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We saw that the Dirac delta potential admits a single bound state and a
continuum of scattering states. Technically, we can make any potential out
of a sequence of finite approximations to the delta function, so in a sense, we
are done. But there are some interesting physical and mathematical points
that can usefully be discussed in the context of simple step and finite barrier
potentials.

12.1 Finite Step

The finite step problem is defined by a potential of the form:

V (x) =
{

0 x < 0
V0 x ≥ 0.

(12.1)

The Schrödinger equation can then be split in two, with one equation rele-
vant for the region x < 0 (call this region I), and the other acting for x ≥ 0,
region II:

− ~2

2m
ψ′′I (x) = E ψI(x) − ~2

2m
ψ′′II(x) + V0 ψII(x) = E ψII(x). (12.2)

Continuity of the wave-function and its derivative give the two boundary
conditions:

ψI(0) = ψII(0) ψ′I(0) = ψ′II(0). (12.3)

The problem, then, is to solve the wavefunction in each region, then patch
them together.

1 of 7



12.2. NEGATIVE ENERGY STATES Lecture 12

12.2 Negative Energy States

By assumption, in the above, we have V0 > 0. Then there are three basic
regimes for the energy of the wavefunction: E < 0, 0 < E < V0 and E > V0.
First take E < 0 – then the solution on the left will be:

ψI(x) = Aeκx +B e−κx (12.4)

with κ2 ≡ 2m |E|
~2 . We reject the growing solution for x < 0 by setting B = 0.

On the right, we can write:

ψ′′II(x) =
2m (|E|+ V0)

~2
ψII(x), (12.5)

and once again, the solution is growing and decaying exponentials, this time
with κ̄2 ≡ 2m (|E|+V0)

~2 :

ψII(x) = F eκ̄ x +Ge−κ̄ x. (12.6)

For x > 0, where this solution lives, we must set F = 0 to obtain a solution
that does not grow at spatial infinity.

Now we have to impose the boundary conditions – continuity for the wave-
function tells us immediately that A = G, but then, for the derivative, we
must have

Aκ = −G κ̄ −→ κ = −κ̄ (12.7)

and this cannot be satisfied unless both κ and κ̄ are equal to zero, leading
to a contradiction.

Conclusion: We cannot have finite solutions for the wavefunction if E < 0.
Then we need only consider E > 0, and the two remaining energy regimes
can be handled simultaneously.

12.3 Positive Energy Solutions

For E > 0, we have the usual plane wave solutions for region I – there are
two independent solutions, neither of which decay to zero at infinity, but
each is bounded (at infinity), which is good enough for forming a basis. Our
solution is:

ψI(x) = Aei k x +B e−i k x (12.8)
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with k ≡
√

2mE
~2 . In region II, we get

ψII(x) = F ek̄ x +Ge−k̄ x k̄ ≡
√

2m (V0 − E)
~2

. (12.9)

Now we can see how the relative size of V0 and E will play a role – for
E < V0, we will have k̄ ∈ IR, and the solutions will again be growing and
decaying exponentials. For E > V0, k̄ will be purely imaginary, and the
solutions represent oscillation.

12.3.1 Solution for E < V0

In this case, we have a solution on the left that is oscillatory, and on the
right, a (necessarily) decaying exponential. Our boundary conditions can
be written as:

A+B = F +G i k A− i k B = k̄ F − k̄ G F = 0. (12.10)

There are a number of ways to express these linear equations, depending
on what input we are given. As we shall see when we tack on the time-
dependence, the solutions in region I represent left and right-traveling waves.
So one common approach is to “send in” a wave of amplitudeA, then we get a
“reflected” wave traveling to the left with amplitude B, and the “tunneling”
solution on the right governed by G.

We can write our algebraic relations as

A+B = G

A−B =
i k̄

k
G

(12.11)

and the solution (obtained by adding and subtracting these two equations
is:

G =
2A

1 + i k̄
k

B =
1
2
G

(
1− i k̄

k

)
=
A
(

1− i k̄
k

)
(

1 + i k̄
k

) . (12.12)

As a stationary solution, it is not clear how we should interpret the coeffi-
cients above.
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Traveling Waves

The solution on the left, ψI(x), when accompanied by its time-
dependence looks like:

ΨI(x, t) = ψI(x) e−
i E t

~ = Aei k(x−
~ k
2 m

t) +B ei k(−x−
~ k
2 m

t). (12.13)

If we look at the units, it is pretty clear that ~ k
m has units of J s 1/m

kg =
m/s, a velocity (as it must be). This is reminiscent of the solutions to
the one-dimensional wave equation: − 1

v2
∂2φ
∂t2

+ ∂2φ
∂x2 = 0, which are

φ(x, t) = f(x− v t) + g(x+ v t), (12.14)

for functions f(y) and g(y). In this setting, the x− v t contribution is a
right-traveling waveform – think of the value of the function f at time
t = 0, location x = 0, this is just f(0). Now, at a time t = ε later, the
value f(0) is at x = v ε (clear from f(x− v ε) = f(0)) The combination
appearing in g(x+v t) corresponds to a left-traveling solution. Referring
to ΨI(x, t), then, we can identify the A portion of the solution as a right
traveling wave, the B portion as a left-traveling wave. Then the quaint
story we tell ourselves is: A wave of magnitude A travels to the right,
interacts with the step potential, and gives rise to a “reflected” wave of
magnitude B”. This is difficult to justify in the context of an infinite
plane wave superposition, but is a useful decomposition in the case of,
for example, wave packets that we make out of positive or negative k
solutions.

Finally, we have to be a little careful with our wave interpretation – the
big difference between the plane “waves” represented by ΨI(x, t) and the
plane waves of, for example, E&M is the velocity – in E&M, waves travel
in vacuum according to the fundamental velocity of the vacuum: c. In
our quantum mechanical example, the waves travel with a k-dependent
velocity.

We have the complete solution ΨI(x, t), and the time-dependent analogue
on the right:

ΨII(x, t) = Ge−k̄ x e−i
V0−

k̄2 ~2

2 m
~ t, (12.15)
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and we can relate k̄ to k using E = ~2 k2

2m = V0 − ~2 k̄2

2m . We know that, since
these are stationary states, Ψ∗Ψ is time-independent (as you can verify
explicitly). Then our conservation of probability equation reads:

∂(Ψ∗Ψ)
∂t

= 0 =
d

dx

[(
− i ~

2m

)(
dψ

dx
ψ∗ − dψ∗

dx
ψ

)]
, (12.16)

and the current J(x) must be a constant. We calculate this on the left and
right-hand sides of the potential discontinuity:

JI =
1
m

(
|A|2 − |B|2

)
~ k JII = 0. (12.17)

The value of the current on the right: JII = 0 gives JI = 0 (J is constant),
and tells us immediately that |B|2 = |A|2, which is already true of our
solution.

12.3.2 Solution for E > V0

In this case, the general solution (12.9) still holds, but now k̄ is imaginary.
Let’s write k̄ = iK for K real, then:

ψII(x) = F eiK x +Ge−iK x K =

√
2m (E − V0)

~2
. (12.18)

Our story now goes: “A wave comes in from the left with amplitude A, hits
a wave coming in from the right with amplitude G, and this gives a reflected
wave for x < 0 of amplitude B, and a reflected wave in x > 0 of amplitude
F .” From the continuity conditions, we have:

A+B = F +G (A−B) i k = (F −G) iK. (12.19)

There are, again, a number of ways to tabulate this result. If we imagine
that we know the magnitude of the incoming waves on the left and right,
then our interest is in the reflected waves, and we would obtain the solution
by inverting the following:(

1 −1
i k −iK

) (
A
F

)
=
(
−1 1
i k −iK

) (
B
G

)
, (12.20)

giving: (
B
G

)
=
( k+K

k−K
−2K
k−K

2k
k−K −k+K

k−K

) (
A
F

)
. (12.21)
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The traditional optics configuration, where we send in a wave and calculate
the reflected and transmitted amplitudes, corresponds here to setting G = 0,
then:

F =
2 k A
k +K

A B =
k −K
k +K

A. (12.22)

What can we say about continuity? We once again know that the probability
current must be a constant. On the left, we recover

JI =
1
m

(
|A|2 − |B|2

)
~ k (12.23)

which is now not necessarily zero. On the right, we have, by analogy:

JII =
1
m

(
|F |2 − |G|2

)
~K. (12.24)

Setting G = 0, we have:

|A|2 − |B|2 = |F |2 K
k
. (12.25)

In light of the continuity requirement, then, we call |B|
2

|A|2 the “reflection

coefficient”, and |F |
2

|A|2
K
k the “transmission coefficient”.

Finally, fun facts aside, think of the picture – we have an oscillatory solution
on the left, and an oscillatory solution on the right – they have different
wavelengths (and frequencies, although we cannot see this in a stationary
diagram) and match smoothly at x = 0.

Homework

Reading: Griffiths, pp. 78–83.

Problem 12.1

For the finite step potential:

V (x) =
{

0 x < 0
V0 x ≥ 0

, (12.26)
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find the solution to the time-independent Schrödinger equation for energy
E = V0.

Problem 12.2

We have seen how to make a “traveling” Gaussian wavepacket out of free
particle stationary states, by starting from an initial wavefunction ψ̄(x)
that had 〈p〉 = p0. But it was not clear, without actually calculating the
expectation value of momentum for the complete solution Ψ(x, t), that we
would have constant 〈p〉 = p0 for all time. Using an appropriate version of
Ehrenfest’s theorem, show that in fact, for free particles, it is the case that
〈p〉 = p0 ∀t, so the initial momentum expectation value holds for all time.

Problem 12.3

We have the delta well potential: V (x) = −α δ(x). If we start with an
initial wavefunction that is Gaussian:

ψ̄(x) = Ae−a x
2
, (12.27)

compute the probability that we will make an energy measurement of

E = −mα2

2 ~2
. (12.28)

(write your answer in terms of z ≡ mα
2
√
a ~2 .)
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