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1. Fourier Series

1 Fourier Series

1.1 General Introduction

Consider a function f(τ) that is periodic with period T .

f(τ + T ) = f(τ) (1)

We may always rescale τ to make the function 2π periodic. To do so, define
a new independent variable t = 2π

T τ , so that

f(t+ 2π) = f(t) (2)

So let us consider the set of all sufficiently nice functions f(t) of a real variable t
that are periodic, with period 2π. Since the function is periodic we only need
to consider its behavior on one interval of length 2π, e.g. on the interval
(−π, π).

The idea is to decompose any such function f(t) into an infinite sum, or
series, of simpler functions. Following Joseph Fourier (1768-1830) consider
the infinite sum of sine and cosine functions

f(t) =
a0

2
+
∞∑
n=1

[an cos(nt) + bn sin(nt)] (3)

where the constant coefficients an and bn are called the Fourier coefficients of
f . The first question one would like to answer is how to find those coefficients.
To do so we utilize the orthogonality of sine and cosine functions:∫ π

−π
cos(nt) cos(mt) dt =

∫ π

−π

1
2

[cos((m− n)t) + cos((m+ n)t)] dt

=


2π, m = n = 0
π, m = n 6= 0
0, m 6= n

=

{
2π, m = n = 0
πδmn, m 6= 0

(4)
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General Introduction

Similarly,∫ π

−π
sin(nt) sin(mt) dt =

∫ π

−π

1
2

[cos((m− n)t)− cos((m+ n)t)] dt

=

{
0 m = 0
πδmn m 6= 0

(5)

and ∫ π

−π
sin(nt) cos(mt) dt =

∫ π

−π

1
2

[sin((m− n)t) + sin((m+ n)t)] dt

= 0 (6)

Using the orthogonality and the assumed expression for the infinite series given
in Eq. (3), it follows that the Fourier coefficients are

an =
1
π

∫ π

−π
f(t) cos(nt) dt (7)

bn =
1
π

∫ π

−π
f(t) sin(nt) dt (8)

This initial insight by Fourier was followed by centuries of a work on the
second obvious question: Are the RHS and LHS in Eq. (3) actually the same?
Clearly one needs to determine for which class of functions f the infinite series
on the right hand side of Eq. (3) will converge. That is, what is a sufficiently
nice function f? The precise answer is not of concern here, it suffices to know
that the Fourier series exists and converges for periodic functions of the type
you are used to, e.g. functions for which first and second order derivatives
exists almost everywhere, that are finite and have at most a finite number of
discontinuities and zero crossings in the interval (−π, π).

When determining a the Fourier series of a periodic function f(t) with period
T , any interval (t0, t0 + T ) can be used, with the choice being one of conve-
nience or personal preference. For example, in the rescaled time coordinates
considering the interval (0, 2π) works just as well as considering (−π, π) as we
have done.

If a function is even so that f(t) = f(−t), then f(t) sin(nt) is odd. (This
follows since sin(nt) is odd and an even function times an odd function is an
odd function.) Therefore, bn = 0 for all n. Similarly, if a function is odd so that
f(t) = −f(−t), then f(t) cos(nt) is odd. (This follows since cos(nt) is even
and an even function times an odd function is an odd function.) Therefore,
an = 0 for all n.
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1. Fourier Series
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Figure 1: A full-wave-rectifier converts a sinusoidal input, sin(ωt), to | sin(ωt)|.

Example - Rectified sine wave: A first step in converting AC-power from
the power-grid to the DC-power that most devices need is to utilize
a full-wave rectifier, such as the diode bridge shown in Fig. 1, which
converts a sinusoidal input to an output that is the absolute value of the
input sine-wave.

One notes immediately that for a sinusoidal input, the output of the
rectifier is periodic with half of the period of the input. The fundamental
frequency of the output is twice the input frequency. How can that be?
The reason is that the circuit is not a linear circuit. The presence
of diodes makes this circuit nonlinear and allows the circuit to shift
power from the fundamental frequency to twice its value. One might
wonder whether that is all that is happening. Does the output have
contributions (power) at other frequencies? To answer this we look at
the Fourier series of the output.

Since the output f = | sin(ωt)| is even, i.e. f(t) = f(−t), no terms of
the form sin(nωt) will appear in the answer. It suffices to determine the
an coefficients. For a0 one obtains

a0 =
1
π

∫ 0

−π
− sin(ωt) d(ωt) +

1
π

∫ π

0
sin(ωt) d(ωt)

=
2
π

∫ π

0
sin(ωt) d(ωt) =

4
π

(9)
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and for the remaining an one gets

an =
2
π

∫ π

0
sin(ωt) cos(nωt) d(ωt)

=
2
π

∫ π

0

1
2

[− sin((n− 1)ωt) + sin((n+ 1)ωt)] d(ωt)

=
1
π

[
1

n− 1
{cos(nπ − π)− 1}+

−1
n+ 1

{cos(nπ + π)− 1}
]

=

{
− 4
π

1
n2−1

, n even
0, n odd.

(10)

Note, that the sine and cosine functions are orthogonal on the interval
(−π, π). They are not orthogonal on the interval (0, π) and we do get a
nonzero contribution for even n. To summarize the result,

| sin(ωt)| = 2
π
− 4
π

∞∑
n=2,4,6,...

cos(nωt)
n2 − 1

. (11)

For an input with frequency f0, the output has a DC-offset, the part
that we really care about when building a DC-voltage supply. It has
no contribution at f = f0. It does have contributions at frequencies
2f0, 4f0, 6f0, . . ..

1.2 Discontinuous Functions

In the above example, Eq. (11), the nth coefficient decreases as 1/n2. This
decay of the coefficients is in contrast to the Fourier series of a square wave

fsw(t) =
4
π

∞∑
n=1,3,5,...

1
n

sin(nωt) (12)

where the nth coefficient falls off as 1/n. This is true in general 1

1. If f(t) has discontinuities, the nth coefficient decreases as 1/n. The
convergences is slow and many terms need to be kept to approximate
such a function well.

1G. Raisbeck, Order of magnitude of Fourier coefficients. Am. Math. Mon. 62, 149-155
(1955).
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1. Fourier Series

Figure 2: The Gibbs phenomenon is an overshoot (or ”ringing”) of Fourier series
and other eigenfunction series occurring at simple discontinuities. Shown in color
are the first few partial sums of the square-wave Fourier series. (Source math-
world.wolfram.com/GibbsPhenomenon.html)

This means that a function generator that generates square waves through
the addition of sinusoidal waveforms needs to have a bandwidth (max.
freq. it can generate) that is large compared to the frequency of the
square-wave that is generated.

2. If f(t) is continuous (although possibly with discontinuous derivatives)
the nth coefficient decreases as 1/n2.

There is another consequence of a discontinuity in f(t) that can cause trouble
in practical applications, where one necessarily only adds a finite number
of sinusoidal terms. The nth partial sum of the Fourier series of a piecewise
continuously differentiable periodic function f behaves at a jump discontinuity
in a peculiar manner. It has large oscillations near the jump, which might
increase the maximum of the partial sum above that of the function itself.
It turns out that the Fourier series exceeds the height of a square wave by
about 9 percent. This is the so-called Gibbs phenomenon, shown in Fig. 2.
Increasing the number of terms in the partial sum does not decrease the
magnitude of the overshoot but moves the overshoot extremum point closer
and closer to the jump discontinuity.

You will have the opportunity to explore this in the lab.
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1.3 Complex Fourier Series

At this stage in your physics career you are all well acquainted with complex
numbers and functions. Let us then generalize the Fourier series to complex
functions. To motivate this, return to the Fourier series, Eq. (3):

f(t) =
a0

2
+
∞∑
n=1

[an cos(nt) + bn sin(nt)]

=
a0

2
+
∞∑
n=1

[
an
eint + e−int

2
+ bn

eint − e−int

2i

]

=
a0

2
+
∞∑
n=1

an − ibn
2

eint +
−∞∑
m=−1

a−m + ib−m
2

eimt (13)

where we substituted m = −n in the last term on the last line. Equation (13)
clearly suggests the much simpler complex form of the Fourier series

x(t) =
+∞∑

n=−∞
Xn e

in(2πf0)t. (14)

with the coefficients given by

Xn =
1
T

∫ T/2

−T/2
x(t) e−in(2πf0)t dt (15)

Here, the Fourier series is written for a complex periodic function x(t) with
arbitrary period T = 1/f0. Note that the Fourier coefficients Xn are complex
valued. It is seen from Eq. (13) that for a real-valued function x(t) in Eq. (14)
the following holds for the complex coefficients Xn

Xn = X∗−n (16)

where ∗ denotes the complex conjugate.

This is all well, but you may wonder what to do about a function such as
e−αt sin(ωt). This function is not periodic, therefore not amenable to Fourier
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2. Fourier Transform

series analysis, but it is clearly oscillatory and very well behaved for t > 0
(α > 0).

2 Fourier Transform

2.1 Definition

The Fourier transform allows us to deal with non-periodic functions. It can be
derived in a rigorous fashion but here we will follow the time-honored approach
of considering non-periodic functions as functions with a ”period” T → ∞.
Starting with the complex Fourier series, i.e. Eq. (14) and replacing Xn by
its definition, i.e. Eq. (15), we obtain

x(t) =
+∞∑

n=−∞

1
T

∫ T/2

−T/2
x(ξ) ei 2π nf0 (t−ξ) dξ (17)

In a Fourier series the Fourier amplitudes are associated with sinusoidal oscilla-
tions at discrete frequencies. These frequencies are zero, for the DC term, the
fundamental frequency f0 = 1/T , and the higher harmonics f = 2/T, 3/T, . . ..
It is not hard to see that, when taking the limit T →∞, the spacing between
adjacent frequencies will shrink to zero

(n+ 1)f0 − nf0 = f0 =
1
T
⇒ df (18)

resulting in “Fourier amplitudes” at continuous frequencies f = (0,∞). Since
for a given small frequency interval the number n of the discrete frequency
harmonic that falls in this interval increases to infinity in the limit where the
spacing between adjacent frequencies, T−1, shrinks to zero, the product

f =
n

T
(19)

is constant and will serve as the new continuous variable.

The above strongly suggest that in the limit the following should hold2

x(t) =
∫ +∞

−∞

∫ ∞
−∞

x(τ) ei2πf(t−τ) dτ df. (20)

2For a rigorous derivation see for example I.N.Sneddon, Fourier Transform, § 3.2 or
Courant and Hilbert, Methods of Mathematical Physics, vol. 1, § 6.1
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Definition

Equation (21) is called the Fourier integral. Note that the function x ap-
pears both on the LHS side and inside the double integral. We may rewrite
the Fourier integral in several ways. For example, writing

x(t) =
∫ +∞

−∞

[∫ ∞
−∞

x(τ) e−i2πfτ dτ
]
ei2πftdf. (21)

suggests the introduction of the Fourier transform pair x(t) and x̂(f):

Fourier Transform: x̂(f) = F (x(t)) =
∫ +∞

−∞
x(t) e−i2πft dt, (22)

Inverse FT x(t) = F−1 (x̂(f)) =
∫ +∞

−∞
x̂(f) ei2πft df. (23)

The function x̂(f) is the equivalent of the Fourier coefficients in the Fourier se-
ries. It is a function in the continuous frequency domain where f ∈ (−∞,+∞).
In a sense you may think of x(t) as being made up of a continuum of sine waves.
For obvious reasons, we talk about x(t) as being in the time domain and the
Fourier transform of x(t), namely x̂(f), as being in the frequency domain.
x(t) and x̂(f) are two equivalent representations of the function of interest
and these representations are connected by the Fourier transform. Note, that
in general x̂(f) is a complex-valued function containing both magnitude and
phase information.

Properties: Here are some useful properties of the Fourier transform that
are relatively easily shown.

• As before, for a real-valued function x(t), it holds that

x̂(f) = x̂(−f)∗. (24)

• If function x(t) is real, then the Fourier transform of x(−t) is

F [x(−t)] = x̂(−f) = x̂(f)∗. (25)

• If function x(t) is real and either even or odd, then the Fourier transform
of x(t) is also either even or odd.

• Using the definition of the Fourier Transform and integration by parts,
it may be shown that

F
[
dnx(t)
dtn

]
= (−i2πf)nx̂(f). (26)
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2. Fourier Transform

• The Parseval relation guarantees that the total power of a function is
the same in the time- and frequency-domain, because the norms of the
pair of Fourier transforms in time and frequency domains are equal, that
is

||x||2 = ||x̂||2 (27)

with

||x||2 =
∫ +∞

−∞
|x(t)|2dt ||x̂||2 =

∫ +∞

−∞
|x̂(f)|2df. (28)

Cos & Sin: It turns out that Fourier transform pairs are well defined not
only for nice functions, such as square integrable functions, but also for
distributions such as the δ-function. A definition of the delta function
in terms of an integral is suggested by the Fourier integral, Eq. (21), if
we simply change the order of integration to

x(t) =
∫ +∞

−∞
x(ξ)

∫ ∞
−∞

ei2πf(t−ξ) df︸ ︷︷ ︸
δ(t−ξ)

dξ (29)

Then it must also be true that

F
(
ei2πf0t

)
=
∫ +∞

−∞
e−i2π(f−f0)t dt = δ(f − f0). (30)

Therefore,

x̂cos = F (cos(2πf0t))

=
∫ +∞

−∞

ei2πf0t + e−i2πf0t

2
e−i2πft dt

=
1
2

[δ(f − f0) + δ(f + f0)] (31)

and

x̂sin = F (sin(2πf0t))

=
i

2
[−δ(f − f0) + δ(f + f0)] (32)

Both sin and cos result in a Fourier transform that is exactly zero except
at f = f0 and f = −f0. The distinguishing feature of sin and cos is their
phase and this results in the different coefficients in front of δ(f − f0)
and δ(f + f0). This example also shows that the Fourier transform is
generally complex.
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Figure 3: Box function and its Fourier transform

Box Function: Consider the Fourier transform of a box-function

bT (t) =

{
1 t ∈ [−T/2, T/2]
0 otherwise

(33)

b̂T (f) =
∫ +T/2

−T/2
e−i2πft dt

=
e−iπfT − eiπfT

−2πif

= T
sin(πfT )
πfT

= T sinc(πfT ) (34)

The result is shown in Fig. 3. In physical optics the diffraction pattern
amplitude is described by the Fourier transform of the diffracting ele-
ment. A slit is described by the box function ba(x) and therefore the
diffraction pattern by b̂T (k).

2.2 The issue of convention

In signal processing the Fourier Transform pair is usually defined as above
in terms of ordinary frequency (Hertz) and the “- i” in the forward Fourier
transform.

FT x̂1(f) = F [x(t)] def=
∫ ∞
−∞

x(t) e−i 2πf t dt (35)

IFT x(t) = F−1 [x̂(f)] =
∫ ∞
−∞

x̂1(f) ei 2πf t df (36)
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2. Fourier Transform

Now the above is just a convention and many scientists prefer to use the
angular frequency ω (rad/s) as integration variable. There are again several
possibilities. For example in modern physics one often finds the following
symmetric definition3

FT x̂2(ω) = F [x(t)] def=
1√
2π

∫ ∞
−∞

x(t)eiωt dt =
1√
2π

x̂1

(
−ω
2π

)
(37)

IFT x(t) = F−1 [x̂2(ω)] =
1√
2π

∫ ∞
−∞

x̂2(ω)e−iωt dω (38)

Note that here the forward Fourier transform is defined with positive “i”. This
latter convention, the modern physics one, is the default in Mathematica.

In addition to these two, there are several other such widely used conventions.
Now this is an unfortunate state of affairs but that is how it stands. As
a result you always have to state what you mean when talking about the
Fourier transform of a function x(t). We will be using the signal-processing
pair of equations, namely Eq. (35) and Eq. (36).

2.3 Convolution Theorem

The convolution theorem states that under suitable conditions the Fourier
transform of a convolution is the pointwise product of Fourier transforms.
And, the Fourier transform of the pointwise product of two functions is the
convolution of the Fourier transform of each one of the two functions. In other
words, convolution in one domain (e.g., frequency domain) equals point-wise
multiplication in the other domain (e.g., time domain). This allows one to
break apart problems into manageable pieces and is extremely useful. We will
utilize it to explain spectral leakage. But let’s start by considering the Fourier
transform of the point-wise product of two functions in the time domain.

F [x(t) · y(t)] =
∫ +∞

−∞
x(t) · y(t) e−i2πft dt

We now replace x and y by the corresponding inverse Fourier transform
[Eq. (23)], change the order of integration, and use the definition of the delta

3e.g. see Arfken and Weber’s Mathematical Methods for Physicists, Fifth Ed., §15.2, pg.
690
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Spectral Leakage

function:

F [x(t) · y(t)] =
∫ +∞

−∞
x(t) · y(t) e−i2πft dt

=
∫ +∞

−∞

[∫ +∞

−∞
x̂(ρ) ei2πρt dρ ·

∫ +∞

−∞
ŷ(ν) ei2πνt dν

]
e−i2πft dt

=
∫ +∞

−∞

[∫ +∞

−∞
x̂(ρ)

(∫ +∞

−∞
ŷ(ν)ei2π(ρ+ν)t dν

)
dρ

]
e−i2πft dt

=
∫ +∞

−∞
x̂(ρ)

(∫ +∞

−∞
ŷ(ν)

∫ +∞

−∞
ei2π(ρ+ν−f)t dt dν

)
dρ

=
∫ +∞

−∞
x̂(ρ)

(∫ +∞

−∞
ŷ(ν) δ(ρ+ ν − f) dν

)
dρ

=
∫ +∞

−∞
x̂(ρ) ŷ(f − ρ) dρ. (39)

The last line is the convolution of the Fourier transform x̂ of x(t) and the
Fourier transform ŷ of y(t). The convolution is sometimes denoted by ∗,

x̂(f) ∗ ŷ(f) =
∫ +∞

−∞
x̂(ρ) ŷ(f − ρ) dρ

So, to write the result neatly

F [x(t) · y(t)] = F [x(t)] ∗ F [y(t)] =
∫ +∞

−∞
x̂(ρ) ŷ(f − ρ) dρ. (40)

The Fourier transform of the pointwise product of two functions is the convo-
lution of the Fourier transform of each one of the two functions.

With that out of the way, we can discuss spectral leakage in a straightforward
manner.

2.4 Spectral Leakage

Real life limitations have consequences:
1) A finite measurement time results in spectral leakage

We want to know the Fourier transform of an experimentally measured voltage
x(t) that can be described by cos(2πf0t), for example. In other words we are
given a function in the time domain. We can then use Eq. (22) to calculate
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2. Fourier Transform

the corresponding function in the frequency domain, except that Eq. (22)
requires us to know x(t) for t ∈ (−∞,∞). Even the most patient student will
not measure an output forever, so one has to assume that x(t) = cos(2πf0t)
is only given on a finite interval t ∈ (−T/2, T/2).

So in reality, on a computer for example, we would evaluate the Fourier trans-
form of this finite time series. We can discuss the consequences of the finite
length of our time series by considering the Fourier transform of the product
of x(t) [defined for t ∈ (−∞,∞)] with the box-function bT (t), as shown in
Fig. 4. Since we know the Fourier transform of the cosine-function and the
box-function, respectively Eq. (31) and Eq. (34), we can utilize the convolution
theorem to obtain the Fourier transform with little additional work.

F [cos(2πf0t) · bT (t)] =
∫ +∞

−∞

1
2

[δ(ρ− f0) + δ(ρ+ f0)] · T sinc(πT (f − ρ)) dρ

=
T

2
[sinc(πT (f − f0)) + sinc(πT (f + f0)] (41)

It is seen from Eq. (41) and Fig. 4 that the the finite observation time results in
a distribution of spectral power according to the sinc-function that is centered
at the location of the delta-function that would have resulted from a Fourier-
transform of an infinitely long time-series of cos(2πf0t).

The process of multiplying cos(2πf0t) by the box-function is referred to as
windowing with a rectangle. Windowing of simple functions such as the cosine-
function causes the Fourier transform to have non-zero values at frequencies
other than f0. This effect, commonly called spectral leakage is worst near f0

and least at frequencies farthest away from f0.

If there are two sinusoidal functions with different frequencies leakage inter-
feres with ones ability to distinguish the two functions in the spectrum and
can be sufficient to make the two sinusoids unresolvable. The situation is
most challenging if the frequencies of the two sine-functions are close and if
they have very different amplitudes. Distinguishing two sinusoids with nearly
identical frequencies and equal amplitude requires high resolution and distin-
guishing two sinusoids with vastly different signal amplitudes requires a large
dynamic range.

The rectangle window (box-function) has excellent resolution characteristics
for signals of comparable strength, but it is a poor choice for signals of dis-
parate amplitudes. This characteristic is sometimes described as high resolu-
tion and low-dynamic-range.
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Figure 4: (Top) The product of a cosine-function and a box function. (Bottom) The Fourier
transform of the product

The choice of a box-function-window was motivated by the fact that it sim-
ply corresponds to a finite time series. We are however free to multiply the
time series that we obtain from measurements by a window function of our
choice. There are many window functions. The decision about which is he
best window to use will depend on the particular application and the desired
trade-off between dynamic-range and resolution. For example, the flat top
window (Fig. 5a) is a high-dynamic-range low-resolution window, at the other
extreme from the rectangle-window, and the Hann window (Fig. 5b) is some-
where in the middle, providing both decent dynamic-range and resolution.
You will have opportunities to explore the effect of windowing in lab.
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2. Fourier Transform

Figure 5: (Top) Flat-top window and its Fourier transform (Bottom) Hann window and its
Fourier transform
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3 Discrete Time

Real life limitations have consequences:
2) Finite-time data is taken at discrete times. The spectrum is then
periodic and typically discrete.

3.1 Discrete Time Fourier Transform

Since data is typically taken at integer times tj = t0, t1, . . . , tN−1 one needs to
consider a discrete version of the Fourier transform. The easiest to treat case
and the only one that we will consider is the case of N equal time samples,
i.e.

tj = j∆t j = 0, 1, 2, . . . , N − 1 (42)

Here ∆t is the time between two neighboring data points in the time series and
fs = 1/∆t is the sampling frequency, the number of samples taken per second.
The discrete time Fourier-transform (DTFT) for a finite-length discrete-time
data set

X(0), X(∆t), X(2∆t), . . . , X((N − 1)∆t) (43)

is then simply an approximation to the continuous Fourier transform [Eq. (4)]
and is given by

DTFT X̂(f) =
N−1∑
j=0

X(tj) e−i 2πf tj . (44)

One way to obtain this result is to consider the DTFT as arising from a Fourier
transform of the product of x(t) with the Dirac comb. The Dirac comb, often
called the sampling function or impulse train, is in general

∆∆t(t)
def=

∞∑
j=−∞

δ(t− j∆t) (45)

and for the finite time series {tj} that we are considering

∆j(t)
def=

N−1∑
j=0

δ(t− tj) (46)
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3. Discrete Time

The Fourier transform of the product is then easily evaluated

F [X(tj)] = F [x(t) ·∆j(t)]

=
∫ +∞

−∞
x(t) ·

N−1∑
j=0

δ(t− tj) e−i2πft dt

=
N−1∑
j=0

X(tj) e−i2πftj (47)

and yields Eq. (44).

Periodicity: Sampling x(t) causes its DTFT-spectrum to become periodic
with frequencies repeating every fs, where fs is the sample rate. This follows
directly from the periodicity of

e−i2πftj = e−i2πfj∆t = e−i2πfj/fs . (48)

That is,

e−i2π(f+kfs)tj = e−i(2πftj+2πkfs j/fs) = e−i2πftje−i2πkj = e−i2πftj (49)

where both j and k are arbitrary integers. Therefore:

X̂(f + kfs) = X̂(f) (50)

For the DTFT f is continuous and one could evaluate X̂(f) at any desired
frequency. A priory f can be anything, but since X̂(f) is periodic one only
needs to consider a frequency interval of length fs. Typically we are inter-
ested in the region [−fs/2, fs/2], because fs/2 is the Nyquist frequency, the
maximum frequency of the original signal x(t) that can be resolved when the
signal is sampled with sampling rate fs. This follows from the fact that one
needs at least two samples per cycle, a peak and a trough, in order to estimate
a frequency.

fNyquist =
fs
2
. (51)

To summarize, the Discrete-Time-Fourier-transform estimates the spectrum
at continuous frequencies based on a discrete-time data set. The spectrum,
i.e. the signal in the Fourier domain, is periodic. The DTFT does therefore
the reverse of a Fourier-series, which produces Fourier-amplitudes at discrete
frequencies corresponding to a periodic continuous time signal. Now if our sig-
nal x is periodic and discrete-time, then the spectrum will also be discrete, and
the corresponding transform is called the Discrete-Fourier transform (DFT).
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Discrete Fourier Transform (and FFT)

3.2 Discrete Fourier Transform (and FFT)

So, if the signal is periodic, x(t+N∆t) = x(t), then, just as was the case with
the Fourier series, the signal contains power only at its fundamental frequency
1/(N∆t) and higher harmonics. In other words, for a periodic signal with
period T = N∆t measured at N discretely sampled times the corresponding
frequencies are also discretized with the spacing between adjacent frequencies
being given by ∆f = 1/(N∆t) = fs/N .

Due to the periodicity of f , we can choose any interval of length fs = N∆f .
Typically one would like to chose (N even)

fk = k ∆f k = −N
2

+ 1, . . . , 0, . . . ,
N

2
(52)

where the frequency region is bracketed by the Nyquist frequency and its
negative, i.e. [−fs/2, fs/2]. We do not consider f = −N

2 ∆f because it is the
same as f = N

2 ∆f due to periodicity (−N
2 ∆f = −N

2 ∆f + fs = N
2 ∆f).

However, since computers like to work with positive indices, one uses the
periodicity to map the interval −N

2 + 1 to -1 onto the interval N
2 + 1 to N-1

to obtain
fk = k∆f k = 0, 1, . . . , N − 1. (53)

As shown in J. Essick’s book (chapter 10 pg. 3-5), the DFT pair is then given
by

DFT: X̂(fk) =
N−1∑
j=0

X(tj) e−i 2πfk tj k = 0, . . . , N − 1 (54)

IDFT: X(tj) =
N−1∑
k=0

X̂(fk) ei 2πfk tj j = 0, . . . , N − 1 (55)

The DFT can be efficiently performed using the Fast Fourier Transform
(FFT), which is the name for a particular computational algorithm developed
to compute a DFT. The FFT requires the size of the data set to be a power
of two, N = 2m with m an integer. The FFT reduces the required number of
operations from the brute-force approach that requires order N2 operations to
N log2N such operations. This is a huge increase of speed for large data sets.
For example, for a data set consisting of about one hundred Megasamples
(227) the FFT is 5 Million times faster. Nowadays data sets with millions of
sample points are common both in bench-top and numeric experiments.
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4. Executive Summary

Due to the immense computing advantage of the FFT, it forms the basis of
many numerical algorithms. For example, it is used not only to estimate the
spectrum of periodic data sets but any discretely sampled function.

For time series with a period commensurate with the observation time N∆t,
the DFT (or FFT) is “exact” in the sense that the spectrum contains delta-
peaks. This follows from the fact that for a function that is periodic on
the interval given by the observation time, the Fourier amplitudes appear at
discrete frequencies f = n/(N∆t) and it is only at those frequencies that we
sample the Fourier transform. Now, it is still true that the finite observation
time implies that, instead of a delta peak, there will be, in principle, a sinc-
function centered at each of these frequencies. However, each of these sinc
functions will only be sampled at its central peak and at the the frequencies
for which it is zero. This follows because the sinc functions are centered at
f = n/(N∆t) and have zeros at f ± k∆f , with ∆f = k/(N∆t) (because the
observation time is (N∆t)). Since ∆f is our sampling stepsize in the frequency
domain, these zeros of each sinc function coincide with the places where the
frequency space is sampled. As a result, the Fourier-transform looks exactly
like a series of delta peaks that one would expect for an infinite periodic signal.

For time series that are non-periodic or have a non-commensurate frequency,
the observation time is not a period of the signal. In this case one observes
spectral leakage when performing the FFT. The leakage is described by the
Fourier-transform of the windowing function, but discretely sampled in fre-
quency space. These samples will be non-zero. This is entirely equivalent
to the leakage for the continuous Fourier transform that we discussed above.
You will have the opportunity to explored spectral leakage in lab when going
through J. Essick’s book.

4 Executive Summary

The type of Fourier analysis that you should consider depends on your input
x (see table below). For experiments (even numeric ones) you will essentially
always use the Fast Fourier Transform (FFT). So take 2n data points. Gen-
erally, there will be spectral leakage. You can reduce leakage artifacts by
applying an appropriate window function to the data as part of the Fourier
analysis.
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Time Domain Transform Type Frequency Domain

x(t) continuous,
non-periodic

Fourier Transform x̂(f) continuous,
non-periodic

x(t) continuous,
periodic

Fourier Series x̂(fk) discrete,
non-periodic

x(tj) discrete,
non-periodic

Discrete Time Fourier Trans-
form

x̂(f) continuous,
periodic

x(tj) discrete,
periodic

Discrete Fourier Transform
(Fast Fourier Transform)

x̂(fk) discrete, pe-
riodic
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