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We report an experimental study of ultra-high-frequency chaotic dynamics generated in a delay-
dynamical electronic device. It consists of a transistor-based nonlinearity, commercially-available
amplifiers, and a transmission-line for feedback. The feedback is band-limited, allowing tuning of
the characteristic time-scales of both the periodic and high-dimensional chaotic oscillations that can
be generated with the device. As an example, periodic oscillations ranging from 48 MHz to 913
MHz are demonstrated. We develop a model and use it to compare the experimentally observed
Hopf-bifurcation of the steady-state to existing theory [Illing and Gauthier, Physica D 210, 180
(2005)]. We find good quantitative agreement of the predicted and the measured bifurcation type
and oscillation frequency.

I. INTRODUCTION

Time-delayed feedback occurs in many systems and
mathematical descriptions of delay problems have been
studied by scientist for many decades [1–3]. For exam-
ple, control systems involve delay because time is needed
to sense information about the current state and then
react on it. In the description of such systems, delays
are often used as an idealized representation of the ef-
fect of transmission and transportation and this becomes
particularly important at high-speeds, where the time it
takes signals to propagate through system components
is comparable to the characteristic time-scale of fluctua-
tions. Over the years delay equations appeared in various
disciplines such as chemistry [4], where a delayed feed-
back is used to control chemical reactions, biology [5, 6],
where delay arises due to final signal speeds in the ner-
vous system, mechanics [7], where machine tool chatter
is caused by delayed feedback, and nonlinear optics [8],
where unavoidable reflection provide delayed optical feed-
back. Therefore, knowledge that can be gained by study-
ing delay systems in well controlled experiments greatly
contributes to our understanding of many naturally oc-
curring and man made systems. In this report we under-
take such a study and explore the dynamics of an elec-
tronic time-delay feedback device that generates chaos
in the very-high and ultra-high (0.3 - 3 GHz) frequency
band.

The generation of chaotic signals is well understood for
low-speed circuits [9], i.e. for devices with characteris-
tic frequencies in the Hz or kHz range. However, there
is considerable interest in generating high-speed chaos
because of promising applications such as random sig-
nal radar/lidar [10–13], random number generation [14–
16], and communications [17–22]. Generating broadband
chaotic signals in the radio-frequency (RF) regime is chal-
lenging because electronic components used in low-speed
electronic circuits, such as operational amplifiers, are not
readily available above a few GHz. Therefore, new tech-
niques for chaos generation need to be explored. Further-

more, design-issues arise at RF-frequencies that do not
exist at low speeds, such as proper circuit layout, proper
isolation of power supply and active circuit elements, and
non-negligible time-delays due to signal propagation, to
name just a few.

These challenges are in part the reason that, to date,
the most successful schemes for generating broadband
chaotic signals at GHz-frequencies use optic [17–19],
electro-optic [21, 23] and opto-electronic [22, 24] devices.
However, the use of all-electronic devices is desirable be-
cause electronic components are inexpensive and com-
pact. As with the optic and opto-electronic devices, the
easiest way to generate high-speed chaos all-electronically
is to exploit the fascinating fact that delayed feedback can
result in exceedingly complex dynamics even in seemingly
simple devices. This approach has been taken in some
recent efforts that have started to address the issue of
all-electronic generation of chaos in technologically rel-
evant radio frequency bands [25–27]. For example, low
dimensional chaos in the very-high-frequency range (30-
300 MHz) has been demonstrated in a time-delay system
with a diode-based nonlinearity [26] and a high-speed
chaotic delay-system with a transistor-based nonlinear-
ity was reported [27].

In this paper we describe an electronic time-delay feed-
back device that generates chaos in the very-high and
ultra-high (0.3 - 3 GHz) frequency band. It is built us-
ing inexpensive commercially-available components such
as AC-coupled amplifiers and a transistor-based nonlin-
earity. Our device is similar to the one described by
Mykolaitis et al. [27]. In contradistinction to their work,
we do include, in modeling, the fact that RF-components
are AC-coupled and we provide a detailed comparison of
experimentally observed dynamics and the dynamics of
the deterministic model of the device.

In our chaos generator, the complexity of the dynamics
is controlled by feedback strength and time-delay, allow-
ing the device to be tuned from steady-state behavior,
to periodic, quasiperiodic, and chaotic dynamics. The
characteristic time scale of the dynamics can be tuned
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by adjusting the pass-band characteristics of the feed-
back loop. We chose to work with feedback characteris-
tics resulting in oscillations of several hundred MHz to a
few GHz because this allows detailed measurements and
characterization of the device dynamics. However, the
device can, in principle, operate at higher frequencies,
such as the 3 - 10 GHz frequency band, by using readily
available higher-bandwidth components.

In modeling the device, we pay special attention to the
fact that components are AC-coupled, which means that
low-frequency signals are suppressed. The time-delayed
feedback is band-pass filtered because, in addition to the
cut-off at low frequencies, high frequencies are suppressed
due to the finite response time of device components.

The goal of this paper is to present details about the
experimental implementation and to compare measure-
ments and theory [28] to demonstrate that many aspects
of the device dynamics can be explained if the band-
limiting characteristic of the feedback is taken into ac-
count.

II. EXPERIMENTAL SETUP

It is well known that time-delayed feedback of the out-
put signal of a nonlinearity to it’s input can give rise
to chaotic dynamics [21, 24, 25, 27, 29–31]. Our RF-
chaos generator is based on the same principle and we
describe and characterize the device in this section. We
discuss separately the passive nonlinearity, the setup of
the RF-chaos generator, and the characteristics of the
band-limited feedback with variable feedback gain.

A. Nonlinearity

The transistor-based nonlinearity consists of a bias-T
and a modified Mini-Circuits ERA-SM test board (ERA-
TB). The ERA-TB is a commercially available proto-
board that is meant to test Mini-Circuits ERA ampli-
fiers. A photograph of the modified ERA-TB is shown
in Fig. 1(a) and the circuit diagram of the nonlinearity
is shown in Fig. 1(b).

To create a nonlinear input-output relationship, the
ERA-TB is modified by replacing the ERA-amplifier with
a transistor (T1), capacitor (C1), and resistors (RNL and
R1) [Fig. 1 (b)]. For this initial experiment, these com-
ponents are placed using a “dead bug design,” i.e., keep-
ing them as close together as possible to avoid undesired
feedback [white box in Fig. 1(a)].

The DC-bias capabilities of the ERA-TB are used to
set the power-supply voltage associated with the collector
of transistor T1 [Fig. 1(b)] while ensuring, at the same
time, good isolation of the RF-output signals and the
DC-voltage part of the circuit. A variable bias voltage of
the transistor base is achieved by further modifying the
ERA-TB through removal of the AC-coupling capacitor
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FIG. 1: Transistor-based nonlinearity (a) Picture of the mod-
ified ERA-SM test board (modifications highlighted by the
white box). (b) Details of the implementation of the nonlin-
earity, which consists of a bias-T (Mini-Circuits ZFBT 6GW,
0.1 MHz - 6 GHz bandwidth) and a modified ERA-SM test
board (Mini-Circuits ERA-TB). The component values on the
ERA-TB are: C1 = 47 nF; C2 = 0.39 µF; C3 = 0.1 µF; RNL

= 68 Ω; R1 = 47 Ω; R2 = 4.75 Ω; R3 = 70 Ω; L1 is a RF
choke (MCL Model ADCH-80A); D1 is a 10 V Zener diode;
and T1 is an NPN 9 GHz wideband transistor BFG520. (c)
Measured nonlinearity (dots) and fit of Eq. (1) (line).

at the input port and replacing it by an external bias-
T, which combines the RF-input signal and the DC-bias
voltage VB . The bias voltage is VB = 0.55 V for all data
shown in this paper, i.e. it is below the turn-on voltage
VT of the transistor (nominally VT ∼ 0.7 V).

To develop a simple model of the nonlinearity, consider
the generated output as a function of input signals of suf-
ficiently high frequency such that the effects of the cou-
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pling capacitors can be neglected. In this case, the output
current is given by the voltage drop across the resistor
RNL for input voltages smaller than the difference of the
turn-on voltage and the bias voltage (VT − VB) because
the transistor draws essentially no collector current. In
contrast, the output current is given by the difference
of the current flowing through RNL and the collector
current of the transistor for input voltages larger than
(VT − VB). This suggests a piecewise linear I-V charac-
teristic, which results in a corresponding piecewise linear
input-voltage to output-voltage relationship assuming a
standard 50 Ω load (the input impedance of the device
coupled to the output port is assumed to be 50 Ω).

To determine the input-output characteristic of the
nonlinearity experimentally, we inject a sinusoidal signal
(ν=13 MHz) into the input port of the nonlinearity and
simultaneously recorded input and output using an oscil-
loscope (Agilent Infiniium, with 50 Ω input impedance,
2.25 GHz bandwidth and 8 GSa/s). The measured tent-
map-like input-output characteristic is shown as dots in
Fig. 1(c). It is seen that the output depends linearly on
the input for large input powers and that the nonlinearity
has a smooth transition from positive to negative slopes.
That is, a strictly piecewise-linear relation of input and
output is a clear oversimplification of the actual nonlin-
earity. Furthermore, device models in which the nonlin-
earity is approximated as piecewise-linear do not repro-
duce several dynamic features of the experiment such as
Hopf-bifurcations, which are observed in the experiment
but do not exist in a model with strictly linear segments.
For this reason, we adopt the following phenomenological
description of the nonlinearity:

F (v) = V0 −
√
F1(v)2 + a2 with

F1(v) =

{
Al (v − v∗) if v ≤ v∗,
Ar (v − v∗) if v > v∗.

(1)

Here, v denotes the input voltage, v∗ = VT − VB is the
threshold voltage, and V0 is an offset voltage. The slopes
of F approach, respectively, Al and Ar for large |v| and
the parameter a determines the sharpness of the peak of
F .

In Figure 1(c), a fit of Eq. (1) to the data is shown as
a solid line, with fitted parameters Al = 0.47 (±0.04),
Ar = -0.62 (±0.05), a = 0.05 (±0.01) V, and v∗ = 0.12
(±0.04) V. Least-square minimization is used for fitting
and a crude estimate of the sensitivity of the fit (val-
ues in brackets) is obtained by varying each parameter
value individually and determining the size of parameter-
deviations above which the resulting input-output curve
was clearly inconsistent with the data. The fit-value of
v∗ suggests a transistor turn-on voltage of VT = 0.67
(±0.04) V, which is within the expected range. Also,
the measured values of the slopes agree reasonably well
with their expected values. As an example, one expects
Al ∼ RL/(RNL + RL) = 0.42, where RL= 50 Ω is the
load impedance and RNL is nominally 68 Ω.

The correct value for the remaining parameter V0 can-

not be obtained from the data because the measured out-
put signal is high-pass filtered by the coupling capacitor
C2 [Fig. 1(b)]. As a result of the filtering, the measured
output signal has a time average of zero, which, in terms
of the filter-free input-output description of Eq. (1), im-
plicitly determines the value of V0 for a given input,
thereby making the fit-value of V0 dependent on the prop-
erties of the input signal. For further modeling purposes,
the knowledge of a precise value for V0 is not necessary
because the model also includes a high-pass filter [see
Eq. (12)]. We set V0 = 6 Volt in numerical simulations.

To test the frequency dependence of the nonlinearity,
we vary the frequency of the sinusoidal injection sig-
nal. For frequencies up to 100 MHz, the input-output
characteristics are essentially identical to that shown in
Fig. 1(c). Beyond 100 MHz noticeable distortions arise
mainly due to low-pass filtering in the nonlinearity and
the measurement setup. Nevertheless, we believe that
Eq. (1) is a valid description of the input-output charac-
teristic for all experimentally relevant frequencies (3 MHz
- 1 GHz) in particular since the dynamic device model
also includes a low-pass filter [see Eq. (12)].

B. RF-chaos generator

To generate chaos, linear and amplified time-delayed
feedback from the nonlinearity to itself is implemented
as shown schematically in Fig. 2(a). In this device, the
signal coming from the feedback loop passes through
a voltage-tunable attenuator (Mini-Circuits ZX73-2500,
bandwidth 10 MHz - 2.5 GHz), a 12-dB fixed attenu-
ator (JFW Industries Inc. 50HF-012, bandwidth DC -
18 GHz), and a fixed-gain amplifier (Mini-Circuits ERA
5SM, bandwidth 60 kHz - 4 GHz), which, in combina-
tion, results in a tunable amplification of the signal. The
amplified signal passes through the nonlinearity, another
fixed-gain amplifier (Mini-Circuits ERA 3SM, bandwidth
60 kHz - 3 GHz) and is subsequently high-pass filtered
by a capacitor (e.g., 10 pF). The filtered signal is then
inverted and split by a hybrid magic-tee (MACOM H-9,
bandwidth 2 MHz - 2 GHz). Half the signal power is used
for feedback and the other half is used as output. The
output is recorded with an oscilloscope (Agilent Infini-
ium, with 50 Ω input impedance, 2.25 GHz bandwidth
and 8 GSa/s). All connections are made using SMA con-
nectors and sufficient isolation of DC and AC signals
is provided by the wideband RF-chokes (MCL Model
ADCH-80A) contained in the biasing circuits for the
amplifiers (Mini-Circuits ERA-TB). The total feedback-
delay in our experiment is between 6− 25 ns and can be
varied on a coarse scale by changing the length of the
coaxial-cable connecting the magic-tee and the attenu-
ator [see Fig. 2(a)] or on a finer-scale by using a line
stretcher (Microlab/FXR SR-05N, 500 MHz - 4 GHz) in
the feedback (not shown).
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FIG. 2: An electronic generator of RF chaos. (a) Schematic of the device. (b) Transfer function |H(ν)| for the case of a 10 pF
capacitor in the feedback loop (• : data; — : fit) and without capacitor (× : data; - - : fit). (c) Linear-scale plot of |H| for the
case of a 10 pF capacitor in the feedback loop (• : data; — : fit).

C. Band-limited feedback with variable gain

To determine the transfer characteristics of the feed-
back, the coaxial cable that is attached to the output
of the magic-tee [Fig. 2(a)] is disconnected and a small-
amplitude sinusoidal signal is injected into the cable.
Simultaneous measurement of input and output signals
for different frequencies allows the determination of the
transfer function |H| = |Vout|/|Vin|. The tent-map-like
nonlinearity does not adversely affect this measurement
because small-amplitude input signals (Vrms

in < 100 mV)
only probe the “left” linear segment of the nonlinearity
[see Fig. 1(c)].

The result of such a measurement of |H| is shown in
Fig. 2(b) on a log-log scale for a setup with a 10 pF
capacitor in the feedback loop (•) and for a setup without
a capacitor in the feedback loop (×). In the latter case,
the high-pass filtering is entirely due to the fact that
the RF-components in the device are AC-coupled. It
is seen that the high-frequency cutoff is not affected by
the inclusion of the 10 pF capacitor, whereas the high-
pass filtering due to the capacitor shifts the low-frequency
cutoff considerably.

To make contact with theory [28], we fit the data shown
in Fig. 2(b) to a model, where, for simplicity, the transfer

characteristics of the feedback is approximated by a two-
pole band-pass filter.

|H(ν)| = ν δ√
(ν2

0 − ν2)2 + ν2 δ2

(2)

Here, ν0 denotes the frequency of maximal transmission
and δ denotes the bandwidth. These parameters are
given in terms of the 3 dB cutoff-frequencies ν+ and ν−
(|H(ν±)|2 = 1/2) by ν2

0 = ν+ν− and δ = ν+ − ν−. For
the case of a 10 pF capacitor in the feedback loop, the fit
yields ν0 ∼ 236 MHz and δ∼ 391 MHz [ν− = 110 MHz,
ν+ = 502 MHz, solid line in Fig. 2(b) and (c)]. For the
case without an additional capacitor, ν0 ∼ 41 MHz and
δ∼ 547 MHz is obtained [ν− = 3 MHz, ν+ = 550 MHz,
dashed line in Fig. 2(b)]. In fitting, we add more weight
to data points with large values of |H| because a good
fit of the peak of |H| is important for reproducing the
observed dynamics.

Figures 2(b) and (c) show that a two-pole band-pass
filter description of the transfer function is not a per-
fect approximation of the measured transfer characteris-
tics. Clearly, allowing higher order filters would result
in a better fit of the data. However, a description by
higher-order filters would increase the model-complexity
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and we believe that the two-pole-filter approximation is
a good compromise between model accuracy and model
simplicity. Indeed, we will show below that quantitative
agreement of theory and experiment is possible with this
approximation.

The measured high-frequency 3 dB-cutoff of 500-600
MHz is mainly due to the band-limitations of the non-
linearity [Fig. 1], for which a 3 dB-cutoff frequency of
∼ 1 GHz was measured. The bandwidth is further sup-
pressed due to the combined effect of the nonideal behav-
ior of the remaining device components [Fig. 2(a)], all of
which exhibit a slow roll-off of the transfer function for
frequencies below their 3 dB-cutoff (≥ 2 GHz). Higher
bandwidths could be achieved in a future design by re-
ducing the number of components and by implementing
the nonlinearity as a microstrip circuit.

Another important parameter that characterizes the
device is the feedback gain. It is varied, in the experi-
ment, by changing Vcon, the control voltage of the vari-
able attenuator [Fig. 2(a)]. The dependence of the small-
signal feedback gain on Vcon was determined using the
same setup that was used to measure |H|, only this time
the frequency of the input signal is fixed at the frequency
of maximal transmission ν0 and Vcon is varied. What is
measured in this way is the small-signal effective gain at
ν0, denoted by b

b(Vcon) = −γ(Vcon) F ′(0). (3)

Here, γ(Vcon) is the total feedback gain (nonnegative),
the minus sign accounts for the signal inversion at the
magic-tee, and F ′ is the slope of the nonlinearity. The
measured mapping of Vcon to b is approximately linear
for the control voltages used in the experiment (2 - 4 V)
and is given by

b(Vcon) = −β (Vcon − V0) e−κ` (4)

with β = 1.195 ± 0.002 V−1 and V0 = 1.15 ± 0.02 V.
The exponential factor on the right-hand side of Eq. (4)
takes into account signal attenuation in the coaxial cable,
where ` is the length of the RG-174/U cable and κ =
0.05 m−1.

III. MODEL AND THEORETICAL
PREDICTIONS

In this section, we present a model and recall some
theoretical results concerning steady-state bifurcations in
delay-system with band-limited feedback.

Dynamics arises in the device due to the interaction
of the nonlinearity and the linear time-delayed feedback.
The complexity of models for such delay-feedback sys-
tems increases as more details about the feedback char-
acteristics are included. For example, assuming a lin-
ear feedback of infinite bandwidth results in map-models,
whereas taking into account the finite response time of
device components through a single-pole low-pass filter

results in scalar delay-differential equations [29, 30]. It
has been shown that for RF-devices, such as the one dis-
cussed in this paper, it is essential to account for both
the finite-bandwidth of the device-components (low pass
filter) and the fact that RF-components are AC-coupled
(high pass filter), in order to reproduce the observed dy-
namics at least qualitatively [24, 28, 31]. Thus, we adopt
a model consisting of an integro-differential equation with
time-delay, where, for simplicity, it is assumed the trans-
fer characteristics of the feedback can be approximated
by a two-pole band-pass filter.

A. Bandpass filter in the time domain

We derive here for completeness the time-domain rep-
resentation of a bandpass-filter associated with the trans-
fer function given in Eq. (2). To that avail, consider the
Fourier transform F and its inverse F−1 (here we adapt
the modern physics convention)

x̂(ω) = F [x(t)] =
1√
2π

∫ ∞
−∞

dt x(t)eiωt, (5)

x(t) = F−1 [x̂(ω)] =
1√
2π

∫ ∞
−∞

dω x̂(ω)e−iωt. (6)

It can be shown [32] that for ‘well behaved’ x(t) the
Fourier transform of derivatives is given by

F
[
d

dt
x(t)

]
= (−iω)x̂(ω) (7)

and the following relation holds for Fourier transforms of
integrals

F
[∫ t

−∞
dl x(l)

]
=

x̂(ω)
(−iω)

+ πx̂(0)δ(ω). (8)

Consider then the following time-domain model of a
bandpass filter:

x(t) +
ẋ(t)
∆

+
ω2

0

∆

∫ t

−∞
dl x(l) = xin(t). (9)

Taking the Fourier transform of both sides of Eq. (9)
yields

x̂(ω) + (−iω)
x̂(ω)

∆
+
ω2

0

∆

[
x̂(ω)
(−iω)

+ πx̂(0)δ(ω)
]

= x̂in(ω)

From which follows that

x̂(ω)
−iω∆− ω2 + ω2

0

−iω∆
= x̂in(ω)− ω2

0

∆
πx̂(0)δ(ω)

Thus, the transfer function is given by

H(ω) =
x̂(ω)
x̂in(ω)

=
−iω∆

−iω∆− ω2 + ω2
0

(
1− ω2

0πx̂(0)
∆x̂in(ω)

δ(ω)
)

=
−iω∆

−iω∆− ω2 + ω2
0

(10)
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where the third equality follows because H(0) = 0 and
the second term on the right hand side of Eq. (10) only
contributes if ω = 0. Using ω = 2πν and defining the
parameters ω0 = 2πν0 and ∆ = 2πδ, we obtain for the
magnitude of the transfer function

|H(ν)| = ν δ√
(ν2

0 − ν2)2 + ν2 δ2

. (11)

It is seen, that Eq. (11) and Eq. (2) are identical. This
demonstrates that Eq. (9) describes a two-pole bandpass
filter.

B. Model

To complete the model we set the input signal xin in
Eq. (9) equal to the feedback signal to obtain

v(t) +
v̇(t)
∆

+
ω2

0

∆

∫ t

−∞
dl v(l) = αF

[
−γ
α
v(t− τ)

]
(12)

In this equation, τ is the delay, v is the band-pass fil-
tered signal that is measured in the experiment, the pa-
rameter ω0 = 2πν0 is the angular-frequency of maximal
transmission, and ∆ = 2πδ. For the case of a 10 pF
capacitor in the feedback, ω0 = 1.5 × 109 rad/s and
∆ = 2.5 × 109 rad/s. The nonlinearity F is given by
Eq. (1) and the minus sign in the argument of F in
Eq. (12) accounts for the inversion of the feedback signal
in the magic-tee. That is, the device has negative feed-
back. The parameter γ denotes the total feedback gain,
whereas α ∼ 9 is the fixed gain a signal experiences be-
tween the output of the nonlinearity and the output of
the magic-tee that is connected to the oscilloscope [see
Fig. 2(a)].

Of the model parameters, ω0 and ∆ are known, the
delay τ can be measured directly, and the total gain γ
is determined in terms of the attenuator control voltage
Vcon by Eq. (3) and Eq. (4) for the case of small am-
plitude dynamics. Thus, there are no free-parameters in
the model and, consequently, quantitative predictions are
possible.

In a previous publication, we analyzed the steady-state
bifurcations for time-delay systems with band-limited
feedback and arbitrary nonlinearity [28]. This analy-
sis applies directly to the device model Eq. (12). This
can be seen by using a transformation that maps the
integro-differential time-delay equation given in Eq. (12)
to the second order delay-differential equation studied in
Ref. [28]. The mapping is achieved by introducing

x = −(γ/α)v y = −γF [0] + (ω2
0γ)/(∆α)

∫ t

−∞
v(l)dl

s = t∆ τ̂ = τ ∆

r = ω2
0/∆

2 f(x) = F (x)− F (0).

As a result, we obtain

ẋ(s) = −x(s) + y(s)− γ f [x(s− τ̂)]
ẏ(s) = −rx(s),

(13)

which is precisely the model discussed in Ref. [28]. We
may write this equivalently in matrix form, which we do
in the appendix in order to to demonstrate some type-
setting.

C. Theoretical Predictions

The theory predicts that self-sustaining oscillations
arise through Hopf-bifurcations of the steady state as
system parameters such as the delay τ or the feedback
gain are varied. That is, whereas for small enough feed-
back gain the steady state, given by x = y = 0, is sta-
ble, the steady state becomes unstable as the feedback
gain is increased. The solution x = y = 0 still exists
but arbitrarily small perturbations away from this solu-
tion will result in oscillatory system dynamics. In par-
ticular, for feedback gains close to the critical value the
system will oscillate sinusoidally and for a supercritical
Hopf-bifurcation the oscillation amplitude will increase
smoothly from zero as the feedback gain is increased from
below to above threshold.

Experimentally the frequency of oscillation is the quan-
tity that is most readily measured. The frequency of the
oscillations at onset roughly scales as ν = n/(2τ), where
n is an odd integer for negative feedback. This scaling
is explained by considering whether a wave circulating
in the feedback loop will reinforce itself. For the case of
positive feedback a periodic perturbation will reinforce
itself, if the feedback delay is a multiple of the wave’s
period, i.e. ν ∼ n/(2τ) with n an even integer. On the
other hand, a sinusoidal perturbation is amplified by neg-
ative feedback, if it is shifted by half its period after one
round-trip. Thus, the frequency is expected to scale as
ν ∼ n/(2τ) with n an odd integer.

It is also predicted that different oscillation “modes”
will be observed as the delay τ is increased. That is,
as a consequence of AC-coupling, there exist jumps in
the value of ν as a function of the delay, a feature that
distinguishes band-pass feedback from low-pass feedback
(Ikeda-type systems [29]). In detail, the frequency of the
observed oscillations will jump from ν ∼ n/(2τ) to ν ∼
(n+2)/(2τ) as τ is varied. These jumps are explained by
the fact that the feedback gain as a function of frequency
is not perfectly flat over the pass-band. As the overall
feedback gain (for all frequencies) is increased from a
low level, one particular mode-frequency will first reach
the threshold where the gain in the loop balances the
losses. In a system with only low-pass feedback, the gain
is highest at low frequencies, so the oscillation-mode with
the lowest frequency is always the one that destabilizes
the steady state, independent of the delay. On the other
hand, the high-pass filter introduces a bias toward high
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frequencies. Because the frequency scales roughly as ν ∼
τ−1 for each mode n, the damping effect of the high pass
filter on a particular mode becomes more pronounced
with increasing delay time τ . Therefore, there exists a
delay τ for which a higher order mode, one that has a
higher frequency for a given delay, will reach threshold
first.

The Hopf-bifurcation type can also be determined. To
that avail, note that the effective gain is negative due
to the negative feedback [Eq. (3)] and that the first
and third derivative of the nonlinearity evaluated at the
steady state satisfy F ′F ′′′ < 0 [Eq. (1)]. Under these con-
ditions, it follows from Illing and Gauthier [28, 33] that
the Hopf-bifurcation is supercritical for delays satisfying

τ ≥ 1
12

δ

ν2
0

(√
3 + 4ν2

0/δ
2 −
√

3
)
, (14)

as long as ν2
0/δ

2 ≤ 6 holds. In particular, for the case of a
10 pF capacitor in the feedback loop, the model predicts
the Hopf-bifurcations to be supercritical for τ > 0.22 ns,
i.e., for all experimentally accessible delays.

IV. HOPF BIFURCATIONS

In this section, we compare experiment and theoretical
predictions regarding the steady state bifurcation.

In experiment, we observe the dynamics of the device
as we vary the feedback gain while the delay is held fixed.
The feedback gain is increased by increasing the control
voltage Vcon of the tunable attenuator, i.e., by decreasing
the attenuation. For small values of the feedback gain,
the system resides in a steady state. As the gain crosses
a critical value, a supercritical Hopf-bifurcation occurs
and gives rise to periodic oscillations.

An example of such a measurement is shown in
Fig. 3(a), where it is seen that the oscillation ampli-
tude grows smoothly as Vcon is increased beyond a crit-
ical value of ∼ 2.1 V. In contrast, the measured oscilla-
tion frequency remains roughly constant (ν∼240 MHz).
In combination, these measurements indicate that the
steady state loses stability through a supercritical Hopf
bifurcation. We find that the steady state becomes unsta-
ble through supercritical Hopf bifurcations for all delays
(6-25 ns), in agreement with the theoretical predictions.

An important advantage of chaos generators that use
band-limited feedback is the ability to tune the main time
scale of the device dynamics. In our device, the main
time scale can be varied by more than a factor of ten
simply by changing the capacitor in the feedback loop
(see Fig. 2). For example, at a fixed feedback delay of
τ = 10.5 ns, the frequency is ν = 48 MHz for a setup
without an additional capacitor in the feedback loop, ν =
238 MHz for a ∼10 pF capacitor, and ν = 913 MHz for
a ∼2 pF capacitor. Here, we are using the frequency of
the oscillations at the Hopf bifurcation (Hopf-frequency)
as a proxy for the main time scale.
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FIG. 3: Characterization of the Hopf bifurcations for a setup
with a 10 pF capacitor. (a) Supercritical Hopf-bifurcation:
oscillation amplitude as a function of the attenuator control
voltage Vcon for τ = 10.4 ns. Increased Vcon corresponds to
increased (negative) feedback gain. (b) The measured depen-
dence of the Hopf-frequency on the time delay τ is shown (•).
The dashed lines are the approximate n/(2τ) scaling. The
solid line is from theory (see text).

Experimentally, the Hopf-frequency is the quantity
most readily measured and therefore ideally suited for
comparison of experiment and theory. For all quantita-
tive comparisons, we use an experimental setup with a
10 pF capacitor in the feedback. As a result, the main
time scale of the dynamics is ∼ 4 ns (ν−1

0 ), which al-
lows high-resolution measurements in the time and fre-
quency domain with the available equipment. Choosing
ν0 does not entirely fix the oscillation frequency at the
Hopf-bifurcation, which also depends on the time delay,
as is shown in Fig. 3(b). It is seen that jumps occur
between oscillation modes and that each mode scales as
ν = n/(2τ) with n odd (dashed lines), as predicted by
the theory. The solid line in Fig. 3(b) is the result from
a linear stability analysis of Eq. (12) [28]. The agree-
ment of theory and experimental data (•) in terms of
the values of the Hopf-frequency and the location of the
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FIG. 4: Experimentally measured time series as well as the
corresponding power spectra and Poincaré sections are shown
for (a)-(c) Vcon = 2.07 V, (d)-(f) Vcon = 2.6 V, and (g)-
(i) Vcon = 3.6 V. The feedback loop contained a ∼10 pF
capacitor, τ = 10.5 ns, and ∆τ = 1 ns.

mode-jumps is excellent.
In this section we have compared the experimentally

measured device dynamics to analytic predictions based
on a parameter-free model consisting of a simple integro-
differential equation with time-delay. On the level of bi-
furcations from the steady state, such a simple model
turns out to be sufficient to reproduce the observed dy-
namics quantitatively.

V. HIGH-DIMENSIONAL CHAOS

Beyond the Hopf bifurcation, successively more com-
plex dynamics develops as the gain is increased. Experi-
mental results are presented in Fig. 4, where time-traces
are displayed in the first column and the corresponding
spectra in the second column. In the third column, we
show the location where the measured trajectory crosses
unidirectionally a Poincaré plane in a three-dimensional
delay-embedding space with embedding-delay ∆τ = τ .
At feedback gains slightly above the critical value, the
oscillations are sinusoidal [Fig. 4(a)], resulting in a spec-
trum that is dominated by the main frequency [Fig. 4(b)]
and a single point in the Poincaré plane [Fig. 4(c)]. At
higher feedback gains, the oscillations begin to square off
and prominent odd harmonics appear in the spectrum
(not shown). As the gain is increased further, frequency
components that are non-commensurate with the funda-
mental frequency appear and grow in power, resulting
in a dense comb of frequencies in the spectrum. This
signature of quasi-periodic dynamics is clearly seen in
Fig. 4(e). The existence of a torus-attractor is confirmed
by the appearance of a closed curve in the Poincaré
section [Fig. 4(f)]. For even larger gains, the broad
background in the spectrum rises and the power in the

fundamental frequency peak shrinks, as can be seen in
Fig. 4(h). Furthermore, no structure can be discerned
in the Poincaré section. This is indicative of high-
dimensional chaos.

VI. SUMMARY AND DISCUSSION

Time-delays are present and signals are bandpass fil-
tered in circuits that operate in the ultra-high frequency
band and consist of commercially available prepackaged
RF-components. Our approach is to exploit inherent
time-delays and band-limiting component characteristics
for the generation of complex dynamics. We discuss in
this paper a device resulting from this approach, an easy
to implement all-electronic generator of chaotic oscilla-
tions at GHz frequencies. The device has the advantage
that the characteristic time scale and the bandwidth of
the chaotic output can be tuned by changing the proper-
ties of the feedback-loop. Further positive aspects of the
device are that it is built using commercially-available
components and that it can, in principle, be operated at
higher frequencies such as the 3-10 GHz band in which
the operation of ultra-wideband transmission systems is
allowed.1

Comparison of the measured device dynamics to the-
ory shows that a simple integro-differential equation with
delayed feedback (equivalent to a second-order delay-
differential equation) captures many of the observed dy-
namic features. Indeed, good quantitative agreement is
found on the level of bifurcations from the steady state
and the observed quasiperiodic and chaotic behavior is
qualitatively reproduced by the model.

In this context, it is important to note that the device
was operated in a ‘weak’ feedback regime for all data
shown in this paper. In the experimental device, the
amplifiers will exhibit saturation effects for strong feed-
back, which introduces additional feedback nonlineari-
ties. In the strong-feedback regime, we observe chaotic
oscillations with a nearly featureless power spectrum (not
shown). In contrast, the saturation-free model [Eq.(1)
and Eq. (12)] becomes unstable for large values of the
feedback parameter γ (γ & 5). However, omitting satu-
ration effects in the model allows us to show conclusively
that high-dimensional chaos arises in the weak-feedback
regime due to the interaction of the linear band-limited
time-delayed feedback with the transistor-based nonlin-
earity.

It is well known that dynamical systems with delayed
feedback often have very rich dynamics and bifurcation
diagrams. This is also true for delay-systems with band-
limited feedback. For example, we observe coexisting

1 The Federal Communications Commission (FCC) revised the
rules regarding ultra-wideband transmission systems in 2002 in
order to permit the operation of ultra-wideband technology.
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stable limit cycles over wide parameter ranges, demon-
strating the system’s multistability. Furthermore, pe-
riodic windows are found within the quasiperiodic and
chaotic regimes, which is indicative of the complex bifur-
cation scenario in this system. It would be interesting
to investigate in more detail the bifurcations leading to
quasiperiodicity and to the appearance of periodic win-
dows.

We believe that this chaotic electronic device is ideally
suited for both experimental investigation of the non-
linear dynamics of time-delay systems and technological
application of high-speed chaos such as ranging, intrusion
detection, tracking, and random number generation.
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Appendix

Typically the appendix contains technical details and
lengthy derivations that you believe are of no interest to
the average reader and that would break the flow of the
main argument. Often these details are important for
those interested readers who actually want to perform
your experiment or check the calculations.

In this case I include some more typesetting examples.

The model can be written as an integro-differential
equation [Eq. (12)], which we repeat here for convenience

v(t) + v̇(t)
∆ + ω2

0
∆

∫ t
−∞dl v(l) = αF

[
− γ
α v(t− τ)

]
,(A.1)

F (v) = V0 −
√
F1(v)2 + a2 with

F1(v) =

{
Al (v − v∗) if v ≤ v∗,
Ar (v − v∗) if v > v∗.

(A.2)

or, equivalently, as a second-order delay-differential equa-
tion [Eq. (13)], which we write here in matrix form

d

ds

(
x
y

)
=
(
−1 1
−r 0

)(
x
y

)
− γ 1

(
f [x(s− τ̂)]

0

)
(A.3)

where 1 is the 2 × 2 identity matrix. The values of the
relevant parameter are listed in Tab. I

Proposition 1 ( Illing and Gauthier [28, 33]). For
r, τ̂ ∈ R+ and n = 0, 1, 2, . . . :
If f ′(0) f ′′′(0) + f ′′(0)2 Cn(τ̂ , r) < 0 (> 0), the Hopf bi-
furcation is supercritical (subcritical).

TABLE I: Model parameters for the setup with a 10 pF ca-
pacitor in the feedback loop

Symbol Value Description

Al 0.47 (±0.04) left slope of nonlinearity

Ar -0.62 (±0.05) right slope of nonlinearity

a 0.05 (±0.01) V sets peak smoothness

v∗ 0.12 (±0.04) V threshold voltage

V0 6 V DC offset voltage

τ 6 – 25 ns delay

γ 2 – 9 feedback gain

α 9 fixed feedback gain

ω0 1.5× 109 rad/s max. transmission freq.

∆ 2.5× 109 rad/s bandwidth

r 0.36 ‘small’ parameter

τ̂ 15 – 63 dimensionless delay

Corollary 1 (Illing and Gauthier [33]). At the stabil-
ity boundary of the steady state, the following holds for
the Hopf bifurcation : If b < 0, τ̂ ≥ τ1

C(2π/3), r ≤ 6,
and f ′(0)f ′′′(0) < 0, the bifurcation is supercritical. If
b > 0, τ̂ ≥ nπ/

√
r, r ≤ 15/16, and f ′(0)f ′′′(0) < 0,

the bifurcation of the nth mode from the steady state is
supercritical.
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