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Our goal is to take eigenstates of the z-component and magnitude squared
of two separate particle spin operators: |s1m1〉 and |s2m2〉 with:

1Sz |s1m1〉 = ~m1|s1m1〉 1S2 |s1m1〉 = ~2 s1 (s1 + 1) |s1m1〉
2Sz |s2m2〉 = ~m2|s2m2〉 2S2 |s2m2〉 = ~2 s2 (s2 + 1) |s2m2〉,

(30.1)

and form linear combinations of the product (two-particle) states

|s1m1〉 |s2m2〉 (30.2)

that are eigenstates of Sz and S2, associated with the total spin

S = 1S + 2S. (30.3)

Call those eigenstates |sm〉, so

Sz |sm〉 = ~m |sm〉 S2 |sm〉 = ~2 s (s+ 1) |sm〉. (30.4)

We want the coefficients that give the decomposition of |sm〉 in terms of
|s1m1〉 |s2m2〉. For fixed s1 and s2 (typical), we want the coefficients below:

|sm〉 =
∑

mj+mk=m

Cs1 s2 s
m1 m2 m |s1m1〉 |s2m2〉. (30.5)

We know that s = s1 + s2 −→ |s1 − s2| in integer steps, and for each value
of s, −s ≤ m ≤ s. Then we automatically know one eigenstate:

|s1 + s2 s1 + s2〉 = |s1 s1〉 |s2 s2〉. (30.6)

Using the lowering operator S− ≡ 1S− + 2S−, we can act on both sides of
this equality to find the |s1 + s2 s1 + s2− 1〉 state, and continue all the way
down to |s1 + s2 −(s1 + s2)〉.
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But then we have to find the next series in s, i.e. s = s1 + s2 − 1. If we
knew the state |s1 + s2 − 1 s1 + s2 − 1〉, we could again apply the lowering
operator to find all the states with s = s1 + s2 − 1. To start the process
off, we use the fact that we know |s1 + s2 s1 + s2 − 1〉 is orthogonal to
|s1 + s2 − 1 s1 + s2 − 1〉, i.e.:

〈s1 + s2 s1 + s2 − 1|s1 + s2 − 1 s1 + s2 − 1〉 = 0, (30.7)

and we can use this for some initial combination, say

α |s1 s1 − 1〉 |s2 s2〉+ β|s1 s1〉 |s2 s2 − 1〉 (30.8)

to relate α and β, with normalization providing a second equation to fix the
value of the pair α, β.

As a final note, the orthogonality of the two-particle states is expressed via:

〈s1m1| 〈s2m2|
(|s1m′1〉 |s2m′2〉) = 〈s1m1|s1m′1〉 〈s2m2|s2m′2〉 = δm1 m′

1
δm2 m′

2

(30.9)
(given two different m1, m′1 and m2, m′2) so that bras for particle one interact
only with kets for particle one, and the same for particle 2 (i.e. again, the
operators and states for particles one and two do not talk to each other).

Finally, referring back to (30.5), we can look up the coefficients associated
with the decomposition, these are the Clebsch-Gordon coefficients. An ex-
ample of a table of relevant values for s1 = 1

2 , s2 = 1
2 is shown in Figure 30.1.
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Figure 30.1: The Clebsch-Gordon coefficients for s1 = s2 = 1
2 – on top,

the table copied from Table 4.8 (Griffiths), and below, the explicit meaning
of each entry. Note that the values in the numerical table are really the
coefficients Cs1 s2 s

m1 m2 m squared (with minus signs indicating subtraction).
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Homework

Reading: Griffiths, pp. 185–200.

Problem 30.1

Form the eigenstates of J2 for J = L + S with ` = 1, s = 1
2 (think of an

electron in some ` = 1 state of Hydrogen, while ignoring the proton spin) –
you will get four states of angular momentum 3

2 and two states of angular
momentum 1

2 (that’s j = 1+ 1
2 and j = 1− 1

2). Use the ladder approach to
explicitly construct all states by finding the “top” state and working down
to the bottom. Check your decompositions using the Clebsch-Gordon table
(Table 4.8 on p. 188).

Problem 30.2

Griffiths 4.35. Practice with total spin states.
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