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We describe a simple nonlinear electrical circuit that can be used to study chaotic phenomena. The
circuit employs simple electronic elements such as diodes, resistors, and operational amplifiers, and
is easy to construct. A novel feature of the circuit is its use of an almost ideal nonlinear element,
which is straightforward to model theoretically and leads to excellent agreement between
experiment and theory. For example, comparisons of bifurcation points and power spectra give
agreement to within 1%. The circuit yields a broad range of behavior and is well suited for
qualitative demonstrations and as a serious research tool. ©2004 American Association of Physics Teachers.
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I. INTRODUCTION

The study of nonlinear systems and chaos provides a
cinating gateway into the world of research for studen
With the growing use of nonlinear analysis techniques
many areas of science, it also is becoming increasingly
portant to provide undergraduate students with a good in
duction to nonlinear systems. Undergraduate chaos exp
ments that are available commercially tend either to
relatively expensive or to be somewhat qualitative in natu
Many articles have been published over the past 15 y
regarding chaotic behavior in systems ranging from a bou
ing ball to various electronic circuits.1–8 In many of these
articles the authors have made clever use of low cos
readily available equipment to illustrate well-known aspe
and analytical techniques associated with chaos, such a
furcation diagrams, periodic and chaotic attractors, ret
maps and Poincare´ sections.

Nonlinear electronic circuits provide an excellent tool f
the study of chaotic behavior. Some of these circuits tr
time as a discrete variable, employing sample-and-hold s
circuits and analog multipliers to model iterated maps s
as the logistic map.1 Continuous-time flows are somewh
easier to model electronically. One of the best-known cha
circuits of this latter type is Chua’s circuit.9–11 The original
version of this circuit contains an inductor~making it diffi-
cult to model and to scale to different frequencies!, but in-
ductorless versions of Chua’s circuit have also be
described.12–14 Recent work has highlighted several ne
chaotic circuits that are very simple to construct a
analyze.15,16 These circuits correspond to simple third-ord
differential equations, are easy to scale to different frequ
cies, and contain only simple electronic elements such
diodes, operational amplifiers~op amps!, and resistors. Fur
thermore, with slight modifications, they hold the potent
for very precise comparisons between theory a
experiment.17 The differential equations corresponding
these circuits are among the simplest third-order differen
equations that lead to chaotic behavior.18–22 As noted in
Refs. 16 and 17, several of these circuits may be grou
together and regarded as an analog computer for the pre
experimental study of chaotic phenomena. Some poss
uses of these circuits involve studies of synchronizatio23
503 Am. J. Phys.72 ~4!, April 2004 http://aapt.org/ajp
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and secure communication.24 Furthermore, several such cir
cuits could in principle be linked together to investiga
higher-dimensional chaos.

One class of simple circuits that leads to chaotic behav
is described by the following third-order differentia
equation,17

x̂52Aẍ2 ẋ1D~x!2a, ~1!

where x represents the voltage at a particular node in
corresponding circuit. In Eq.~1! A anda are constants, the
dots denote derivatives with respect to a dimensionless ti
andD(x) is a nonlinear function that characterizes the no
linearity in the circuit.

In this paper we describe an investigation of a new circ
belonging to the class of circuits described by Eq.~1!. The
nonlinearity in the circuit models a function proportional
min(x,0). The circuit is similar to the one described in Re
15, but uses a more precise implementation of
nonlinearity.25 The increase in precision allows for a detaile
comparison between theory and experiment. Such comp
sons yield agreement to within 1% for quantities such
bifurcation points. The data taken from the circuit also c
be used in a variety of ways to illustrate many aspects
chaotic and periodic behavior.

The paper is structured as follows. In Sec. II we descr
the circuit and provide several technical details. Section
contains the experimental results and compares these to
oretical expectations. Section IV offers some concluding
marks.

II. CIRCUIT

A. General remarks

Figure 1 shows a schematic diagram of the circuit used
model Eq.~1!. The circuit has a modular design and ma
with small changes, be used to study any of several differ
chaotic systems, each corresponding to a different nonlin
functionD(x).16,17The variable resistorRv acts as a contro
parameter, moving the system in and out of chaos, and
input voltageV0 may be either positive or negative.26 All
unlabeled resistors~capacitors! have the same nominal resis
tanceR ~capacitanceC). The box labeledD(x) in Fig. 1
represents the nonlinearity in the circuit, which is necess
503© 2004 American Association of Physics Teachers



he

in

e

nd

ve

m
ir-
ve
d
n
ifi
t

b-
the
-
ch
-

rk
f
a-
lds

to

ge
di-

-
ig.

Eq.

a-

the
the

i-

in

un

l
ce
un

ion
for the circuit to exhibit chaotic behavior. The voltage at t
output of the box~on the left! is related to that at its input by
the functional relationVout5D(Vin).

The circuit in Fig. 1 contains three successive invert
integrators with outputs at the nodes labeledV2 , V1 , andx,
as well as a summing amplifier with its output atV3 . If we
use Kirchhoff’s rules at nodesa-d ~along with the ‘‘golden
rules’’ for op amps27!, we obtain the following relations
among the voltages:28

V152RC
dx

dt
52 ẋ, ~2!

V252RC
dV1

dt
5 ẍ, ~3!

RC
dV2

dt
52S R

Rv
DV22S R

R0
DV02V3 , ~4!

V352V12D~x!, ~5!

where the dots denote derivatives with respect to the dim
sionless variablet̃ 5t/(RC). The substitution of Eqs.~2!,
~3!, and~5! into Eq. ~4! yields

x̂52S R

Rv
D ẍ2 ẋ1D~x!2S R

R0
DV0 . ~6!

Equation~6! may be compared with Eq.~1!. It is straightfor-
ward to generalize Eq.~6! to the case where the resistors a
capacitors differ slightly from their nominal values.

In Ref. 17 the nonlinearity in the circuit was taken to ha
the form of an absolute value,D(x)5uxu. The solutions of
the differential equation corresponding to this form beco
unbounded whenRv exceeds a certain threshold. In the c
cuit itself, such unbounded solutions manifest themsel
through saturated op amps, making the circuit somewhat
ficult to work with. In particular, it was found that certai
power supplies to the circuit had to be turned on in a spec
order and in quick succession or the circuit would satura
This instability manifested itself for all values ofRv , not just
those beyond the threshold.

Fig. 1. Schematic diagram of the circuit described by Eq.~6!. The box
labeledD(x) represents a nonlinear subcircuit. Nominal values for the
labeled resistors and capacitors areR547 kV andC51 mF. Approximate
values for the input voltage and resistor areV050.250 V and R0

5157 kV. Also, V152 ẋ and V25 ẍ. The experiment employs dua
LMC6062 operational amplifiers, chosen for their high input impedan
Power supplies for the operational amplifiers are tied capacitively to gro
to reduce the effects of noise on the circuit.
504 Am. J. Phys., Vol. 72, No. 4, April 2004
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In the present work we employ a different nonlinear su
circuit than in Ref. 17. The nonlinearity used here models
function D(x)526 min(x,0) and does not lead to un
bounded solutions. The resulting circuit is generally mu
more stable to work with, making it ideal for use with un
dergraduate students and for other applications.

Figure 2 shows the nonlinear subcircuit used in this wo
to model the functionD(x) noted above. Slight variations o
this circuit27 are used widely in various electronic applic
tions such as AC voltmeters. To show that the circuit yie
the desired functional form, we use the Shockley equation
model theI –V curves for the diodes,

I D5I S~eaVD21!, ~7!

whereI D andVD represent the current through and volta
across each diode, respectively. For the BAV20 silicon
odes that we use, the reverse bias currentI S is of order a few
nA anda is of order 20 V21. If we employ Kirchhoff’s rules
at nodesa andb in Fig. 2, we obtain the following transcen
dental equation relating the input and output voltages in F
2:29

Vout1
1

a2
lnF11

Vout

I S2
R2

G52
1

a1
lnF11

1

I S1

S Vin

R1
1

Vout

R2
D G .

~8!

We takea1;a2;20 V21, I S1
;I S2

;3 nA and resistances
of the order 10 kV and find that the solution of Eq.~8! is
very well represented by the approximate expression

Vout5D~Vin!52S R2

R1
Dmin~Vin,0!. ~9!

In the experiment we chooseR1 and R2 such thatR2 /R1

'6. In this case the exact solution of Eq.~8! gives voltages
of order 21024 V ~instead of zero! for positive input volt-
ages. For negative input voltages the exact solution of
~8! differs from the approximation in Eq.~9! by an amount of
order 2I SR2;2231024 V. This amount would yield a
0.3% correction whenVin520.01 V and a 0.03% correction
when Vin520.1 V. Figure 3 shows an experimental me
surement ofD(x) as a function ofx, with the fit in Eq.~9!
superimposed on the data, demonstrating that Eq.~9! models
the subcircuit quite well.

One interesting feature that we have observed with
subcircuit is that extremely intense light tends to decrease
output voltage somewhat.~The casing on the diodes is ev
dently not completely opaque.! No significant effects were
observed with normal ambient room light.

The important point expressed in Eq.~9! and the ensuing
discussion is that the op amps in Fig. 2 drive the diodes

-

.
d

Fig. 2. Schematic diagram of the subcircuit in the box in Fig. 1. The relat
between the output and input voltages is given byVout5D(Vin)
52(R2 /R1)min(Vin,0).
504Kiers, Schmidt, and Sprott



th
,

f
th
ry
e

nt
e

rm

ir-
a
d

l r

ke
e
u

t
-

f
03
e
n

b

ris
e

ity
er
n
lo
ty
tin

lves
r,
cor-
re
rily
lly

ion
12
to
tly
e

cal

ng
o
cal

a

l
ent
en

d

the
such a way that the circuit becomes quite insensitive to
particular characteristics of the diodes themselves, that is
a very good approximation the solution of Eq.~8! does not
depend ona or I S . A related but slightly simpler version o
the circuit in Figs. 1 and 2 employs a bare diode to model
function min(x,0).15 A detailed comparison between theo
and experiment in that case involves the solution of a diff
ential equation similar to Eq.~6!, but with a functionD(x)
that contains a gradual ‘‘knee’’ rather than a sharp disco
nuity in slope. The numerical results depend very sensitiv
on the exact shape of the knee, so that one must perfo
very careful measurement of the diode’sI –V curve, and then
solve a transcendental equation to determineD(x)
accurately.30 In contrast, the nonlinearity in the present c
cuit is very well described by the simple piecewise line
function in Eq.~9!, which requires no special handling an
yields a very accurate representation of the experimenta
sults.

B. Technical details

A few details have been omitted from Fig. 1 for the sa
of clarity. In the first place, the circuit is ‘‘floated’’ at a fals
ground of approximately 0.725 V to accommodate vario
digital elements in the circuit that were added to collec
time series record of the signal.~These digital elements re
quire voltages to be in the range 0–5 V.! Furthermore, the
variable resistor shown in Fig. 1 is actually composed o
46.3 kV fixed resistor in series with eight 256-step DS18
digital potentiometers ~each of nominal resistanc
;10 kV). Also omitted from Fig. 1 are simple amplificatio
circuits at the nodes corresponding tox and2 ẋ, which are
used to make more efficient use of the 0–5 V range availa
for analog-to-digital~A/D! measurements.

The digital potentiometers and fixed resistor that comp
Rv in Fig. 1 yield approximately 2000-step resolution ov
the range from about 50 kV to about 130 kV. This resolution
allows for a very detailed bifurcation plot~see Fig. 4! and
also lets the user find very narrow windows of periodic
within bands of chaotic behavior. The digital potentiomet
are mildly nonlinear devices in the sense that the resista
of a given potentiometer depends on the voltages at its
and wiper leads. To minimize the effect of this nonlineari
we calibrate the potentiometers near 0.725 V, the floa

Fig. 3. Experimental measurement of the functionD(x) for the nonlinear
subcircuit shown in Fig. 2. The superimposed line shows the function
fined in Eq.~9!. Both x andD(x) are in volts.
505 Am. J. Phys., Vol. 72, No. 4, April 2004
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ground for the experiment. The potentiometers themse
are controlled digitally by a PIC16773 microcontrolle
which also is used to measure the voltages at the nodes
responding tox and 2 ẋ. These voltage measurements a
made at a frequency of 166.7 Hz and are stored tempora
on an AT24C256 EEPROM before being transferred seria
to a personal computer to be written to a file. Data collect
over the entire range of interest takes approximately
hours. At present, the limiting factor is the time required
store data on the EEPROM. Modifications are curren
planned that will significantly improve this aspect of th
experiment.31

III. RESULTS

A. Bifurcation plot

Figure 4 shows experimental and theoretical plots of lo
maxima ofx as a function ofRv . For Rv&53 kV the volt-
age varies periodically, with a single maximum occurri
near 0.3 V. Near 53 kV there is a bifurcation to a period-tw
wave form. In this case the signal goes through two lo
maxima before repeating. The signal continues to follow
period-doubling route to chaos asRv is increased, finally
becoming chaotic near 68 kV. In chaotic regions the signa
never repeats itself, that is, the period is infinite. Also evid
in the plots are several windows of periodicity betwe

e-

Fig. 4. Experimental, theoretical, and superimposed bifurcation plots for
circuit in Figs. 1 and 2.
505Kiers, Schmidt, and Sprott
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bands of chaos. Most of the experimentally observed p
odic windows are quite narrow, and can include high-per
orbits.~See, for example, the period-10 orbit in Fig. 7, whi
comes from a periodic window of width 0.3 kV near Rv
598.2 kV.)

The top plot in Fig. 4 shows the experimental maxima.
reduce the effects of noise on this plot, a cubic polynomia
fit to points surrounding possible maxima. Spurious maxi
are removed using various cuts. The fitting procedure ge
ally works very well, but tends to underestimate maxima
up to about 6 mV. The middle plot shows the theoreti
bifurcation plot obtained by solving Eq.~6! with the nonlin-
earity in Eq.~9!. The numerical solution is obtained using
fourth-order Runge–Kutta algorithm with a fixed step s
corresponding to 0.125 ms. Measured~rather than nominal!
values for the resistors and capacitors are used in the num
cal work. The bottom plot shows the experimental and th
retical plots superimposed and demonstrates the exce
agreement between the two plots. This agreement als
shown in Table I, which compares the locations of seve
bifurcation points. The bifurcation points all agree to with
1%. The excellent agreement between theory and experim
is due in large part to the nearly ideal behavior of the n
linear subcircuit. If a single diode is used to approximate
function in Eq. ~9!, the agreement between theory and e
periment is noticeably poorer~even if one attempts to mode
the I –V characteristics of the diode carefully.! Figure 5
shows an expanded view of a section of the experime
bifurcation plot shown in Fig. 4, showing the fine detail o
tained in the experiment.

B. Power spectral densities and phase portraits

Figure 6 contains several experimental power spectra
illustrates the period-doubling route to chaos followed by

Fig. 5. An expanded view of part of the experimental bifurcation plot sho
in Fig. 4.

Table I. Comparison of theoretical and experimental bifurcation points.
labels a–e are indicated in the bottom plot in Fig. 4.

Expt. ~kV! Theory ~kV! Diff. ~kV! Diff. ~%!

a 53.2 52.9 0.3 0.6
b 65.0 65.0 0.0 0.0
c 78.8 78.7 0.1 0.1
d 101.7 101.7 0.0 0.0
e 125.2 125.5 20.3 20.2
506 Am. J. Phys., Vol. 72, No. 4, April 2004
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system asRv is increased from approximately 51 kV to 72
kV. In each case the results are obtained from an 8192-p
fast Fourier transform~FFT! of the corresponding experi
mentalx values.32 The uppermost plot shows an example
period-one behavior and contains a strong peak at the do
nant frequency of approximately 3.1 Hz. The harmonic pe
occurring at integer multiples of the dominant frequency
dicate, as would be expected, that the oscillations are
perfectly sinusoidal. A strong peak near 3 Hz is evident
each of the other plots as well, although the peak move
higher frequencies asRv increases. The period-one case a
contains a theoretical curve for comparison.33 The agreement
between theory and experiment is excellent, with the po
tions of the peaks agreeing to within one percent. This le
of agreement between theory and experiment is found
other values ofRv as well. The second plot in Fig. 6 show
an example of period-two behavior. In this case the oscil
ing voltage~shown in the inset! passes through two differen
maxima before repeating. The spectral density plot conta
a new peak at half the dominant frequency, illustrating
fact that period doubling is equivalent to frequency halvin
The trend is continued in the third plot, which shows
example of a period-four case. The bottom plot shows
power spectrum for a chaotic case. Despite the noisy app
ance of the spectrum, there is still a strong peak near 3.4

Several experimental phase portraits are shown in Fig
In each casex andẋ are determined experimentally from th

n

Fig. 6. Experimental power spectral density plots showing the peri
doubling route to chaos asRv is increased. The value ofRv is indicated in
the lower left corner. The inset in each plot shows a sample of the exp
mental time series data used to generate the corresponding spectral de
The smoother line in the period-one plot shows the theoretical spectral
sity.

e
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appropriate nodes in the circuit. The upper-left and low
right plots show two different chaotic attractors. The latter
a two-banded attractor taken from the region just to the
of the final bifurcation out of chaos in Fig. 4. The upper-rig
and lower-left plots show period-six and -10 attracto
which are taken from relatively narrow windows of perio
icity discernible in Figs. 4 and 5. A theoretical curve is s
perimposed on the period-six attractor, but is not distingui
able due to the excellent agreement. Comparisons betw
theoretical and experimental phase portraits for several p
odic attractors show agreement typically within 3–6 m
with the agreement being somewhat worse for larger va
of Rv . ForRv5123.2 kV ~near the bifurcation from period
four to period-two! the theoretical and experimental attra
tors differ by up to about 8 mV. Figure 8 shows a stere
scopic plot of the first 2000 points of one of the chao
attractors in Fig. 7.

Fig. 7. Experimental phase portraits for several different values of the v
able resistanceRv . In each plotx and ẋ are plotted~in volts! on the hori-
zontal and vertical axes, respectively. A theoretical curve is superimpose
the period-six case for comparison, although the curve is not distinguish
from the experimental curve. The period-10 attractor comes from a na
window that is barely discernible at the far right edge of Fig. 5.

Fig. 8. Stereoscopic plot of the chaotic attractor atRv572.1 kV. Thex and
ẋ coordinates are taken from experimental data. The third coordinat
proportional toẍ and is determined numerically by using pairs ofẋ values.
507 Am. J. Phys., Vol. 72, No. 4, April 2004
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C. Case study of a chaotic attractor

In this section we focus our attention on the chaotic attr
tor nearRv572.1 kV. Phase portraits for this attractor a
shown in Figs. 7 and 8. One point of comparison betwe
theory and experiment for this case is provided by the ret
map associated with the attractor. To construct a return m
for a time-continuous system, we first construct an array c
taining successive maximaxn . The r -return map is then a
plot of xn1r versusxn . For a system such as ours, the retu
maps have a fractal structure. Figure 9 shows experime
plots of the first- and second-return maps forRv
572.1 kV. The inset in each case shows the first splitting
the return map associated with its fractal structure. Sub
quent splittings at higher magnification are not observa
experimentally due to noise in the experimental data. A co
parison with the theoretical first-return map shows qu
good agreement, with the theoretical values typically be
larger than the experimental ones by 2–4 mV. The disag
ment is due in part to the fact that our fitting procedure
determining experimental maxima tends to underestimate
maxima slightly. The theoretical first-return map shows f
ther fractal structure. For example, a numerical solution w
step size 0.015 625 ms reveals that the main inverted
rabola of the return map is actually two separate lines, se

i-

on
le
w

is

Fig. 9. First- and second-return maps forRv572.1 kV, taken from experi-
mental data. The insets are magnified by a factor of approximately 6.5
show the fractal structure of the plots. The intersections of the return m
with the diagonal lines give evidence for~unstable! period-one and -two
orbits in the data sets. Such orbits do indeed exist, as seen in Fig. 10.
507Kiers, Schmidt, and Sprott



in

hi
of
th

ud
ha

ab
lo
ab
lla
ta
a

o
e
p
e
.
er

t
ri
lu
ol
e
le

i
r
s

s
-

-
an

e

u-
se
e-
nt
wer
ex-
ithin
he
re-
rol,
ear

r-
ject

cts
stu-
er-
t a
ized
ion
le,
lay
li-

ital

the
e
ies

nt
the

to a
ith

e
if-
n

Mat-
s-
g-
th
ting.

, T.
nd
this
or-

e

-tw

rb
ts
rated by about 0.026 mV at the peak~further splitting of
these lines is not evident with this step size!. The experimen-
tal noise at the peak has a width of about 1 mV, explain
why the splitting is not observed experimentally.

Return maps can be used to study periodic orbits wit
the data set.34,35A diagonal line is superimposed on each
the plots in Fig. 9. In the top plot the diagonal intersects
first-return map nearxn.0.41 V, giving evidence for a
period-one orbit within the data set. Because the magnit
of the slope of the return map is greater than unity at t
point, the period-one orbit is unstable.36 A search through the
experimental time series data does indeed yield unst
period-one orbits within the chaotic oscillations. The top p
in Fig. 10 shows such an example. In this case the unst
period-one behavior persists for approximately 10 osci
tions ~which is longer than typical for such orbits in the da
set!. As expected, the maxima of the oscillations occur
approximately 0.41 V. In a similar way, the intersection
the diagonal line with the second-return map in Fig. 9 giv
evidence for unstable period-two orbits with maxima at a
proximately 0.57 V and 0.10 V. Examination of the tim
series data again yields such orbits, as shown in Fig. 10

Another point of comparison between theory and exp
ment is the largest Lyapunov exponent, which measures
average exponential rate of spreading of nearby trajecto
and is positive for a chaotic system. The experimental va
of this exponent is estimated using the method of W
et al.37 as implemented in the Chaos Data Analyz
program.38 The time series consists of 3228 points samp
at the local maximum of each cycle for the case shown
Fig. 9. Candidate pairs are chosen assuming a noise floo
0.1% and followed for one cycle. The resulting large
Lyapunov exponent~base e) is estimated to be 1.34
60.08 s21. By comparison, iterating the theoretical expre
sion in Eqs.~6! and ~9! ~modified slightly to use the mea
sured component values! gives a spectrum of exponents39

(1.269,0,215.037)60.001 s21, in agreement within the es
timated errors of about 6%. From these values, the Kapl

Fig. 10. Experimental wave forms showing unstable period-one and
orbits within the chaotic time series data forRv572.1 kV. The top plot
shows an unstable period-one orbit starting shortly aftert560 s, with a
maximum near 0.41 V. The bottom plot shows an unstable period-two o
starting just beforet575 s, with maxima near 0.57 V and 0.10 V. The plo
themselves are taken from different datasets.
508 Am. J. Phys., Vol. 72, No. 4, April 2004
g

n

e

e
t

le
t
le
-

t
f
s
-

i-
he
es
e
f
r
d
n
of
t

-

–

Yorke dimension40 is found to beDKY5211.269/15.037
.2.084. The proximity of this value to two explains why th
return map is a relatively thin fractal.

IV. DISCUSSION AND CONCLUSIONS

The circuit described in this work is modeled very acc
rately by a simple, third-order differential equation who
solutions display a rich variety of chaotic and periodic b
havior. Investigation of the circuit yields excellent agreeme
between theory and experiment for quantities such as po
spectra, bifurcation points, phase portraits, and Lyapunov
ponents. For some of these quantities the agreement is w
1%. The quality of this agreement and the stability of t
circuit itself give the circuit great potential as a serious
search tool for studies of synchronization, chaos cont
higher-dimensional chaos, and other topics within nonlin
dynamics.

Investigation of the circuit is very accessible to unde
graduates and is particularly well suited as a research pro
for junior- or senior-level students. The range of proje
associated with the system need only be limited by the
dents’ imaginations. A detailed investigation may be und
taken using commercially available A/D systems, or, a
somewhat less sophisticated level, the data may be digit
using a digital oscilloscope. Several options for investigat
also are available without digitizing the data. For examp
the X–Y setting on an oscilloscope may be used to disp
phase portraits in real time. The circuit also may be simp
fied by substituting an analog potentiometer for the dig
ones that we use.

Students will invariably be fascinated as they observe
changes in behavior asRv is varied. Other variations on th
circuit are also possible. For example, different nonlinearit
D(x) may be substituted in place of the one used here.16,17

Furthermore, the operating frequency of the circuit~approxi-
mately 1/(2pRC)) may easily be scaled by using differe
resistors or capacitors than those that we used. Scaling
frequency to the audio range and connecting the output
speaker allows for an audible demonstration of chaos, w
clearly distinguishable period doublings~frequency halvings!
en route to chaos.15 On the theoretical side, modeling th
behavior of the circuit serves as an excellent review of d
ferential equations for students. They might write their ow
programs to solve the equations or use software such as
lab or Mathematica to do this. The circuit offers many po
sibilities for theoretical and experimental investigation, ran
ing from simple qualitative demonstrations to indep
analyses, making it ideal for use in an undergraduate set
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We demonstrate the control of chaos in a nonlinear circuit constructed from readily available
electronic components. Control is achieved using recursive proportional feedback, which is
applicable to chaotic dynamics in highly dissipative systems and can be implemented using
experimental data in the absence of model equations. The application of recursive proportional
feedback to a simple electronic oscillator provides an undergraduate laboratory problem for
exploring proportional feedback algorithms used to control chaos. © 2006 American Association of Physics
Teachers.
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I. INTRODUCTION

Chaos theory is the study of deterministic systems whose
dynamics are aperiodic and depend sensitively on initial
conditions.1 Chaotic systems have long term behavior that is
unpredictable. Nonlinear dynamical systems often behave
chaotically for certain ranges of system parameters; for other
parameter ranges they behave periodically and thus predict-
ably. Proportional feedback control of chaos involves per-
turbing a system parameter, while maintaining its value
within its normally chaotic range, to achieve stabilization of
a selected trajectory on the system’s chaotic attractor. In this
paper we focus on a proportional feedback control strategy
that stabilizes periodic dynamics.

In 1990, Ott, Grebogi, and Yorke �OGY�2 introduced a
proportional feedback algorithm suitable for a large class of
nonlinear oscillators. Their approach employs a feedback
loop that applies small perturbations to a system at the end of
each oscillation, with each perturbation proportional to the
difference between the current state and a desired state. This
strategy is an extension of engineering control theory.3,4 The
OGY algorithm precipitated an outpouring of experimental
and theoretical work on controlling chaotic dynamics.5 Pro-
portional feedback control has been demonstrated for a wide
variety of dynamical systems including mechanical,6,7 fluid,8

electronic,9 optical,10 chemical,11,12 and biological13 systems.
Control via proportional feedback is now a central topic of
research in nonlinear dynamics and has been extended ex-
perimentally to chaotic spatial patterns.14,15 Given its cur-
rency and prominence, it is desirable to introduce this topic
in undergraduate courses on chaos.

Baker16 has provided a clear presentation of the OGY al-
gorithm. However, the algorithm is challenging to implement
experimentally because it requires sampling more than one
dynamical variable in real time. Dressler and Nitsche17

showed that the OGY algorithm can be modified to allow for
measurements of a single dynamical variable. But there are
much simpler alternatives to the OGY algorithm for highly
dissipative systems, that is, systems whose dynamics can be
reduced to one-dimensional �1D� return maps. For this spe-
cial but not uncommon case, Peng, Petrov, and Showalter18

introduced simple proportional feedback, and Rollins,
Parmananda, and Sherard19 derived recursive proportional
feedback. These less complicated proportional-feedback al-

gorithms illustrate key ideas of control and are considerably
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less mathematically demanding than the OGY algorithm,
which is applicable to a wider range of systems.

In this paper we present a derivation of recursive propor-
tional feedback at a level suitable for an introductory course
on chaos, and we explain why recursive proportional feed-
back is more generally applicable than simple proportional
feedback. Flynn and Wilson20 and Corron, Pethel, and
Hopper21 have presented other simple methods of controlling
chaos that are also suitable for introducing undergraduates to
this topic. However, a discussion of simple proportional
feedback and recursive proportional feedback allows us to
address the issues of the stability and the range of applica-
bility of individual control algorithms.

Recently, Kiers, Schmidt, and Sprott �KSS�22 introduced a
simple nonlinear electronic circuit that can be used to study
chaotic phenomena. This circuit employs readily available
electronic components and is well-suited for advanced un-
dergraduate instructional laboratories. A novel feature of the
KSS circuit is the presence of an almost ideal nonlinear ele-
ment, which results in excellent agreement between the ex-
perimental circuit and numerical solutions of the differential
equation that models the dynamics of the circuit. The circuit
allows for precise measurements of bifurcation diagrams,
phase portraits, return maps, power spectra, Lyapunov expo-
nents, and the fractal dimension of chaotic attractors. A fur-
ther advantage of using the KSS circuit for undergraduate
experiments is that the time scale can be adjusted so that the
periods of oscillation are on the order of a second, making
the circuit an ultra-low-frequency electronic oscillator. Stu-
dents can observe the dynamics in real time, and there is
sufficient time during the oscillations for a digital processor
to compute the requisite perturbations for chaos control. Un-
dergraduates can readily wire the circuit, interface it to a
computer-based data acquisition board, and write a program
to acquire data and apply a proportional feedback loop.
There are many data acquisition, output, and analysis sys-
tems in use in undergraduate laboratories that could be em-
ployed.

In this paper we show that the KSS circuit can be used to
illustrate proportional feedback control of chaos by applying
recursive proportional feedback to its dynamics. We show
how chaos can be controlled experimentally, even in the ab-
sence of model equations, by determining the values of the
coefficients in the recursive proportional feedback algorithm

only from experimental data, without reference to the differ-
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ential equation that models the dynamics of the circuit. How-
ever, because the model equation is known, an important
feature of this circuit is that one can perform analytic and
numerical investigations in parallel with the experiment. Our
demonstration of control of a chaotic electronic oscillator fits
well in an undergraduate course on nonlinear dynamics or
computer interfaced experimentation.

II. CHAOS IN A SIMPLE ELECTRONIC
OSCILLATOR

Jerk equations �third-order autonomous ordinary differen-
tial equations� with nonlinearities involving piecewise linear
functions often can be implemented electronically using only
resistors, capacitors, diodes, and op amps.23 Many of these
equations and corresponding electronic circuits exhibit cha-
otic oscillations for a range of system parameters. The KSS
circuit is an example of such a chaotic electronic oscillator.
Its diagram is shown in Fig. 1, and it can be assembled on a
standard solderless breadboard. The circuit contains three
successive inverting amplifiers with output voltages at the
nodes labeled x, −ẋ, and ẍ. These outputs are the dynamical
variables of the system. The input voltage for the circuit,
which is labeled p, is an accessible system parameter that
can be varied. The box labeled D�x� represents the nonlinear
element in the circuit, which is necessary for chaotic oscil-
lations.

By using Kirchhoff’s rules and the golden rules for op
amps, we obtain the following dynamical equation �see Ref.
22 for details�:

x� = − � R

RV
�ẍ − ẋ + D�x� − � R

R0
�p , �1�

where a dot denotes differentiation with respect to the di-
mensionless time scaled by RC. RV is a variable resistor;
varying RV allows one to explore a wide range of the circuit’s
dynamical behavior.22 To make explicit that there are three
dynamical variables for this circuit �as well as to facilitate
numerical integration using a Runge-Kutta method�, we re-
write Eq. �1� as a system of three first-order autonomous
ordinary differential equations. If we define y� ẋ and z� ẍ,

Fig. 1. Circuit diagram of the electronic oscillator modeled by Eq. �1�. We
used dual LMC6062 op amps, chosen for their high input impedance,
throughout the circuit. The effects of noise on the circuit are reduced by
capacitively tying the power supplies for the op amps to ground. The wiring
into the op amps is to their inverting ��� inputs; the noninverting ��� inputs
are grounded. The supply voltages for the op amps were set at ±15 V. We
chose component values for which the circuit oscillates chaotically. The
unmarked resistors and capacitors are R=46.6±0.3 k� and C
=2.29±0.03 �F. The variable resistor RV=81.4±0.1 k� and R0

=156.9±0.1 k�.
then
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ẋ = y , �2a�

ẏ = z , �2b�

ż = − � R

RV
�z − y + D�x� − � R

R0
�p . �2c�

The nonlinearity in the KSS circuit is modeled by the func-
tion D�x�=−�R2 /R1�min�x ,0�; Figure 2 shows the diagram
for this nonlinear subcircuit. The agreement between the
piecewise linear function D�x� and the actual output of the
subcircuit is excellent and leads to impressive agreement be-
tween measured values of the dynamical variables and nu-
merical solutions of Eq. �2�.22

One technique for representing chaotic dynamics is to
construct return maps. For a first-iterate return map, a se-
quence of maximum values of a dynamical variable is used
and xn+1 is plotted versus xn. If this plot forms a thin, ap-
proximately 1D curve, then the dynamics have been reduced
to a 1D map: xn+1= f�xn , p0�, where p0 is the value of the
system parameter at which the sequence was collected. Fig-
ure 3 shows a 1D return map for the KSS circuit for a se-
quence of maxima of the output voltage x during chaotic
oscillations. In practice there may be several other system
parameters on which the mapping depends, as is the case for
the KSS circuit �for example, RV, R0, R1, R2, and R�. How-
ever, if these other parameters remain fixed throughout the
experiment, they can be ignored. Systems that can be re-
duced to 1D maps are referred to as highly dissipative.19

Examples of other experimental systems that exhibit highly
dissipative chaotic dynamics include a gravitationally buck-

Fig. 2. The nonlinear subcircuit D�x� corresponding to the box in Fig. 1.
The wiring into the op amp is to its inverting ��� input; the noninverting
��� input is grounded and 1N914 diodes are used. The resistors have values
R1=15.1±0.1 k� and R2=88.9±0.1 k� so that R2 /R1�6.

Fig. 3. First-iterate return map of an experimentally measured sequence of
1913 maxima of x, collected with the input voltage fixed at p0=1.0000 V.
The intersection of the map with the xn+1=xn line corresponds to an unstable

period-one fixed point.
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led magnetoelastic ribbon,6 Belousov-Zhabotinsky oscillat-
ing chemical reactions,24 electrodissolution in an electro-
chemical cell,11,12 electronic circuits,25 and phase slips in a
pattern of fluid vortices.14

III. DERIVATION OF THE PROPORTIONAL
FEEDBACK CONTROL ALGORITHM

When a system is in a chaotic state, there typically are
infinitely many unstable periodic orbits embedded in its dy-
namics. A fixed point of a return map corresponds to a peri-
odic orbit. For example, a period-one orbit returns to the
same value after one oscillation: xn+1=xn. Thus a period-one
fixed point is defined as a value of the dynamical variable for
which the map returns the same value: xF� f�xF , p0�. For
systems undergoing chaotic dynamics, such fixed points are
unstable, and the key to controlling chaos using proportional
feedback algorithms is to stabilize a dynamical variable near
an unstable fixed point. This stabilization can be accom-
plished by applying a sequence of small perturbations �pn,
one after each iteration of the map, to an accessible system
parameter p on which the map depends. The strength of the
applied perturbation is proportional to the difference between
the current value of a dynamical variable and the predeter-
mined fixed point: �pn� �xn−xF�. The perturbations are lim-
ited in magnitude by the requirement that the adjusted pa-
rameter remain within a range for which the system is
chaotic in the absence of perturbations. The control algo-
rithm is a feedback loop that samples the variable in real
time and adjusts the parameter accordingly. The carefully
chosen perturbations alter the system in such a manner that
the current state of the system will evolve closer to the fixed
point during the next cycle of the perturbed system. This
perturbing of the dynamics causes the otherwise chaotic os-
cillations to remain approximately periodic. To determine the
proportionality constant in a control algorithm, it is neces-
sary to identify a desired fixed point, determine how strongly
unstable it is, and determine the response of the system to
small changes in the parameter that will be perturbed to
implement control. This procedure can be done using experi-
mental measurements of the evolution of a single dynamical
variable for various values of a system parameter prior to
initiating control and requires no knowledge of an analytical
model for the dynamics.

To derive the recursive proportional feedback algorithm,
we consider nonlinear systems with three dynamical vari-
ables, the minimum necessary for chaos.1 The KSS elec-
tronic oscillator is an example of such a system as can be
seen from Eq. �2�. For a system with three dynamical vari-
ables, x, y, and z, its chaotic attractor exists in a 3D phase
space. If high dissipation limits the chaotic attractor to a very
thin, nearly 2D surface, the dynamics are reducible to a 1D
return map. This reduction is possible because the points on
the 2D surface which intersect a particular surface of section,
for example, the y=yc plane �where yc is a constant�, form a
1D curve. We may view the evolution of the system as a
mapping from �xn ,yc ,zn�→ �xn+1 ,yc ,zn+1� each time the
phase space trajectory pierces the surface of section in the
same direction. For the KSS circuit, constructing a return
map using a sequence of maxima of x corresponds to select-
ing the y� ẋ=0 plane as the surface of section. The existence
of the 1D curve on the surface of section implies that there is

a function of the form zn=h�xn , pn−1�. The subscript on p
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indicates that the value of p may vary each time the map is
iterated, because this parameter will be perturbed during
chaos control.

We define pn� p0+�pn as the value of the parameter as
xn→xn+1 and p0 as the constant value for which there is
uncontrolled chaos. Thus the n−1 subscript denotes the
value of p as the dynamical variable evolves from xn−1 to xn.
This point is important: zn is determined by xn based on the
position of the attractor in phase space due to the value of p
at the end of the nth cycle, pn−1, not the value of p at the
beginning of the n+1 cycle, pn. The mapping between suc-
cessive points on the surface of section means that xn+1 is
determined by a function of the form xn+1=g�xn ,zn , pn�
=g�xn ,h�xn , pn−1� , pn�, which can be written equivalently as

xn+1 = f�xn,pn,pn−1� . �3�

Equation �3� is the 1D return map that results from the 1D
curve on the surface of section. If the parameter p is constant
during the evolution of the dynamics �as it is for the map
shown in Fig. 3�, the return map reduces to xn+1= f�xn , p0�.
But during the application of perturbations, xn+1 may depend
on both pn and pn−1.

We expand the return map to first order about the fixed
point xF for some periodic orbit at the parameter value p0:

�xn+1 � ��xn + ��pn + ��pn−1, �4�

where �xn=xn−xF, �=�f /�xn, �=�f /�pn, and �=�f /�pn−1
with all derivatives evaluated at xF and p0. For a chaotic
system 	�		1, which means the value of �xn grows over
successive iterations of the map and the fixed point is un-
stable.

To control chaos, the perturbation �pn must force the sys-
tem toward the fixed point. Also, for the control algorithm to
be stable, �pn cannot grow over successive iterations. One
way these conditions can be strongly satisfied is by requiring
that �xn+2=0 and �pn+1=0. The latter requirement moves the
system to the fixed point in a single control step; further
control perturbations are only needed to address the motion
of the system away from the fixed point due to noise. Then
starting with Eq. �4�, iterating it a second time, and solving
both equations simultaneously for �pn yields �pn�K�xn
+R�pn−1, where

K = −
�2

��� + ��
, �5a�

R = −
��

��� + ��
. �5b�

For the recursive proportional feedback algorithm, this ap-
proximation is set to an exact equality:

�pn = K�xn + R�pn−1. �6�

The first term on the right-hand side of Eq. �6� is propor-
tional to the difference between the current state of the sys-
tem and the fixed point, and the second term depends recur-
sively on the previous perturbation. Derivatives of the return
map for uncontrolled chaos determine the coefficients K and
R used in the control feedback loop. In the broader context of
control theory, one may study the entire range of values of K
and R for which the system will approach periodic behavior.
This procedure is well described in Ref. 3. By using control

theory one can show that the fastest approach to control is
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obtained by the choice of K and R in Eq. �5�.
There is an effective experimental procedure for finding

the slopes �, �, and � that determine K and R. First we allow
the system to run unperturbed at a constant parameter value
p0 for which the dynamics are chaotic. Then the 1D return
map xn+1= f�xn , p0� is constructed and a linear fit to the map
in the neighborhood of the xn+1=xn line is made. The fixed
point xF is defined by the intersection of the map with the
xn+1=xn line,26 and � is the slope of the fit. To find � and �,
it is necessary to find the dependence of the map on both pn
and pn−1. This dependence is found by collecting data while
repeatedly increasing the control parameter to p0+
p for
one oscillation and decreasing it to p0 for the next oscillation,
where 
p is a small, fixed value. Alternate pairs �xn ,xn+1� of
this sequence are on different return maps, designated the up
and back maps. For the up map p= p0 during the cycle that
generates xn and p= p0+
p during the cycle that generates
xn+1, and conversely for the back map.27 Fits to the up and
back maps can be made and their respective fixed points, xF

u

and xF
b , determined. Figure 4 shows the three return maps in

the neighborhood of their fixed points for the KSS circuit.
The shifts of the fixed points for the up and back return maps
are a consequence of the changing location of the chaotic
attractor in phase space as the control parameter is varied. In
the neighborhood of their fixed points, each of the maps in
Fig. 4 is approximately linear with slope �:

f�xn� = �xn + �1 − ��xF, �7a�

fb�xn� = �xn + �1 − ��xF
b , �7b�

fu�xn� = �xn + �1 − ��xF
u . �7c�

The derivatives � and � can be approximated by

� �
fu�xF� − f�xF�


p
= �1 − ��

xF
u − xF


p
, �8a�

� �
fb�xF� − f�xF�


p
= �1 − ��

xF
b − xF


p
. �8b�

Thus �, �, and �, which determine the coefficients in the
recursive proportional feedback algorithm, are found from

Fig. 4. The unperturbed �triangles�, up �circles�, and back �squares� maps
near the xn+1=xn line, generated experimentally according to the procedure
in Sec. III with 
p=0.05 V. Linear fits to the data are also shown. The fixed
points xF, xF

u , and xF
b occur at the intersections of the maps and the xn+1

=xn line.
the unperturbed, up, and back maps, which are constructed
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solely from experimental measurements of the output voltage
x.

Note that if xF
b =xF, then �=0 and the recursive term in

Eq. �6� goes to zero, which means that the back map falls on
the unperturbed map when pn= p0, even though p has been
changed during both the current and previous oscillations. In
other words, the location of the chaotic attractor depends
only on the current pn and not on the previous value of p. In
this case recursive proportional feedback reduces to the
simple proportional feedback algorithm of Ref. 18:

�pn = − K̃�xn, �9a�

K̃ = −
�

�
. �9b�

Thus the experimental procedure for finding �, �, and � also
provides a predictor for the likelihood that the simpler con-
trol algorithm is applicable and the recursive term in recur-
sive proportional feedback is unnecessary.

Simple proportional feedback effectively controls chaos in
many systems whose dynamics exhibit a 1D return map. For
example, we can use simple proportional feedback to stabi-
lize chaotic oscillations that are solutions of the Lorenz
equations.28 See the Appendix for more details. However,
simple proportional feedback cannot control chaotic dynam-
ics in some systems even though the dynamics are highly
dissipative �that is, reducible to a 1D mapping�. In particular,
using simple proportional feedback as a control strategy with

K̃ set according to Eq. �9b�, we failed to control chaotic
oscillations in the KSS circuit for the parameters of our ex-
periment. As Fig. 4 clearly shows, the back map does not
coincide with the unperturbed map for the KSS circuit,

which explains why simple proportional feedback with K̃=
−� /� is not likely to achieve control for this system. If we
follow the more general formulation of Ref. 3, we can show
that the speed with which a system with simple proportional

feedback and K̃ specified by Eq. �9b� approaches control

increases as 	�K̃	→0. We can also show that simple propor-

tional feedback with K̃=−� /� must fail for 	�K̃	�1.

IV. RECURSIVE PROPORTIONAL FEEDBACK
APPLIED TO A SIMPLE ELECTRONIC
OSCILLATOR

To apply the recursive proportional feedback algorithm to
the KSS circuit, we must acquire the output voltage x and
supply the perturbed control voltage p after each oscillation.
To do so, we can choose from a wide variety of programable
data acquisition systems. For our experiment, we created
programs in LabVIEW29 to control a National Instruments
data acquisition board that interfaced with the circuit. We
acquired data at 50 Hz, a frequency that is sufficiently high
to resolve the approximately 1 Hz signal and low enough to
allow sufficient time between data points to implement the
recursive proportional feedback algorithm. The precision of
the measured signal was 0.3 mV. After each data point, the
program determined whether a local maximum of x had been

acquired. A local maximum is identified when the previous
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voltage value is larger than both its previous and the current
value. This simple test never returned false peaks because the
noise in the circuit was sufficiently small. When control was
turned on, the program used the recursive proportional feed-
back algorithm, Eq. �6�, to calculate the voltage perturbation
�p and update the value of p= p0+�p that was input to the
circuit via the digital-to-analog output of the board. Because
the perturbations must be small enough so that the linear
approximation Eq. �4� is valid, the perturbations were set to
zero if 	�pn		�. For our experiment, p0=1.0000 V and �
=0.05 V. The precision of the input voltage p was 0.3 mV,
which is an order of magnitude smaller than values of the
perturbations �p. From the experimentally generated return
maps shown in Fig. 4, we calculated the values of quantities
needed for the recursive proportional feedback algorithm,
which are shown in Table I. The uncertainties in these quan-
tities are propagated from the uncertainties in least squares
fits to the return maps.

The effect of the recursive proportional feedback algo-
rithm on the signal is dramatically evident in Fig. 5, which
shows the oscillating output voltage x�t� versus time. Pertur-
bations to the control parameter p began slightly before t
=20 s. Before control is turned on, the oscillations vary ape-
riodically with a wide range in amplitude. After control is
turned on, the voltage oscillates periodically with nearly con-
stant amplitude. Figure 6 shows a sequence of the maxima xn
of the output voltage for an experimental run in which con-
trol was turned on and then turned off. Before control, the
values of the maxima vary widely with a range of about
0 to 2.6 V. After control is turned on at n=140, the maxima

Table I. Calculated values of the quantities used to implement the recursive
proportional feedback algorithm for the KSS circuit from experimental mea-
surements of the output voltage x.

xF 1.777±0.007 V
xF

u 1.833±0.010 V
xF

b 1.810±0.008 V
� −1.604±0.010
� 2.92±0.64
� 1.72±0.55
K 0.87±0.34
R −0.93±0.57

Fig. 5. Oscillating output voltage x�t� of the circuit versus time. Control was
turned on slightly before 20 s. For visualization purposes, the data was

sampled at 1 kHz.
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have a nearly constant value very close to the target fixed
point. The average of the actual maxima is x̄n=1.778 V,
which is within the uncertainty of xF=1.777±0.007 V. The
standard deviation in the measured values of the maxima
during control equals 0.002 V and is only 0.25% of the stan-
dard deviation of the maxima without control. When control
is turned off at n=900, the maxima again vary widely. Figure
6 also shows the values of perturbations �p applied to the
control parameter. Control was achieved immediately after
the perturbations were generated and was lost once the per-
turbations were stopped. Control is achieved with remark-
ably small perturbations. The average absolute value of �p is
only 1.4 mV, which means that the input current to the cir-
cuit during control is only increased or decreased on average
by 0.14% of the input current with no control.

V. CONCLUSIONS

We have derived the recursive proportional feedback algo-
rithm and shown that it can be used to control chaotic oscil-
lations in the Kiers, Schmidt, and Sprott electronic circuit.
Control is achieved with small perturbations and the mean
oscillation maximum during control is well within the uncer-
tainty of the target fixed point. The values of the coefficients
used in the recursive proportional feedback algorithm were
calculated from experimentally measured values of the out-
put voltage of the circuit during precontrol measurements.
Recursive proportional feedback is suitable for highly dissi-
pative systems, of which the KSS circuit is an example.
Simple proportional feedback is also suitable for some
highly dissipative systems, but cannot be used for the KSS
circuit because the movement of the system’s chaotic attrac-
tor through phase space depends on both the current and

Fig. 6. A sequence of oscillation maxima xn for an experimental run for
which control was turned on at n=140 and turned off at n=900. The corre-
sponding sequence of control perturbations �pn is also shown.
previous perturbations.
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APPENDIX: SUGGESTIONS FOR FURTHER STUDY

Problem 1. Write a program to control the logistic map
using simple proportional feedback, Eq. �9�. The logistic
map is defined as

xn+1 = f�xn,p� = pxn�1 − xn� . �A1�

This map behaves chaotically for 3.57
 p�4, except for
small windows of periodicity. Choose a value such as p0
=3.9 for the unperturbed value of the system parameter. The
fixed point xF and derivatives � and � in Eq. �9� can be
determined analytically without recourse to numerical data
�see Ref. 5 for details on the derivation of simple propor-
tional feedback for the logistic map�. Iterate the logistic map
a few hundred times without control to insure steady state
chaotic behavior and then turn on control by updating p
= p0+�p after each iteration. Investigate what happens when
the control is turned off.

Problem 2. Write a program to control the Lorenz oscilla-
tor using recursive proportional feedback, Eq. �6�. The equa-
tions for the Lorenz oscillator are given by28

ẋ = ��y − x� , �A2a�

ẏ = rx − y − xz , �A2b�

ż = xy − bz , �A2c�

where �, r, and b	0 are system parameters. The dynamical
variables x, y, and z behave chaotically for wide ranges of
these parameters. Use r as the perturbation parameter to
implement chaos control and choose �=10, r0=28, and b
= 8

3 . Numerically solve Eq. �A2� and treat the numerical so-
lution for the dynamical variable z as experimental data. Find
the sequence of maximum values of z. Follow the procedure
in Sec. III for constructing unperturbed, up, and back return
maps from this sequence and use these maps to find the fixed
point zF and derivatives �, �, and � that determine K and R.
If ��0, try neglecting the recursive term in Eq. �6� and
controlling the Lorenz oscillator using simple proportional
feedback, Eq. �9�.

Problem 3. Construct a chaotic oscillator using a nonlinear
subcircuit D�x� other than the one used in the KSS circuit.
See Ref. 23 for several options for D�x�. For example, build
a circuit with D�x�= 	x	. Explore the chaotic dynamics of this
circuit and compare the experimental output to numerical
solutions of Eq. �2�. Try to control chaos in this circuit using
recursive proportional feedback.

Problem 4. Follow the control theory formulation of Ref. 3
and show that the linearized evolution of a highly dissipative
system, subject to a 1D return map, may be expressed by the
matrix equation:

�xn+1 − xF

pn
� = �� + �K � + �R

K R
��xn − xF

pn−1
� . �A3�

Derive the recursive proportional feedback expressions for K
and R, Eq. �5�, by requiring both of the eigenvalues of the

transformation matrix to be zero. For the values of �, �, and
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� used in this paper, find the range of values of K and R that
will achieve control �that is, those for which the eigenvalues
of the transformation matrix have absolute values less than
1�.
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