
Physics 342 Lecture 34

Solids II

Lecture 34

Physics 342
Quantum Mechanics I

Friday, April 23rd, 2010

34.1 Lattice Potential

A refinement of the free electron gas introduces fixed nuclei – we imagine
that the electrons move around under the attractive influence of the atomic
nuclei fixed on some grid. To understand the basic physics of the model (orig-
inally introduced by Kronig-Penney), we can take a simple one-dimensional,
periodic train of delta spikes.

Consider a set of equally spaced delta spikes, separated by a distance `,
and given some scale α, so that each contributes Vδ = α δ(x − j `) to the
potential (j ∈ Z). We assume that the potential continues “forever” (i.e.
that there are a large number of nuclei), and that the wave-function must
be bounded in magnitude (not going to infinity at spatial infinity). The
potential is shown in Figure 34.1.
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Figure 34.1: An infinite string of Dirac spikes separated by equal distance
`.

The wave function can be thought of as a piecewise function – in between
each spike, we must satisfy − ~2

2m ψ′′(x) = E ψ(x), and we know the solution
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for the jth wave function (the one defined for j ` ≤ x ≤ (j + 1)x):

ψj = Aj cos(k x) +Bj sin(k x) k2 ≡ 2mE

~2
(34.1)

From the boundary conditions appropriate to the delta spike, we can relate
the solution ψj+1 to ψj :

ψj((j+1) `) = ψj+1((j+1) `) ψ′j+1((j+1) `)−ψ′j((j+1) `) =
2mα

~2
ψj((j+1) `).

(34.2)

If we think of a local xj = x− j ` that goes, in each “cell” from 0→ `, then
we can write the connection between any two cells as:

ψj(xj = `) = ψj+1(xj+1 = 0)

ψ′j+1(xj+1 = 0)− ψ′j(xj = `) =
2mα

~2
ψj+1(xj+1 = 0).

(34.3)

In terms of the coefficients, we have:

Aj+1 = Aj cos(k `) +Bj sin(k `)

k Bj+1 − k Bj cos(k `) + k Aj sin(k `) =
2mα

~2
Aj+1

(34.4)

and we can write this in terms of the transfer matrix:(
Aj+1

Bj+1

)
=
(

cos(k `) sin(k `)
2mα
~2 k

cos(k `)− sin(k `) 2mα
~2 k

sin(k `) + cos(k `)

)
︸ ︷︷ ︸

≡M

(
Aj
Bj

)
.

(34.5)

Now we can move directly to the solution ψj+1 by multiplication:(
Aj+1

Bj+1

)
= Mj

(
A0

B0

)
, (34.6)

and this multiplication is dominated by the behavior of the eigenvalues of
M – if the eigenvalues have magnitude > 1, it will diverge from some initial
set of coefficients, to infinity. So to get a well-behaved wave-function, we
must have both of the eigenvalues of M bounded in magnitude by 1.

The eigenvalues of this two-by-two matrix are easy to write out:

λ± = cos(k `)+
mα

~2 k
sin(k `)±

√
sin(k `)

(
2mα

~2 k
cos(k `) +

(
m2 α2

~4k2
− 1
)

sin(k `)
)
.

(34.7)
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Without worrying about the complex magnitude, suppose we set each of
these separately equal to a function of k, f±(k) – then we can solve for
f+(x) + f−(x) by substitution

f+(x) + f−(x) = 2 cos(k `) +
2mα

~2 k
sin(k `). (34.8)

Our requirement is that the functions f±(k) be, individually, less than or
equal to one in absolute value, so that the infinite matrix multiplication
converges (to ±1 or 0), and this gives us a constraint on the energy k =√

2mE
~2 – we have admissable solutions only when∣∣∣∣ cos(k `) +

mα

~2 k
sin(k `)

∣∣∣∣ ≤ 1. (34.9)

Defining the unitless constants mα`
~2 k
≡ β, and k ` = z, our requirement is∣∣∣∣ cos(z) +
β

z
sin(z)

∣∣∣∣ ≤ 1. (34.10)

Now for the physical point – looking at the solutions to this inequality for
various β (delta strengths), we see that there are “gaps” in the energy, where
there is no valid solution for k, and “bands” where k varies continuously. As
an example, take β = 2 – we show the value of the left-hand side of (34.10),
together with a function that is 1 when there are allowed solutions, 0 oth-
erwise in Figure 34.2.

While this is a simple one-dimensional picture, the idea carries over to two
and three dimensions. In our electron gas model, there was a continuum
of energies allowed, but when we introduce a periodic potential (due to
whatever mechanism), we find that there are “continuum” regions, where
electrons can gain energy (filling the band), and then gaps, where we need
to add some amount of energy to get an electron through to the next band.
Materials with significant gap structure are insulators, difficult to get elec-
trons moving (you have to input energy in a filled band to get the electron
to cross it) – materials where a band is relatively unfilled are conductors – it
takes very little energy to move an electron (since there is a local continuum
of energies for it to exist in).
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Figure 34.2: The left-hand side of (34.10) and a step function to show the
allowed regimes for β = 2, 8.

Homework

Reading: Griffiths, pp. 224–229.

Problem 34.1

Griffiths 5.20. Running the Dirac comb argument for delta wells.
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