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We finish up the linear algebra section by making some observations about
transformations (matrices) and decompositions (diagonalization) that are
particularly useful in their generalized form. Quantum mechanics can be
described by a few flavors of linear algebra: Infinite dimensional function
spaces (both discrete and continuous) make up one vector space of interest,
finite dimensional ones are another. To the extent that we are interested
in quantum mechanics, then, we are interested in vector spaces, and the
notation and ideas are common to all applications (trickier are issues of
interpretation and existence).

In the end, the first object of study, the wave function in position space,
can be represented by a vector in Hilbert space (the vector space of square
integrable functions). Operations like “measuring the energy of the system”
take the form of Hermitian “matrices” (differential operators). As we shall
see, this is a natural interpretation for such operators, since their spectra
are real, corresponding to allowable, measurable quantities.

3.1 Linear Transformations

We left off last time by defining the operator 1:

1 =
N∑

i=1

|ei〉 〈ei| (3.1)

where its name comes from the fact that 1 |α〉 = |α〉. Notice that this
operator takes a ket and returns a ket, but it can also take a bra and return
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a bra:

〈β| 1 = 〈β|

(
N∑

i=1

|ei〉 〈ei|

)
=

N∑
i=1

〈β||ei〉 〈ei| = 〈β| . (3.2)

This somewhat trivial operator is a linear operator – in general, a linear
operator T̂ (following Griffiths, we will put hats on operators to distinguish
them from complex numbers) takes kets to kets (bras to bras) and is linear:

T̂ (u |α〉+ v |β〉) = u T̂ |α〉+ v T̂ |β〉 (3.3)

for u, v ∈ C.

Then, to define a linear operator, it suffices to define its action on the basis
kets, since by linearity, for

|α〉 =
N∑

i=1

ai |ei〉 , (3.4)

we have:

T̂ |α〉 =
N∑

i=1

ai T̂ |ei〉 , (3.5)

so if we knew what T̂ |ei〉 was, for all i, we could describe the effect of T̂ on
an arbitrary ket.

In order to represent T̂ in a basis, we use two applications of the 1 operator:

1 T̂ 1 =

(
N∑

i=1

|ei〉 〈ei|

)
T̂

 N∑
j=1

|ej〉 〈ej |


=

N∑
i=1

N∑
j=1

〈ei| T̂ |ej〉 |ei〉 〈ej | ,

(3.6)

then we see that the ket |β〉 = T̂ |α〉 can be written in component form:

|β〉 = 1 T̂ 1 |α〉 =
N∑

i=1

N∑
j=1

〈ei| T̂ |ej〉︸ ︷︷ ︸
≡Tij

|ei〉 〈ej ||α〉︸ ︷︷ ︸
=aj

=
N∑

i=1

 N∑
j=1

Tij aj

 |ei〉 ,
(3.7)
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so we identify the components of |β〉 =
∑N

i=1 bi |ei〉 as the sum over j above
– in column vector representation:

b1
b2
b3
...

 =


∑N

j=1 T1j aj∑N
j=1 T2j aj∑N
j=1 T3j aj

...

 , (3.8)

and this is precisely the relation we would have if we viewed T̂ as a matrix
with entries Tij = 〈ei| T̂ |ej〉 and |a〉 as a column vector:

b1
b2
b3
...

 =


T11 T12 T13 . . .
T21 T22 T23 . . .
T31 T32 T33 . . .

...
...

...
. . .




a1

a2

a3
...

 . (3.9)

So there is an obvious connection between an “abstract linear transforma-
tion” and a matrix, at least in the finite dimensional case. The association
relies on a representation for the basis vectors, and our ability to write an
arbitrary vector in the space as a linear combination of the basis vectors (a
defining property of basis vectors).

3.2 Hermitian Linear Transformations

From the basis representation, a ket |α〉 is naturally associated with a bra
〈α| via the conjugate transpose – that makes the inner product work out in
its usual row-column vector form1 . We are suggesting that if |α〉 can be

1The conjugate transpose of a column vector is a row vector with conjugated compo-
nents – this is the finite-dimensional distinction between |α〉 and 〈α| – concretely, if we
have a column vector a with entries:

a=̇

0BBB@
a1

a2

...
aN

1CCCA , (3.10)

then
a† =

`
a∗1 a∗2 . . . a∗N

´
. (3.11)
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represented through its components as:

|α〉 =̇


a1

a2

a3
...

 (3.12)

then 〈α| should be a row vector with the complex conjugate of the compo-
nents as its entries:

〈α| =̇
(
a∗1 a∗2 a∗3 . . .

)
. (3.13)

Now the question is: For what linear transformation Ĥ is 〈α| Ĥ the complex
conjugate of Ĥ |α〉? Viewed as matrix-vector multiplication, Ĥ |α〉 would
have (Ĥ |α〉)† ∼ 〈α| Ĥ† 2 – then such a transformation has the property that
Ĥ = Ĥ†, and is called a Hermitian operator. This is all pretty straightfor-
ward when the operator is finite, where we can really take transposes and
conjugate matrices operationally, but it all holds (sort of) on the continuous,
infinite dimensional side as well.

Example

For matrices, the operation of taking the conjugate-transpose is easy to
perform. Consider all two dimensional complex matrices, with entries
specified by hij = uij + i vij for uij , vij ∈ IR

H=̇
(
u11 + i v11 u12 + i v12

u21 + i v21 u22 + i v22

)
(3.14)

then

H† ≡
(
HT
)∗

=
(
u11 − i v11 u21 − i v21

u12 − i v12 u22 − i v22

)
(3.15)

To make H Hermitian: H† = H, we need to set: v11 = v22 = 0, u12 = u21

and v21 = −v12. Then it is the case that any vector a (with components

2The notation Ĥ† means take the “conjugate transpose”, well-defined on the matrix
side.
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a1 and a2 complex) can be multiplied by H in the usual way:(
u11 u12 + i v12

u12 − i v12 u22

) (
a1

a2

)
=
(
a1 u11 + a2 (u12 + i v12)
a1 (u12 − i v12) + a2 u22

)
,

(3.16)
and has (Ha)† equal to

(Ha)† =̇
(
a∗1 u11 + a∗2 (u12 − i v12) a∗1 (u12 + i v12) + a∗2 u22

)
, (3.17)

which is the same as:

a†H =
(
a∗1 u11 + a∗2 (u12 − i v12) a∗1 (u12 + i v12) + a∗2 u22

)
. (3.18)

This is all very much the analogue of symmetric matrices for real vector
spaces like IRN . There, the question is: Under what restrictions on O
is aT O = (Oa)T for a ∈ IRN? This gives O = OT . We are interested
in the matrices H and O because of their eigenvector decomposition
properties.

3.2.1 Eigenvalues and Eigenvectors

Hermitian operators are of primary interest to us, and part of the reason is
their decomposition. Recall from linear algebra the definition of eigenvectors
and eigenvalues: For a generic matrix A, we call λ (complex) and v an
eigenvalue, and associated eigenvector if

Av = λv, (3.19)

i.e. v is a special vector, specific to the matrix A which, when acted on by
A gets scaled by a constant, but does not change direction. If we take the
set of all eigenvectors (there will be N of them for A ∈ CN×N ), and make
them the columns of a matrix V:

V=̇
[

v1 | v2 | . . . | vN

]
, (3.20)

then we can write the defining equation for eigenvectors and eigenvalues as:

A V = V S (3.21)
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and S is a diagonal matrix with the eigenvalues of A as its diagonal elements.
If V is invertible, then, we can write

V−1 A V = S (3.22)

the diagonal form of A. There are various special forms that allow the above
to be simplified – for example, when V−1 = VT , we call V an “orthogonal”
matrix, and these are associated with symmetric, real A (i.e. A = AT with
real entries). For a complex matrix, if the conjugate-transpose is equal to
the inverse: V−1 =

(
VT
)∗ ≡ V†, then the matrix is said to be “unitary”, and

these come from the decomposition of Hermitian A.

Hermitian operators A† = A have two important properties that are the
motivation for their role in quantum theory:

• The eigenvalues of A = A† are real: For an eigenvector v with Av =
λv, we can take the Hermitian conjugate (and use A = A†) to write:

v†A = λ∗ v†, (3.23)

and if we multiply this on the right by v, we get

v†Av = λ∗ v† v. (3.24)

On the other hand, if we multiply Av = λv on the left by v†, then:

v†Av = λv† v, (3.25)

and the right hand sides of (3.24) and (3.25) can only be equal (as
they must) if λ = λ∗.

• The eigenvectors of A = A† are orthogonal. We’ll show that eigen-
vectors associated with different eigenvalues are orthogonal – take
Av = λv and Aw = σw with σ 6= λ, and both σ and λ real by
the above.

Then we can take the defining equation for v: Av = λv, and multiply
on the left by w†:

w†Av = λw† v. (3.26)

For the conjugate-transpose of the defining equation for w: w†A =
σw† (using A = A† and σ real), we can multiply on the right by v to
obtain:

w†Av = σw† v, (3.27)
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and comparing (3.26) and (3.27), we end up with

(λ− σ) w† v = 0 (3.28)

which can only be true if w† v = 0 since λ 6= σ by assumption.

Hermitian Operators Eigenvalues in Bra-Ket Notation

We reproduce the two arguments above using operators and bras and
kets, just as another example of the bra-ket notation.

• The eigenvalues are all real: Take an eigenket |α〉 6= 0 with eigen-
value α, then

Â |α〉 = α |α〉 〈α| Â = 〈α|α∗ (3.29)

but, we can hit the ket on the left in the above with 〈α|, and the
bra on the right with |α〉, and these must be equal:

〈α| α |α〉 = 〈α| α∗ |α〉 −→ 〈α||α〉 (α) = 〈α||α〉 α∗, (3.30)

and 〈α||α〉 6= 0 by assumption, so α = α∗ and α ∈ IR.

• Eigenkets associated with different eigenvalues are orthogonal –
take Â |α〉 = α |α〉 and 〈β| Â = 〈β| β∗ = 〈β| β (since the eigen-
values of Â are real), then as before, we can hit the |α〉 equation
with 〈β| and the 〈β| equation with |α〉:

〈β| Â |α〉 = 〈β| β |α〉 = 〈β| α |α〉 (3.31)

so, using the right-most equality, we have

(β − α) 〈β||α〉 = 0, (3.32)

and if β 6= α, then 〈β||α〉 = 0, the vectors are orthogonal.

As it turns out, even if eigenvalues are equal, we can construct orthogonal
vectors – the eigenvectors span a subspace (eigenvectors of A with the same

7 of 10



3.3. COMMUTATORS Lecture 3

eigenvalue) – any linear combination of these vectors remains in the space
(i.e. is also an eigenvector of A with the same eigenvalue) – and we can
choose a set of spanning vectors that are orthonormal.

All of this is to say that the eigenvectors of a Hermitian matrix (or more
generally, a Hermitian operator) span the original space – they form a lin-
early independent set (which can be normalized as well), and, if we form a
matrix U with the eigenvectors as its columns, then U†U = I. Hermitian
matrices are diagonlized by unitary matrices. In matrix form, if H† = H,
then:

H U = U S −→ U†H U = S. (3.33)

This should be familiar – it is the complex version of the statement: Real,
symmetric matrices are diagonalized by orthogonal matrices. We are relying
heavily on the finite matrix form, but we will consider operator versions of
these ideas.

3.3 Commutators

We define the operation [ , ], the commutator of two matrices A and B as:

[A,B] ≡ A B− B A, (3.34)

The commutator of two operators (in the more general setting of linear
operators not easily representable as matrices) tells us a lot – for example,
take Hermitian A and B, and suppose these can be diagonalized by the same
unitary matrix U:

U†A U = P U† B U = Q, (3.35)

then, noting that for diagonal matrices P and Q, [P,Q] = 0, we have

0 = P Q−Q P = U†A U U† B U−U† B U U†A U = U† (A B− B A) U. (3.36)

Since U† is invertible, it has no null space, and we must have [A,B] = 0.
The other direction works as well, so that if two Hermitian operators have
vanishing commutator, they can be simultaneously diagonalized by U.
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Homework

Reading: Griffiths, pp. 441–446, 449–456.

Problem 3.1

In this problem, we will generate the units for the Schrödinger equation.
Use the notation |f | to denote the “units of f”, and use M , T , E, and L
to refer to “mass”, “time”, “energy” and “length”. So, for example, if we
have x(t) = v t (describing an object moving with a constant speed), we
would write: |t| = T , |v| = L/T and |x| = |v| |t| = (L/T )T = L.

a. Given a function f(x, t), with units defined by |f | = F , what are the
units of:

∂2 f(x, t)
∂x2

and
∂ f(x, t)
∂t

(3.37)

b. Using the above result, find the units of ~ in Schrödinger’s equation
in one spatial dimension:

− ~2

2m
∂2Ψ(x, t)
∂x2

+ U(x) Ψ(x, t) = i ~
∂Ψ(x, t)
∂t

(3.38)

given |m| = M , and |U(x)| = E.

Problem 3.2

Use a multiplicative separation ansatz Ψ(x, t) = ψ(x)φ(t) and separate
Schrödinger’s equation (in one spatial dimension with U(x) a function only
of x, as in (3.38))– write all the x-dependence on the left-hand side, all the
t-dependence on the right.

a. Set both sides equal to a separation constant, call it E – what are
the units of this constant?

b. Solve for φ(t) in terms of E and write down the ODE that governs
ψ(x).
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Problem 3.3

We know that for a finite-dimensional, real vector space (like IR3), if we have
a symmetric matrix A (AT = A), with eigenvectors vi and eigenvalues λi,
then for λi 6= λj , we must have vi · vj = 0. This problem is meant to
indicate that even when λi = λj , we can choose vi · vj = 0.

a. Suppose we have only two eigenvectors that share a common eigen-
value:

Av1 = λv1 Av2 = λv2 (3.39)

but that all the rest of the eigenvectors of A have: vi · vj = δij , and
v1 · vi = v2 · vi = 0 for all i (that is: All other eigenvalues are distinct and
not equal to λ). Show that the generic linear combination: p ≡ αv1 +β v2

(with α, β real) is also an eigenvector of A with eigenvalue λ. Assume that
both eigenvectors, v1 and v2 are normalized

b. From above, then, we know that v1 and p are two eigenvectors of
A with eigenvalue λ for any α, β. Suppose v1 · v2 = γ 6= 0 so that v1

and v2 are not orthogonal. Our goal is to replace v2 with a vector that is
orthogonal to v1: Find a combination of α and β so that

v1 · p = 0, (3.40)

and p·p = 1 (the vector is normalized). We now have a complete orthogonal
set of eigenvectors.
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