Review

Lecture 24

Physics 342 Quantum Mechanics I

Wednesday, April 2nd, 2008

Homework

Reading: Griffiths, pp. 160-170.

Note that the homework is not due until Monday, April 7th, 2008.

Problem 24.1

Define $f_{\ell}^{m}(\theta, \phi)$ to be the eigenfunction of L_{z} and L^{2} with eigenvalues given by $\hbar m$ and $\hbar^{2} \ell (\ell + 1)$:

$$L_z f_{\ell}^m = \hbar m f_{\ell}^m \quad L^2 f_{\ell}^m = \hbar^2 \ell (\ell + 1) f_{\ell}^m.$$
(24.1)

Find the "lowest" state $f_{\ell}^{-\ell}$ using $L_{-} f_{\ell}^{-\ell} = 0$. Calculate the state $f_{\ell}^{-\ell+1}$ from this (by using the appropriate raising operation).

Problem 24.2

Griffiths 4.18. Here we work out the constants associated with normalizing the eigenfunctions of L_z .

Problem 24.3

For $\mathbf{L} = \mathbf{r} \times \mathbf{p}$, we have the operator: $\mathbf{L} = \frac{\hbar}{i} \mathbf{r} \times \nabla$. Using ∇ expressed in spherical coordinates, find the actual differential operator expressions associated with L_x , L_y and L_z – these should involve $\frac{\partial}{\partial \theta}$ and $\frac{\partial}{\partial \phi}$ (and

associated factors of $\cos \theta$, $\cos \phi$, etc.). Using these, form the explicit, operator expression for L_+ and solve $L_+ f_\ell^\ell(\theta, \phi) = 0$ for $f_\ell^\ell(\theta, \phi)$ to find the "top" state (you could then apply the lowering operator to work down).