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We have seen a few different types of behavior for the stationary states
of piecewise potentials – we can have oscillatory solutions on one or both
sides of a potential discontinuity, we can also have growing and decaying
exponentials. In general, we will select between the oscillatory and decaying
exponential by choosing an energy scale for the stationary state.

Our final pass at this subject will begin with a finite step, where we set
up some matrix machinery to avoid the tedious algebra that accompanies
boundary matching. Aside from the result, the important observation is
that the matrix form we develop is independent of the potential, so that
we can apply this type of approach to any potential, provided it does not
extend to infinity.

Remember the process we are going through over and over (and over): Given
a potential, find the stationary states, use those to form the general solution
to Schrödinger’s equation by appending the appropriate temporal factor
(e−i

E t
~ ), and exploit completeness to decompose some initial ψ̄(x) waveform.

In practice, as should be evident from our studies so far, this program is
sensible but difficult. The initial distribution of choice, a Gaussian, has
unwieldy decomposition in bases other than ei k x (the natural, Fourier set)
– is there another/easier way to get a basic idea of what an initial Gaussian
distribution does when evolved in time under the influence of a potential?
Yes, and we discuss the simplest possible numerical solution at the end.
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13.1. FINITE STEP POTENTIAL Lecture 13

13.1 Finite Step Potential

Take, as our potential, the finite step:

V (x) =


0 x < 0
V0 0 < x < a
0 x > a

. (13.1)

Now the spatial solution is naturally partitioned into three regions – we’ll
make the usual ansatz:

ψI(x) = Aei k x +B e−i k x

ψII(x) = C ek̄ x +De−k̄ x

ψIII(x) = F ei k x +Ge−i k x,

(13.2)

with k ≡
√

2mE
~2 , k̄ ≡

√
2m (V0−E)

~2 so that k̄ is real for E < V0, and
imaginary for E > V0.

The continuity equations, working from the left, read:

A+B = C +D i k (A−B) = k̄ (C −D), (13.3)

and on the right, we have

C ek̄ a +De−k̄ a = F ei k a +Ge−i k a

k̄
(
C ek̄ a −De−k̄ a

)
= i k

(
F ei k a −Ge−i k a

) (13.4)

There are a few different ways to make the required connections. Thinking
of the typical “scattering” problem (wave is incident from the left, gives rise
to reflected wave and transmitted wave, etc.), we would typically set G = 0,
and attempt to find B and F for the waves on the left and right. That
suggests that we set up the following matrix equations:(

1 1
i k −i k

)
︸ ︷︷ ︸

≡M1

(
A
B

)
=
(

1 1
k̄ −k̄

)
︸ ︷︷ ︸

≡M2

(
C
D

)
(13.5)

and(
ek̄ a e−k̄ a

k̄ ek̄ a −k̄ e−k̄ a

)
︸ ︷︷ ︸

≡M3

(
C
D

)
=
(

ei k a e−i k a

i k ei k a −i k e−i k a
)

︸ ︷︷ ︸
≡M4

(
F
G

)
. (13.6)
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13.1. FINITE STEP POTENTIAL Lecture 13

Then we can solve for F and G in terms of A and B:(
A
B

)
= M−1

1 M2 M−1
3 M4︸ ︷︷ ︸

≡M

(
F
G

)
. (13.7)

Since we want to find B and F given A and G = 0, we can rewrite the
above, once we know the matrix elements:

F =
1
M11

A B =
M21

M11
A. (13.8)

Computing M, I find that:

M11 =
ea (i k−k̄)

4 k k̄

[
i
(
−1 + e2 a k̄

) (
k̄2 − k2

)
+ 2

(
1 + e2 a k̄

)
k k̄
]

M12 =
i e−a (i k+k̄)

4 k k̄

[(
−1 + e2 a k̄

) (
k2 + k̄2

)]
M21 = (M12)∗

M22 = (M11)∗.

(13.9)

It is interesting that we now have a direct relation between the left and right
coefficients that makes no explicit reference to the intermediate region where
the potential acts. This suggests that the structure of M contains all the
physics – both boundary conditions and potential (through k̄). Now that
we have the above matrix elements, we are ready to do some test-cases.

13.1.1 Scattering for V0 > 0

If we take V0 > 0 (a step), then we can consider the two obvious cases:
E < V0 (but greater than zero, of course) and E > V0.

E < V0

When E < V0, we have k̄ real, and our setup was adapted to this case (our
choice to use ek̄ x for example). Then the solution inside the potential is
growing and decaying exponentials. We can set G = 0, and employ the
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13.1. FINITE STEP POTENTIAL Lecture 13

trigonometric relations to get (via (13.8)):

F =
2 k k̄ e−i a k A

2 k k̄ cosh(a k̄)− i (k2 − k̄2) sinh(a k̄)

B = − i (k2 + k̄2) sinh(a k̄)A
2 k k̄ cosh(a k̄)− i (k2 − k̄2) sinh(a k̄)

.

(13.10)

The reflection and transmission coefficients can be defined “as usual” here,
since in the left and right-hand regions, we have the same k. The transmis-

sions coefficient, written in unitless z ≡
√

2mE
~2 a notation is:

T ≡ |F |
2

|A|2
=

8 z2 (z2 − z2
0)

8 z4 − 8 z2 z2
0 − 2 z4

0 sinh2
(√

z2
0 − z2

) (13.11)

with z0 ≡
√

2mV0
~2 a. The transmission coefficient, as a function of z is shown

in Figure 13.1.

T (z)

z
0.0 0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

Figure 13.1: Transmission coefficient from (13.11) for z0 = 1.

We can recover the C and D coefficients from (13.5), either set will do. In
this case, we have

C = − Ae−a k̄ k (k − i k̄)
2 i k k̄ cosh(a k̄) + (k2 − k̄2) sinh(a k̄)

D =
Aea k̄ k (k + i k̄)

2 i k k̄ cosh(a k̄) + (k2 − k̄2) sinh(a k̄)
.

(13.12)

An example wave-function is shown in Figure 13.2 – the potential is non-zero
in the range x ∈ (0, 1).
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Figure 13.2: A wave function with plane wave input – the real part is shown,
there are oscillatory portions on the left and right of the potential step, with
“tunneling” through the step.

E > V0

For energy greater than the potential, we can take our results from above
directly, and replace k̄ = iK for K real. That amounts to setting:

K =

√
2m |V0 − E|

~2
. (13.13)

Making this replacement1 to find the transmission coefficient, for example,
we have

T =
1

cos2(aK) + (k2+K2)2 sin2(aK)
4 k2K2

, (13.14)

or, using our nondimensionalized form (compare with (13.11))

T =
8 z2 (z2 − z2

0)
8 z4 − 8 z2 z2

0 + 2 z2
0 sin2(

√
z2 − z2

0)
, (13.15)

and this is shown in Figure 13.3.

Notice the tantalizing possibility presented by (13.15), and shown clearly
in the figure: Periodically (no pun intended), the transmission is perfect
(T = 1). This happens whenever

2
√
z2 − z2

0 = 2mπ, (13.16)

1Note that cosh(i x) = cos(x) for x real, and sinh(i x) = i sin(x), these follow directly
from the exponential representation of cosine and sine.
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Figure 13.3: Transmission coefficient (13.15) as a function of “energy” z for
the E > V0 potential step.

for integer m. In terms of E and V0, the requirement is√
2m (E − V0) =

~mπ

a
. (13.17)

The quantization of energy (relative to V0) is occuring here because of the
“resonance” inside the potential – it is possible to tune the energy so that
the solution inside the potential step is oscillatory at (an integer multiple of)
the fundamental wavelength of the potential itself, a standing wave inside
the step.

Some example wavefunctions are shown pieced together in Figure 13.4

We have exhausted the energy relations (except for E = V0, which requires
a very different sort of analysis) for V0 > 0. The finite potential well has
very similar solutions, we can study the scattering case (V0 < 0, E > 0) by
sending V0 → −V0 in our current setup. But for the finite well, we also have
a new possibility: Bound states.

13.1.2 Bound States of the Finite Well (V0 < 0)

For V0 < 0, we can have E < 0. The solutions to the left and right of
the well will now be growing and decaying exponentials, while the solution
inside the well will be oscillatory. In a sense, we are reversing the case V0 > 0
with E < V0, where we had oscillation outside the step, and exponentials
inside. The big difference for V0 < 0, E < 0 is that now, our demand that
the wavefunction vanish at infinity means that we can have only decaying
exponentials on either side of the well.

Referring to (13.2), we can see the modifications clearly. Now k =
√

2mE
~2 is
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Figure 13.4: Example E > V0 wavefunctions. For the top plot, we have
z0 = 1, z = 2. The bottom plot shows a resonance at 2

√
z2 − z2

0 = 2mπ
for m = 4.

imaginary, since E < 0, so set k = iK, and then we have to kill the growing
exponential on the left: A = 0, and on the right: G = 0. That means we need
to return to (13.7) – we must have B = M21 F and M11 = 0 before we can

sensibly discuss the interior solution. Thinking about k̄ =
√
−2m (|V0|−|E|)

~2 ,
we see that k̄ is imaginary, so set k̄ ≡ i K̄. Then from (13.9), we have

M11 =
ea (−K−i K̄)

−4K K̄

[
i
(
−1 + ei 2 a K̄

)
(K2 − K̄2)− 2

(
1 + ei 2 a K̄

)
K K̄

]
.

(13.18)
To get M11 = 0, we solve the above for K:

K = K̄ tan
(

1
2
a K̄

)
, (13.19)

and now going to dimensionless: z ≡ K̄ a =
√

2m (|V0|−|E|)
~2 a, with z0 =√

2m |V0|
~2 a, so that K a =

√
2m |E|

~2 a =
√
z2

0 − z2 and the above can be
written:√

z2
0 − z2 = z tan

(
1
2
z

)
−→ tan

(
1
2
z

)
=

√
−1 +

z2
0

z2
. (13.20)
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Evidently, for a bound state to exist (meaning that it decays to zero at
positive and negative infinity), we must have a very particular (quantized)
relation between the energy of the particle and the potential. The transcen-
dental roots are shown in Figure 13.5 – we have set z0 = 8π there, and
plotted the left and right-hand sides of (13.20).

z

0 5 10 15 20 25

5

10

15

20

25

Figure 13.5: The tan(z/2) vs.
√
−1 + z20

z2
for z0 = 8π. The cross-over points

represent the allowed energies for bound solutions to the finite potential
well.

Taking the solution z ∼ 14.4799678 and z ∼ 20.1329987 (obtained by nu-
merical root-finding), the third and fourth circled points in Figure 13.5, we
can construct the complete wavefunction here – the result is shown in Fig-
ure 13.6.

13.2 Limit

We should be able to recover the bound state of the Dirac delta function
potential (well): V0 = −α δ(x) with α positive. Take our condition (13.20),
and input z, z0:

tan

(
a
√
m (|V0| − |E|)

2 ~2

)
=

√
−1 +

|V0|
|V0| − |E|

(13.21)
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Figure 13.6: Third and fourth bound state for finite well.

We can approximate the delta function in one dimension as a box of height
1
a in the limit a→ 02, inputting |V0| = α

a gives

tan

(√
ma (α− |E| a)

2 ~2

)
=

√
−1 +

1
1− a

α |E|
. (13.22)

Now Taylor expand both sides to get the small a behavior – using tan(z) ∼ z
for small z, √

maα

2 ~2
=

√
a |E|
α

(13.23)

to order
√
a. We can solve this for |E| to recover the usual relation for the

bound state energy of the delta well:

E = −mα2

2 ~2
, (13.24)

where we have assumed throughout that E < 0.
2That provides the defining feature

R∞
−∞ δ(x) dx = 1 for all values of a.
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13.3 Numerical Solution

There are a variety of ways to solve Schrödinger’s equation numerically. Any
method will require spatial discretization, and there is a well-defined way
to turn differential operators like d2

dx2 into matrices. The basic idea is to
approximate:

d2f(x)
dx2

∼ f(x+ ∆x)− 2f(x) + f(x−∆x)
∆x2

(13.25)

on a grid of evenly spaced points, say, xj = j∆x. Then we can form a
vector of f(x) evaluated at the grid points: fj ≡ f(xj), and a matrix that
repeats the above stencil for each grid point. Call this operator H – then
Schrödinger’s equation can be written as:

i ~ Ψ̇ = H Ψ (13.26)

as a matrix-vector equation (with the elements of Ψ defined to be ψj ≡
ψ(xj)).

13.3.1 Discrete Eigenvalues

Since the grid is discrete, and H = HT , we can calculate the numerical
eigenvalues and eigenvectors associated with H, define:

Hψn = λnψn, (13.27)

then the solution to (13.26) is given, for each of the eigenvectors, as

i ~ Ψ̇n = λn Ψn −→ Ψn = α e−i
λn
~ tψn, (13.28)

for any overall α. This is a vector, remember, and we can construct a general
solution by decomposing some initial waveform given at t = 0 – the general
solution is:

Ψ =
N∑
j=1

αj e
−i λn~ tψn (13.29)

where N is the number of gridpoints (hence the number of eigenvectors).
Given Ψ(t = 0), we just decompose as usual:

αj = ψj ·Ψ(0) (13.30)
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and use these αj ’s in our full solution (13.29). It’s a nice idea, especially
since it exactly parallels what we have been doing with continuous func-
tions. There are a few difficulties, though – even for the simplest Gaussian
wavepacket, we expect nontrivial dependence on all eigenvectors, and these
eigenvectors are finite – while we can perfectly represent a wave packet on
the grid, there is no way to ensure that the wavepacket travels smoothly.
Effectively, we need too large of a grid to ensure enough eigenvectors to
correctly decompose the packet as it moves along the grid. The result of too
few eigenvectors is a solution plagued by “Gibbs’ phenomena”, ringing from
unresolved modes that travel at inexact speeds (remember, our spectrum
for a matrix is finite, at some level a poor approximation to the infinite
spectrum we expect).

13.3.2 Implicit Differencing

Rather than use the separated form of Schrödinger’s equation, we can work
directly from (13.26) by introducing a finite temporal “grid”, and approxi-
mating the time derivative of the solution vector as:

Ψ̇(x, t) ∼ Ψ(x, t+ ∆t)−Ψ(x, t)
∆t

, (13.31)

so that if we let Ψn represent the vector (on the finite spatial grid) solution
at time tn ≡ n∆t, our method is defined by:

Ψn+1 =
(

I +
∆t
i ~

H
)

Ψn. (13.32)

We could start with a known initial waveform at t = 0 (a Gaussian, for
example), and propagate the solution vector forward in time using the above.
But it is easy to show that repeated multiplication by a matrix has the
property that any initial vector rotates into the direction of the matrix’s
maximum eigenvector (that is, the eigenvector associated with the largest
eigenvalue), and this property, for maximum eigenvalue > 1 will artificially
spoil the numerical solution allowing the wavefunction, in this case, to grow
exponentially with time. The matrix in (13.32) has maximum (absolute
value) eigenvalue greater than one, and the resulting numerical method is
known to be unstable.

The fix is relatively simple – we want an approximation equivalent to the
above, but one with a matrix whose iterated multiplication will not arti-
ficially favor its maximum eigenvector – that is, a matrix that has largest
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eigenvalue < 1, but yields the same approximation. We can form such a
matrix via:

i ~
Ψn+1 −Ψn

∆t
= H Ψn+1, (13.33)

that is, replace the vector evaluation on the right with the updated vector.
Now rearranging, we have:

Ψn+1 =
(

I− ∆t
i ~

H
)−1

︸ ︷︷ ︸
≡P

Ψn, (13.34)

and while we now have to invert a matrix, it is the case that P has largest
eigenvalue with unit magnitude. This “implicit” method is stable, and works
well with our one-dimensional scattering problems.

13.4 Examples

To check the method, we’ll start with a Gaussian bump with some initial
momentum p and expected value for position b – so our initial wave-function
is

ψ(x, 0) =
(

2 a
π

)1/4

ei p x e−a (x−b)2 . (13.35)

The time evolution of this initial waveform is shown in Figure 13.7.

We can introduce a potential barrier, then the behavior of the wavefunction
depends on the magnitude of the barrier height. For a “large” barrier, we
get essentially reflective decomposition, shown in Figure 13.8

Finally, we can use a moderate-sized barrier, one for which the maximum
energy modes of the initial Gaussian are both bigger and smaller than the
height of the barrier. Now the probability density spreads out over the
entire domain after some time has passed. The temporal evolution is shown
in Figure 13.9.

Homework

Reading: Griffiths, pp. 78–83.
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Figure 13.7: The temporal evolution of a Gaussian bump initial wave-
form (13.35). We are plotting probability density for the one-dimensional
grid in each pane.
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Figure 13.8: Time evolution of a Gaussian wavepacket under the influence
of a large potential barrier centered at the origin.
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Figure 13.9: Probability density evolution under the influence of a medium
sized finite barrier.

Problem 13.1

For the delta function potential, V (x) = α δ(x):

a. Write the solution ansatz to the left and the right of the barrier in
terms of: 1. A plane wave traveling to the right with amplitude A and one
traveling to the left with amplitude B in the region x < 0 and 2. A plane
wave traveling to the left with amplitude G and one traveling to the right
with amplitude F in x > 0.

Using the boundary conditions appropriate to the delta potential, find the
matrix connecting (A,B) and (F,G), M below:(

A
B

)
= M

(
F
G

)
. (13.36)

b. From this matrix, and using the “standard” setup where we have an
incoming and reflected wave in x < 0 and a transmitted wave in x > 0,
find the reflection and transmission coefficients for α > 0 (scattering for a
positive delta spike). Show that these sum to one. Do they look familiar?

c. Now take α < 0, and show that M11 = 0 leads to the energy
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constraint for the bound state of the delta well (so take E < 0, and show

that M11 = 0 gives back the single energy: E = −mα2

2 ~2 ).

Problem 13.2

Griffiths 2.27. Here you are finding the bound state(s) of a pair of delta
wells.

15 of 15


