 1))] x̄j .
(19.59)

In order to get rid of the first two terms, we can set p = 0, and this leaves
us free to choose a0 and a1. Then we have the recursion relation implied by
the requirement that the coefficient of x̄j be zero:

aj+2 =
2 j + 1− α

(j + 1) (j + 2)
aj . (19.60)

From the recursion relation, it is clear that setting a0 = 0, we get an odd
series, and for a1 = 0, we get an even series.

What is the asymptotic behavior of this recursion relation? For large j, we
have aj+2 ∼ 2

j aj . If we think about series that have a relation of this type
as their recursion, with a factor of z2 between successive terms, the natural
one that comes to mind is:

ez
2

=
∞∑
j=0

1
j!
z2 j (19.61)

and the coefficient for the z2 j term is cj = 1
j! , while for the z2 (j−1) term, it

is cj−1 = 1
(j−1)! , giving:

cj
cj−1

=
1
j
. (19.62)

So our series goes, asymptotically, like ex̄
2
. That will not give a normalizable

solution when combined in the full wavefunction ψ(x) = e−
1
2
x̄2
ψ̄. In order to
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maintain normalizability, we must truncate the series. There must be some
J for which aJ+2 = 0 (and then all the higher coefficients will automatically
vanish). This leaves us with a finite set of terms, i.e. a polynomial in x̄.

The requirement, for truncation is that:

2 J + 1 = α ≡ 2E
~ω
−→ EJ = ~ω

(
1
2

+ J

)
. (19.63)

This is precisely the spectrum we got from our ladder approach. The poly-
nomials associated with the recursion relation above are called “Hermite
polynomials” and denoted HJ(x). With the appropriate normalization, the
wave function is:

ψJ(x̄) =
(mω

π ~

) 1
4 1√

2J J !
HJ(x̄) e−

1
2
x̄2
, (19.64)

with energy

EJ =
(
J +

1
2

)
~ω. (19.65)
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Homework

Note that this homework is due on Wednesday, March 26th (after break).

Reading: Griffiths, pp. 51–57 (for harmonic oscillator series expansion).

Griffiths, pp. 133–139 (for spherical separation-of-variables).

Problem 19.1

In this problem, we will work through the Frobenius method for a . . .
particular potential. The ultimate goal is the set of discrete energies, not
the series solution itself. Our starting point will be the separated radial
wave equation.

a. From separation of variables applied to the time-independent
Schrödinger equation, we have

1
f(r)

d

dr

(
r2 df(r)

dr

)
− 2mr2

~2
[V (r)− E] = ` (`+ 1) (19.66)

for integer `. Transform to the new function u(r) ≡ r f(r), and show that
the above can be written as:

d2u(r)
dr2

−
[

2m
~2

(V (r)− E) +
` (`+ 1)
r2

]
u(r) = 0 (19.67)

b. Set

V (r) = −β
r

(19.68)

where β (> 0) has units |β| = M L3 T−2. Inputting this into (19.67),
identify a unitless quantity to replace r – that is, find z = Ar where z is
unitless, and A is some combination of constants provided by the problem
(i.e. ~, m, β, etc.).

Rewrite your equation in terms of this new variable z, and define α2 =
−BE, where B is whatever mess of coefficients appears in front of E in
your equation. The point here is that we expect E < 0, and we don’t want
to carry around a bunch of factors that might hinder the calculation.

14 of 15



19.7. HARMONIC OSCILLATOR IN ONE DIMENSION Lecture 19

c. Now we want to isolate the large z solution, and ensure that we can
obtain normalizable wavefunctions. Solve your equation from part b. for z
very large (first reduce your equation by assuming z is large, then solve).
Choose the solution (there should be two) that will vanish at spatial infinity,
and call it G(z).

d. Next define u(z) = ū(z)G(z). Find the ODE that ū(z) must satisfy
by inserting this form into your equation from Part b.

e. Finally, the series expansion: Set

ū(z) = zp
∞∑
j=0

aj z
j , (19.69)

calculate all relevant derivatives and insert this into your equation from part
d. Write the recursion relation for the various coefficients, and the “indicial”
equation governing the choice of p. Note that you should get two possible
values for p, but one can be dropped based on bad behavior at z = 0.

f. For the valid choice of p, write your recursion relation in the form
aj+1 = Z aj (where Z is some combination of p and j and/or constants)
and assume it must truncate at some maximum value J . For this truncation
to occur, you must have aj+1 = 0, at which point all higher coefficients
will vanish. Write this condition in terms of E (you should have an α in Z,
and α2 = −BE from part b.). You now have the discrete spectrum EJ for
a quantum system governed by a potential of the form −β

r .

Note: The necessity of truncation of the series you have developed is based
on the asymptotic behavior of its coefficients – we will discuss this in detail
in class.
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