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We can consider simple models of solids — these highlight some special tech-
niques.

33.1 An Electron in a Box

We begin our discussion of solids by considering a single electron confined
to a box — the three-dimensional infinite square well potential:
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This is just three copies of the one-dimensional problem, and we quote the
result — it is, as an aside, very similar to the cavity EM modes from elec-
trodynamics. All three directions are periodic (under a separation ansatz
Y(z,y,2) = X(x)Y(y) Z(z), and the boundary conditions at x = 0, y = 0,
z = 0 give us the following:

X(z) = Asin(kyz) Y(y) = Bsin(kyy) Z(z)=Csin(k.z). (33.2)

The requirement that the wavefunction vanish outside the box, together
with continuity at the boundary also imposes X (¢;) =Y (¢,) = Z(¢,) =0,
which, as usual, leads to quantization of the allowed modes:
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for independent integers (ng,ny,n.). Now, the total energy of the configu-
ration, from Schrodinger’s equation, is
h? h?
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So if we think of a vector k = k, X+ k, ¥ + k. Z, the energy is just £ = %
In this setting (as a Fourier transform type of object), the vector k is known

as a “wave-vector”.

The actual values for the wave-vector are restricted since they must satisfy
the boundary conditions from above. For a grid of points in the vector
space defined by the axes k;, k, and k., each integer vertex represents an
allowed single-electron state — but the vertices are equivalent to the cubes
of which they are one corner. This is easiest to see in two-dimensions as
in Figure 33.1.
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Figure 33.1: A two-dimensional lattice in k-space. We have integer spacings

in z: 7 and in y: 7. The arrow from each box points to its associated
T Yy

vertex, showing a one-to-one correspondence between vertices and boxes.

In three dimensions, we can also associate the cubical boxes (now) with a

single vertex. Hence the density of states is 1 per box of volume - % 7., or
73 3
k-volume per state = == — = — 33.5

in k-space, with V =0, 0, (..

33.1.1 Multiple Electrons

Now in a solid, there are typically a few electrons associated with each
atom that are “free to roam”, contributing a sea of electrons that could,
potentially, be bound up in our box. If we have N atoms, each contributing
q electrons, then we have a huge number of electrons that can be in our box.
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Electrons are fermions, so in any particular state, we can have (at most)
two electrons paired in either a singlet or triplet state — this is a manifesta-
tion of the Pauli exclusion principle, and comes, mathematically, from the
antisymmetrized wave function of fermions: For two electron wavefunctions
occupying the same spatial state, 11 = 11,1 and 92 = 11,11, we must
have an antisymmetric spin state (singlet) to make the total wavefunction
antisymmetric, as nature demands'. Our current goal is to calculate the
total energy associated with IV q electrons. Keep in mind that in k-space, a
radius corresponds to an energy, and all states at a particular radius have
the same energy.

Consider a sphere in k-space — we need only take the k;, ky, k. > 0 octant

of that sphere since our solutions are all for positive integer constants. For

a sphere of radius ky, the volume of our positive octant is V = % <% s k?)

The energy density of states is 7‘:—3 from above, and N g electrons represent
%N q total states (since there can be two electrons per state). The radius
of the sphere in k-space that allows all NV g electrons to exist, two per state
can be found from:

1/4 Nyq
] (3 Wk?) Pstates = —5 (33.6)

This serves to define the sphere of radius ks (and hence energy) taken up
by Ngq electrons, the so-called “Fermi surface” with radius:

312 Ngq 1/3

We are imagining a large number of atoms contributing at least one electron
(N is on the order of Avogadro’s number, for example), and then even
though the “boundary” at the Fermi surface is not truly spherical, we can
approximate it as spherical in order to calculate the total energy of the
configuration. A small shell dk at radius k& (one octant) has infinitesimal
volume:

1
dVi = gim k? dk, (33.8)
and the total number of electron states lying within this shell is
V mk?
ds = Pstates de = ﬁ T dk. (339)

You might ask whether it is possible to have, say, three electrons in the same spatial
state — then we just need a totally antisymmetric spin state for them to occupy — does
such a state exist?
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Each state has energy % and can hold two electrons, so the energy asso-
ciated with the infinitesimal volume dV}, is

_ PR VR

dE =
m 2m2m

dk. (33.10)

To find the total energy of the free electron gas, we integrate the energy in
each shell from £ =0 — kj:

B V k2 1 5_h27r4/3(3Nq)5/3
T 2mZm 5T 10m V2/3

(33.11)

This energy is calculated in k space, but the final result depends on the
volume of our (spherical) box — we can ask, for example, what the electron
gas pressure on the walls of the box is. For an ideal gas, dW = P dV, so we
can take the energy change associated with a volume change and find the
effective pressure

P=-"=ZFE/V. (33.12)

We have here a force (per unit area) not associated with any fundamen-
tal force of nature, there is nothing in this calculation but non-interacting
electrons confined to a box. Nevertheless, it is a real measurable effect.

Homework

Reading: Griffiths, pp. 214-224.

Problem 33.1

Griffiths 5.7. Three particle wave functions.

Problem 33.2

Griffiths 5.16. Calculation of “exclusion pressure” for copper.
Problem 33.3

Griffiths 5.34. Free electron gas in two dimensions.
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