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We will review some general properties of stationary states in quantum
mechanics using the infinite square well solution as our vehicle. In particular,
we will discuss the role of the special solutions to Schrödinger’s equation:
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These have, as solutions, the following interesting properties:

1. They have densities that are time-independent, Ψ∗n Ψn = ρ(x) a func-
tion of x only (stationary).

2. They have definite energy. The Hamiltonian, H(x, p) = p2

2m + V (x)
is, numerically, the total energy of a particle of mass m in a potential
V (x). We can compute the quantum mechanical expectation value by
considering:
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Ψn(x, t) = En Ψn(x, t)

(7.2)
where En = n2 π2 ~2

2ma2 is the quantum mechanical energy of a particle
in state Ψn(x, t). This result follows as a direct consequence of the
time-independent Schrödinger equation. Then the expectation value
of H, what we would call the average energy, is:
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(7.3)
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and we can compute the expectation value of H2 in a similar manner:
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(7.4)

so that σ2 = 〈H2〉 − 〈H〉2 = 0, i.e. there is no spread in the energy
measurement.

Using these “basis” functions, we can add solutions with arbitrary coeffi-
cients, so that a general solution to Schrödinger’s equation for the infinite
square well can be written as:

Ψ(x, t) =
∞∑
n=1

Aj Ψn(x, t). (7.5)

The coefficients {Aj}∞j=1 are set by the provided initial function Ψ0(x) by
demanding that:

Ψ(x, 0) =
∞∑
n=1

Aj
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= Ψ0(x). (7.6)

The normalization requirement becomes:

∞∑
j=1

A∗j Aj = 1. (7.7)

This result is meant to remind you of the ball-dropping experiment we did
to introduce probabilities P (j) – in (7.7), the expression A∗j Aj is playing
the role of P (j). The coefficient Aj itself can be interpreted as “the amount
of Ψj(x, t) in Ψ(x, t).”
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If we think of the average energy of our general Ψ(x, t), then we could write:
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∞∑
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(7.8)

using the orthonormality of Ψn(x, t). The last line should remind you of the
averages we took, again for the ball-dropping experiment, that were of the
form:

〈f(j)〉 =
∞∑
j=1

f(j)P (j). (7.9)

Evidently, the average energy for a general state of the infinite square well
can be interpreted as the average measurement of the energy where the
only available experimental outcomes are the discrete set {En}∞n=1. To this
observation, we add the measurement “assumption”: If you measure the
energy of a particle that has Ψ(x, t), you will obtain the value En with
probability A∗nAn and immediately after this measurement, the particle will
be in the state Ψn(x, t). That is, somehow, you have a general state Ψ(x, t),
and after measurement, you know the state is Ψn(x, t). Furthermore, as
mentioned above, once the particle is in the state Ψn(x, t), it stays there.

While we will develop and discuss these ideas specifically for the infinite
square well, you should think about just how general they might be . . .
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Homework

Reading: Griffiths, pp. 30–40.

Problem 7.1

Griffiths 2.3. No solutions for negative energy in the infinite square well.

Problem 7.2

Griffiths 2.5. Time dependence comes from mixing stationary states.

Problem 7.3

Griffiths 2.39. The “revival” time for the infinite square well.
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