## Mid-Term 2

Quantum Mechanics I

Physics 342

Date: April 9th, 2010

NAME:

There are three problems, each worth 10 points. Show as much work as you can for all problems. You have 50 minutes, and can use the front and back of a $3 \times 5$ (inch) card - the front and back covers of the book are provided separately.

## Problem 2.1

(10 points, 2 per part)
a. Find the two solutions to the ODE:

$$
\begin{equation*}
\frac{d}{d r}\left(r^{2} \frac{d f(r)}{d r}\right)=2 f(r) \tag{1}
\end{equation*}
$$

b. In two dimensions, working in polar coordinates $(s, \phi)$, we can consider the infinite "round" well:

$$
V(s)= \begin{cases}0 & s<R  \tag{2}\\ \infty & s>R\end{cases}
$$

In the plots below, circle the valid radial solution to this problem.


Figure 1: Candidate radial wave functions for two dimensional, polar coordinates.
c. As with the previous section, we are in two dimensions with $(s, \phi)$. This time, our well is finite:

$$
V(s)=\left\{\begin{array}{ll}
0 & s<R  \tag{3}\\
V_{0} & s>R
\end{array} .\right.
$$

In the plots below, circle the valid radial solution to the finite well problem.


Figure 2: Candidate radial wave functions for two dimensional, polar coordinates.
d. Prove that the commutator of two Hermitian operators $\hat{A}$ and $\hat{B}$ is anti-Hermitian.
e. For some (one-dimensional) Hamiltonian $\hat{H}$ with stationary states $|\psi\rangle$, we know that:

$$
\begin{equation*}
\frac{d}{d t}\langle\psi| x p|\psi\rangle=0 . \tag{4}
\end{equation*}
$$

Use this to show that $\left\langle x V^{\prime}\right\rangle=2\langle T\rangle$ for these states (here, $V(x)$ is the potential, and $\left.V^{\prime} \equiv \frac{d V}{d x}\right)^{1}$.

[^0]4 of 6

## Problem 2.2

## (10 points)

A particle of mass $m$ is constrained to move at a fixed radius $a$ in two dimensions but is otherwise "free" ${ }^{2}$. If the system makes a transition from the first excited state to the ground state, emitting a photon ( $E_{\gamma}=2 \pi \hbar \nu$ ) in the process, what is the wavelength of the emitted light? Leave your answer in terms of constants given in the problem and $\hbar$ and $c$.

[^1]
## Problem 2.3

## (10 points)

Consider an infinite square well with potential $V_{0} \sin (\omega t)$ inside the well, so that

$$
V(x, t)=\left\{\begin{array}{ll}
V_{0} \sin (\omega t) & 0<x<a  \tag{6}\\
\infty & x<0 \text { and } x>a
\end{array} .\right.
$$

Find $\Psi(x, t)$ if $\Psi(x, 0)=\sqrt{\frac{2}{a}} \sin \left(\frac{\pi x}{a}\right)$.


[^0]:    ${ }^{1}$ Remember that $\frac{d}{d t}\langle\hat{Q}\rangle=\frac{i}{\hbar}\langle[\hat{H}, \hat{Q}]\rangle$ for an operator $\hat{Q}$.

[^1]:    ${ }^{2}$ Hint: The constraint implies that the wave function can be viewed as a function only of the polar coordinate $\phi$, since the location in $s$ is known with certainty. Use this, and the polar Laplacian:

    $$
    \begin{equation*}
    \nabla^{2} f(s, \phi)=\frac{1}{s} \frac{\partial}{\partial s}\left(s \frac{\partial f}{\partial s}\right)+\frac{1}{s^{2}} \frac{\partial^{2} f}{\partial \phi^{2}} \tag{5}
    \end{equation*}
    $$

    to determine the allowed energies - you must require that $\psi(\phi+2 \pi)=\psi(\phi)$.

