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17.1 Introduction

In the context of the first midterm, there are a few points I’d like to make
about solving and interpreting Schrödinger’s equation. I’ll go in order of the
problems, and use the midterm itself as a venue for review.

17.2 Problem 1

17.2.1 Part a.

We are asked to sketch wave functions for two different potentials. In the
first figure, we are told that: The energy of the state is larger than the
potential, so that E − V0 > 0. In the region where the wave function is
already drawn, then, we have a solution to:

− ~2

2m
ψ′′(x) + V0 ψ(x) = E ψ(x) −→ ψ′′(x) = − 2m

~2
(E − V0)︸ ︷︷ ︸
≡k̄2>0

ψ(x) .

(17.1)
The real part is drawn, with some amplitude, so we are looking at a function:
sin(k̄ x). An oscillation like this has wavelength defined to be the length of
one full cycle,

sin(2π) = sin(k̄ λ̄) −→ λ̄ =
2π
k̄

. (17.2)
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17.2. PROBLEM 1 Lecture 17

Now we are to continue the sketch in a region where there is no potential,
so

ψ′′(x) = − 2mE

~2︸ ︷︷ ︸
≡k2>0

ψ(x). (17.3)

Our sketch must respect the continuity and derivative continuity of the wave
function. In addition, it will be oscillatory, and it has wavelength λ = 2π

k .
What is the relation between λ and λ̄? From their definition, we know that

k̄2 = k2 − ~2

2m
V0, (17.4)

where we have used the fact that the energy of a state is fixed. We are
drawing a wave function that has definite energy, an eigenfunction of the
Hamiltonian for a potential with a mild discontinuity in it. Given the above,
we conclude that k̄ < k, and therefore that

1
k̄
>

1
k
−→ λ̄ > λ , (17.5)

so we should draw: A sinusoidal function that connects continuously and
derivative-continuously to the existing sketch and has a shorter wavelength.

For the second potential, we are told that the energy of our state is greater
than zero, and less than V0. Think about what Schrödinger’s equation will
tell us about the solution when V (x) = V0:

− ~2

2m
ψ′′(x) + V0 ψ(x) = E ψ(x) −→ ψ′′(x) = − 2m

~2
(E − V0)︸ ︷︷ ︸
<0

ψ(x) ,

(17.6)
so that the right-hand side has a constant that can be written as 2m

~2 (V0 − E)
which is positive – the solutions to ψ′′(x) = K2 ψ(x) for positive K2 are
growing and decaying exponentials, and we should draw: A decaying expo-
nential that connects continuously and derivative-continuously to the exist-
ing sketch.

17.2.2 Part b.

Here we are inverting the “usual” physical setup. Typically, we are given
a potential and want to find the associated stationary states. But in this
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case, we are given a stationary state, and asked to find the potential (and
energy) for which this is a stationary state. We assume that Schrödinger’s
equation is satisfied:

− ~2

2m
ψ′′(x) + V (x)ψ(x) = E ψ(x), (17.7)

and all we need to do in this case is “solve for V (x)”

V (x) =
E ψ(x) + ~2

2m ψ′′(x)
ψ(x)

(17.8)

and impose the condition that V (0) = 0. To do this, we must insert the
ψ(x) = Axe−αx

2
and its second derivative. Before proceeding, notice that

the normalization constant A in this case cannot matter – look at the right-
hand-side of (17.8). Now, the derivative and second derivative of ψ(x) can
be written as:

ψ′(x) =
1
x
ψ(x)− 2αxψ(x)

ψ′′(x) = − 1
x2
ψ(x) +

1
x
ψ′(x)− 2αψ(x)− 2αxψ′(x)

=
(
4α2 x2 − 6α

)
ψ(x),

(17.9)

and we see, with a wave of relief, that the second derivative is itself propor-
tional to ψ(x), so the right-hand-side of (17.8) is going to work out nicely:

V (x) = E +
~2

2m
(
4α2 x2 − 6α

)
. (17.10)

We know that V (0) = 0, and this can be used to solve for E:

E =
3α ~2

m
, (17.11)

whereupon

V (x) =
2α2 ~2

m
x2 (17.12)

and we see that the potential here is that of a harmonic oscillator. From
the wavefunction itself, we can get the units for α – an exponential has
arguments that are unitless, so |α| = L−2 to get αx2 unitless. From here,
we can check the units for our E and V (x).
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17.2.3 Part c.

This question has an interesting loop-hole in it. We are told that there are
four possible energy measurements, and the state with lowest energy (the
ground state) has energy 5 J. Now the first quantum mechanical observation
is that the wave function of this system Ψ(x, t) must be a linear combination
of four stationary states, i.e. ones satisfying:

− ~2

2m
ψ′′i (x) + V (x)ψi(x) = Ei ψi(x) i = 1, 2, 3, 4, (17.13)

since possible energy measurements are drawn from the eigenvalues Ei. Our
second quantum mechanical observation is that when a measurement is
made, the state of the system becomes that of the eigenvector associated with
the measurement. I have intentionally left out any reference to energy in the
italicized comment: A measurement is associated with a Hermitian operator
– position measurements are associated with x̂, momentum measurements
are associated with p̂, and energy measurements are associated with Ĥ. The
eigenstate that the system collapses into is an eigenstate of the associated
operator. For example, in our case, we are measuring energy, so we expect
the system to be in an eigenstate of Ĥ after an energy measurement. If we
measured position, we expect the system to be (subsequent to the measure-
ment) in an eigenstate of x̂ (delta function). If we measured momentum, we
expect the system to be in an eigenstate of momentum (ei

p
~ x).

Since we are measuring energy, we are interested in the eigenstates of the
Hamiltonian – we are told that our measurement returned the first excited
state. Here is the loophole: The problem does not specify what type of
probability density to draw. Suppose we wanted to draw the position prob-
ability density associated with an eigenvector of the Hamiltonian, what we
would call ρ(x) = ψ∗2(x)ψ2(x) where ψ2(x) represents the first excited state
(in position basis). What do we know about such states from our experi-
ence? Think of the infinite square well, that has first excited state given
by sin(2π x/a), and hence has one node in its graph for x ∈ [0, a]. For
the harmonic oscillator, the first excited state is ∼ x e−αx

2
, and this also

has one node in its graph1. So we had better sketch a probability density
(ψ2(x)∗ ψ2(x)) that has a zero.

But, the problem is open to interpretation – one could sketch the probability
density for energy – we know that the state of the system is ψ2 – what,

1In fact, the spectrum that is given in this problem corresponds precisely to the har-
monic oscillator, with ~ ω = 10 J.
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then, is the probability a subsequent measurement returns E2? Answer:
ρ(En) = δn2 – we will, with probability 1, make a measurement of E2. So,
one could draw a valid probability density for energy that looked like a spike
at E2, but then the axis of your probability density had better read: En.

17.3 Problem 2

This problem is a piecewise-patching-together nightmare. The setup is the
only interesting element here. The potential naturally partitions space into
three sections: x < −a, −a < x < 0 and x > 0, and energy into three
sections: E < −V0, −V0 < E < 0 and E > 0 as shown in Figure 17.1.

−a 0

I II III position partition

A

B

C

energy
partition

position

energy

Figure 17.1: The potential splits space up into three regimes: I, II, and III.
In addition, it suggests three separate energy regimes: A, B, and C.

We know immediately that no states with energy in region A exist (they are
not normalizable since these states would have energy less than the minimum
of the potential). In addition, the wavefunction in spatial region III, x > 0
must be zero (think of the infinite square well): ψIII(x) = 0.
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17.3.1 Part a.

We are asked to find the scattering states – this corresponds to states with
energy in region C: E > 0. Then in regions I and II, we have

ψ′′I = − 2m
~2

E︸ ︷︷ ︸
≡k2>0

ψI

ψ′′II = − 2m
~2

(E + V0)︸ ︷︷ ︸
≡k̄2>0

ψII

(17.14)

from Schrödinger’s equation. In addition, we know that ψIII(x) = 0. The
solutions read:

ψI(x) = Aei k x +B e−i k x

ψII(x) = F ei k̄ x +Ge−i k̄ x

ψIII(x) = 0.

(17.15)

What we have, then, are oscillatory solutions with different wavelengths in
regions I and II, and a constant (zero) solution in region III. We expect to
be able to solve for B, F and G in terms of A, and A will be the single
left-over constant available for normalization of the wave function.

The boundary conditions consist of continuity at x = −a and x = 0, and
derivative continuity at x = −a (remember that, for the square well, we only
needed continuity at the ends of the well in order to get a complete solution
up to normalization). From

ψI(−a) = ψII(−a) ψ′I(−a) = ψ′II(−a) ψII(0) = ψIII(0) = 0 (17.16)

we can find the desired relations.

17.3.2 Part b.

Here, we are talking about bound states – these are stationary states with
energy in regime B: −V0 < E < 0. In regions I and II of space, we will now
have

ψ′′I (x) = − 2mE

~2︸ ︷︷ ︸
<0

ψI(x)

ψ′′II(x) = − 2m
~2

(E + V0)︸ ︷︷ ︸
>0

ψII(x)
(17.17)
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and the solution in I becomes growing and decaying exponentials, and in
II, oscillation. We throw out the growing exponential in I, ensure that we
match at x = −a in a continuous and derivative-continuous way, then have
oscillation inside the well, but we must have ψII(0) = 0 to ensure continuity
at x = 0.

17.4 Problem 3

What we are given here is an initial state that consists of an equal linear
combination of stationary states for the infinite square well. Remember
that:

ψn(x) =

√
2
a

sin
(nπ x

a

)
(17.18)

solves − ~2

2m ψ′′n(x) + V (x)ψn(x) = En ψn(x) for this potential, with the re-
quirements: ψn(0) = ψn(a) = 0. So our initial state is:

ψ̄(x) =
1√
2

(ψ1(x) + ψ2(x)) . (17.19)

17.4.1 Part a.

From our statistical interpretation of the wave function, we know that:

P

(
x ∈ [0,

1
2
a]
)

=
∫ 1

2
a

0
ψ̄∗(x) ψ̄(x) dx. (17.20)

The initial wavefunction is clearly normalized already, since we can write it
as:∫ a

0
ψ̄(x)∗ ψ(x) dx =

1
2

{∫ a

0
ψ∗1(x)ψ1(x) dx︸ ︷︷ ︸

=1

+
∫ a

0
ψ∗1(x)ψ2(x) dx︸ ︷︷ ︸

=0

+
∫ a

0
ψ∗2(x)ψ1(x) dx︸ ︷︷ ︸

=0

+
∫ a

0
ψ∗2(x)ψ2(x) dx︸ ︷︷ ︸

=1

}

= 1,

(17.21)

using orthonormality.
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Now, while it is true that:

ψ1 · ψ2 ≡
∫ a

0
ψ∗1(x)ψ2(x) dx = 0 (17.22)

it is not the case that restricting the integration region preserves this, i.e.∫ 1
2
a

0
ψ∗1(x)ψ2(x) dx 6= 0. (17.23)

There are a variety of ways to calculate this integral, we can do integration
by parts, or rewrite the trigonometric sine function in terms of the easy-to-
integrate exponentials. However you like, you will not get zero.

17.4.2 Part b.

Here, one can either hit the initial wave function with Ĥ and integrate (from
the definition):

〈H〉 =
∫ a

0
ψ̄∗(x)

(
− ~2

2m
d2

dx2

)
ψ̄(x) dx, (17.24)

or use the fact that the stationary states are eigenfunctions of the Hamilto-
nian: Ĥ |ψn〉 = En |ψn〉:

〈H〉 =
1
2

(
〈ψ1| Ĥ |ψ1〉+ 〈ψ2| Ĥ |ψ1〉+ 〈ψ1| Ĥ |ψ2〉+ 〈ψ2| Ĥ |ψ2〉

)
=

1
2

(E1 + E2) .

(17.25)

17.4.3 Part c.

Since we know the stationary states that make up the initial wave func-
tion, the time-dependent wave-function is just the superposition of the time-
dependent wave function for each of the stationary states:

Ψ(x, t) =
1√
a

(
sin
(π x
a

)
e−i

E1
~ t + sin

(
2π x
a

)
e−i

E2
~ t

)
=

1√
2

(
ψ1(x) e−i

E1
~ t + ψ2(x) e−i

E2
~ t
)
.

(17.26)
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The probability, as a function of time now, is (as in the first part):

P

(
x ∈ [0,

1
2
a]
)

=
∫ 1

2
a

0
Ψ(x, t)∗Ψ(x, t) dx

=
1
2

∫ 1
2

0

(
ψ1(x)2 + 2 cos

(
(E1 − E2) t

~

)
ψ1(x)ψ2(x) + ψ2(x)2

)
dx

(17.27)
(where we have used the fact that the {ψn(x)}∞n=1 are real). Note that this
probability is now a function of time, and that at time t = 0, reproduces
the result from part a. We know the integrals from the first part:

P (x ∈ [0,
1
2
a]) =

1
2

+ 2 cos
(

(E1 − E2) t
~

) ∫ 1
2
a

0
ψ1(x)ψ2(x) dx. (17.28)
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Homework

Reading: Griffiths, pp. 1–130.

Problem 17.1

For the potential shown below, sketch a plausible stationary state with
energy E – use the line at E as the x-axis of your sketch. Don’t worry
about amplitude, but make sure that all boundary conditions and relative
wavelengths are clearly satisfied.

V (x)

x0

V0

V1

E

Problem 17.2

We find a free particle at location x0 (ignore experimental error, and suppose
that we know it is exactly at x0).

a. Write down the position probability density immediately after the
measurement in the position basis – i.e. What is ψ(x)?

b. Find the momentum wave function (useful in calculating the momen-
tum probability density) immediately after the measurement – i.e. What is
ψ(p) = 〈p||ψ〉? Comment on the momentum probability density in this case
(can it represent a usable probability density?)
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Problem 17.3

Using Euler’s formula ei θ = cos θ + i sin θ, evaluate the integral:

I =
∫ 1

2
a

0
sin
(π x
a

)
sin
(

2π x
a

)
dx. (17.29)

Problem 17.4

Write the most general 2× 2 matrix:

A=̇
(
a b
c d

)
(17.30)

with a, b, c, d ∈ C, write the constraints you must place on the coefficients
for A to be Hermitian: A = A†. Express this most general Hermitian A in
terms of its real and imaginary parts – how many real numbers do you get
to choose?
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