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We know that the Schrödinger equation logically “replaces” Newton’s second
law (if we insist on a strict classical to quantum correspondence), in the
sense that it is an equation that governs massive particle time-evolution for
quantum mechanics. It suffers, as does Newton’s law, from bad behavior
in the (special) relativistic limit. It is possible to generate the classical
(meaning non-quantum here) kinematics appropriate to special relativity,
but the theory is incomplete without the promise of relativistically correct
potentials. The same is true on the quantum side – we will now look at
how to make a wave equation that is relativistically viable, but without a
quantum theory of fields, we lack a complete description.

36.1 Candidates

What do we require, at bare minimum, of a quantum mechanical “theory”?
Well, if we imagine that the target is a field Ψ(r, t) that contains all of the
information associated with a system, given some initial starting point (af-
ter a measurement, say), then we know that the equations governing Ψ(r, t)
must be at most first order in time. If, in addition, we want the wavefunc-
tion to have a probabilistic interpretation, with Ψ∗(r, t) Ψ(r, t) a probability
density, then the spatial derivatives must form a Hermitian operator.

As an example, and to see how these constraints work, take a generic “free
particle” equation:

∂Ψ
∂t

= α
∂2Ψ
∂x2

(36.1)

in one dimension. We have no additional information regarding potentials
or additional physical inputs, so we know the solution by separation of vari-
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ables:
Ψ(x, t) =

(
Aeκx +B e−κx

)
eακ

2 t. (36.2)

Suppose we take α and κ to be real, then if α > 0, this solution grows
as time goes on. If α < 0, the solution decays, and the wave function
dies, the particle ceases to be anywhere. Neither of these configurations is
particularly useful, as far as probabilities go, so we make α ∈ C, and purely
imaginary. This is to say that whatever the wave equation form, it should
have a Hermitian operator on its right-hand side, and a single derivative on
the left:

∂Ψ
∂t

= H Ψ (36.3)

with H Hermitian (in the above, this means α purely imaginary). What
we will end up additionally requiring is that (for reasons of relativity), H
have no higher than first derivatives in it (this makes sense, if we are treating
space and time as equivalent objects, and time only has one derivative, there
should be only single spatial derivatives).

36.2 Free Particle Relativistic Kinematics

The free particle action, as we have seen before, is

S = −mc2

∫ √
1− v2

c2
dt, (36.4)

with Lagrangian given by the integrand, and Hamiltonian (energy) then
given by

H =
mc2√
1− v2

c2

p =
mv√
1− v2

c2

(36.5)

and this can be conveniently written in terms of p alone

H =
√
p2 c2 +m2 c4. (36.6)

Suppose we just made the replacement, p → −i ~∇ – then we have an
operator:

H = c
√
−~∇2 +m2 c2, (36.7)

which is sub-optimal, unless you have particularly good ideas about taking
the square root of a differential operator. It can be done, but the extension
to electricity and magnetism introduces additional issues.

2 of 7



36.2. FREE PARTICLE RELATIVISTIC KINEMATICS Lecture 36

Suppose, to avoid these issues, we agree to deal with the square of the above
(setting ~ = c = 1 for ease of use, now)

H2 = −∇2 +m2, (36.8)

and, based on the Schrödinger inspired identification, H Ψ = i ~ ∂Ψ
∂t = EΨ,

we start with a free-particle equation, for relativistic quantum mechanics,
that looks like:

−∂
2Ψ(r, t)
∂t2

+∇2 Ψ(r, t)−m2 Ψ(r, t) = 0. (36.9)

This treats time and space in an equivalent manner, but does not satisfy
our constraint that the wavefunction alone carries all information about the
system – we also need its time-derivative (the above Klein-Gordon equation
is second order in time).

36.2.1 Aside: Manifest Relativistic Covariance of K-G

We can see from its form that the Klein-Gordon equation (36.9) is a
Lorentz scalar. Introduce the Minkowski metric in Cartesian coordi-
nates:

gµν=̇


−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 , (36.10)

and the covariant form of the gradient operator in D = 3 + 1:

∂µ=̇


∂0

∂x
∂y
∂z

 . (36.11)

Then the scalar Laplacian is ∂µ gµν ∂ν = − ∂2

∂t2
+∇2 ≡ �2, so the Klein-

Gordon equation can be written explicitly as a scalar:

�2 Ψ(r, t)−m2 Ψ(r, t) = 0 (36.12)

and is therefore valid in all frames related by Lorentz transformations.
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36.2.2 Splitting the Klein-Gordon Equation

We can make the above into a pair of first-order equations in time by in-
troducing an auxiliary field ∂Ψ

∂t , and then supposing that the wavefunction
has multiple components. We do this symmetrically by making two complex
fields:

Λ = Ψ +
i

m

∂Ψ
∂t

Φ = Ψ− i

m

∂Ψ
∂t

(36.13)

or
Ψ =

1
2

(Λ + Φ)
∂Ψ
∂t

= −1
2
im (Λ− Φ) (36.14)

so that the Klein-Gordon equation reads:

0 =
1
2
im Λ̇ +

1
2
∇2 Λ− 1

2
m2 Λ

0 = −1
2
im Φ̇ +

1
2
∇2 Φ− 1

2
m2 Φ,

(36.15)

it may not look like much, but the lesson is clear: When we impose relativis-
tic restrictions, in order to recover a theory with a clearly defined wavefunc-
tion, we may require (i.e. require) multiple components in the wavefunction
itself.

36.3 The Free Dirac Equation

We now go the other way around – we will construct the Dirac equation
by starting from the assumption that it is first-order in time, and has a
Hermitian operator setting its spatial dependence. We will allow for the
possibility that the wavefunction contains multiple components. In fact, we
know it must since we are dealing, in the end, with an electron, and this
requires spin information (an attached “internal” vector representing up and
down).

So start with Ψ having d components, and satisfying:

i
∂Ψ
∂t

= H Ψ. (36.16)

Since H must be first order in the spatial derivatives, we have the following
generic option:

H = a · p + αm. (36.17)
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This expression has at most first derivatives (through p ∼ ∇), and we allow
the vector a and the scalar α to be Hermitian operators that act on the spin
of the electron (our Pauli spin matrices, for example).

In order to constrain p and α, we require that the above “reduce” to the
Klein-Gordon equation – that is, it must represent (spin aside) the correct
relativistic energy-momentum relationship. Writing the Hamiltonian equa-
tion suggestively as (using the Einstein summation convention for the dot
products):

(E − ai pi − αm) Ψ = 0 (36.18)

if we multiply on the left by (E + aj pj + αm)1 , then (omitting Ψ)

E2 − aj pj ai pi −m (aj pj α+ αai pi)− α2m2 = 0. (36.20)

We have been careful about the ordering since these are meant to be oper-
ators (in the end). The set (α,a) and p do not talk to each other since the
former act on the spin space, so we are free to re-order these as we like:

E2 − aj ai pj pi −m (aj α+ αaj) pj − α2m2 = 0. (36.21)

Finally, to compare with the Hamiltonian E2 = p2 +m2, we need to factor
out the overall p2 contribution. This can be done via

E2−(aj aj)(pk pk)−α2m2−
∑
k<`

(ak a` + a` ak) pk p`−m (aj α+ αaj) pj = 0.

(36.22)
The first three terms represent the correct relativistic expression, provided
aj aj = I and α2 = I. In order to get rid of the remaining terms, we must
have

ak a` + a` ak = 0 k 6= `

aj α+ αaj = 0.
(36.23)

If we can do that, then we will have a relativistic theory.
1Think of the factorization:

∂2

∂t2
− ∂2

∂x2
=

„
∂

∂t
+

∂

∂x

« „
∂

∂t
− ∂

∂x

«
(36.19)

which we would write as −(E + p) (E − p).
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36.4 Adding E&M

Let’s go back to the relativistic form of the Lagrangian and attempt to
couple E&M – in our current units:

L = −m
√

1− v2 (36.24)

we know this is a Lorentz scalar, by construction, so the question is – what
scalar quantity can we add that will encorporate E&M?

There are two natural four-vectors that we can combine – one is vµ, the
four-velocity, and in addition, we have the four-potential from E&M:

Aµ=̇


φ
Ax
Ay
Az

 . (36.25)

Then the only thing we can make is q vµ gµν Aν . We haven’t specified a
parametrization for vµ = ẋµ. Thinking back to the relativistic action, what
we are proposing is the addition of a term:

q

∫
ẋµ(λ) gµν Aν dλ, (36.26)

but this term is itself re-parametrization invariant – take dxµ

dλ = dxµ

dt
dt
dλ ,

then (36.26) will read

q

∫
dxµ

dt
gµν A

ν dt (36.27)

and can be combined with the free-particle action (both are parametrized
using the coordinate t). The integrand that we should add to the Lagrangian
is now simple:

q
dxµ

dt
gµν A

ν = −q φ+ q v ·A (36.28)

This is just the usual term corresponding to the Lorentz force, no surprise,
since we know that the Lorentz force is already relativistically covariant.
Our final, electromagnetically coupled Lagrangian reads:

L = −m
√

1− v2 − q φ+ q v ·A. (36.29)

Now when we form the Hamiltonian, we have to take:

H =
∂L

∂v
· v − L (36.30)
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with
∂L

∂v
= p− qA. (36.31)

From classical mechanics, we know what will happen (even in this relativistic
setting) – we take p −→ p−qA and add q φ to the free particle Hamiltonian.
In our quantum mechanical Hamiltonian, we will have

E = a ·(p− qA) + αm+ q φ. (36.32)

Finally, the Dirac equation, with these replacements, reads (now taking
q → −q to account for the negative charge of the electron):

[(E + q φ)− a ·(p + qA)− αm] Ψ = 0, (36.33)

or, inputting the usual p = −i∇, E = i ∂∂t , and tabulating the side-
constraints:

0 =
[(
i
∂

∂t
+ q φ

)
− a ·(−i∇+ qA)− αm

]
Ψ(r, t)

I = aj · aj = αα

0 = ak a` + a` ak k 6= `

0 = aj α+ αaj

(36.34)
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