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We know how to obtain the energy of Hydrogen using the Hamiltonian op-
erator – but given a particular En, there is degeneracy – many ψn`m(r, θ, φ)
have the same energy. What we would like is a set of operators that allow us
to determine ` and m. The angular momentum operator L̂, and in partic-
ular the combination L2 and Lz provide precisely the additional Hermitian
observables we need.

26.1 Classical Description

Going back to our Hamiltonian for a central potential, we have

H =
p · p
2m

+ U(r). (26.1)

It is clear from the dependence of U on the radial distance only, that angular
momentum should be conserved in this setting. Remember the definition:

L = r× p, (26.2)

and we can write this in indexed notation which is slightly easier to work
with using the Levi-Civita symbol, defined as (in three dimensions)

εijk =


1 for (ijk) an even permutation of (123).
−1 for an odd permutation
0 otherwise

(26.3)

Then we can write

Li =
3∑
j=1

3∑
k=1

εijk rj pk = εijk rj pk (26.4)
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26.2. QUANTUM COMMUTATORS Lecture 26

where the sum over j and k is implied in the second equality (this is Einstein
summation notation). There are three numbers here, Li for i = 1, 2, 3,
we associate with Lx, Ly, and Lz, the individual components of angular
momentum about the three spatial axes.

To see that this is a conserved vector of quantities, we calculate the classical
Poisson bracket:

[H,Li] =
∂H

∂rj

∂Li
∂pj
− ∂H

∂pj

∂Li
∂rj

=
dU

dr

∂r

∂rj
εikj rk −

pj
2m

εijk pk (26.5)

and pj pk εijk = 01. Noting that ∂r
∂rj

= rj
r , we have the first term in the

bracket above proportional to εijk rj rk, and this is zero as well. So we learn
that along the dynamical trajectory, dLi

dt = 0.

The vanishing of the classical Poisson bracket suggests that we take a look
at the quantum commutator of the operator form L̂ and the Hamiltonian
operator Ĥ. If these commute, then we know that the eigenvectors of L̂ can
be shared by Ĥ.

26.2 Quantum Commutators

Consider the quantum operator:

L̂ = r×
(

~
i
∇
)

(26.7)

which, again, we can write in indexed form:

L̂i = εijk rj
~
i
∂k. (26.8)

We have seen that the replacement [ , ]PB −→ [ , ]
i ~ leads from the Poisson

bracket to the commutator, and so it is reasonable to ask how L̂i commutes
with Ĥ – we expect, from the classical consideration, that [Ĥ, L̂i] = 0 for
i = 1, 2, 3. To see that this is indeed the case, let’s use a test function f(rn)
(shorthand for f(x, y, z)), and consider the commutator directly:

[Ĥ, L̂i] f(rn) = Ĥ L̂i f(rn)− L̂i Ĥ f(rn). (26.9)
1the object pj pk is unchanged under j ↔ k, while εijk flips sign

εijk pj pk = εijk pk pj = εikj pk pj = −εijk pk pj = −εijk pj pk, (26.6)

and then we must have εijk pj pk = 0 since it is equal to its own negative.
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The first term, written out, is

i

~
Ĥ L̂i f(rn) =

(
− ~2

2m
∂q ∂q + U(r)

)
(εijk rj ∂k f(rn))

= − ~2

2m
∂q (εijk δjq ∂k f(rn) + εijk rj ∂q ∂k f(rn)) + U(r) (εijk rj ∂k f(rn))

= − ~2

2m
(εiqk ∂q ∂k f(rn) + εijk δjq ∂q ∂k (f(rn)) + εijk rj ∂q ∂q ∂k f(rn))

+ U(r) (εijk rj ∂k f(rn))
(26.10)

and note that the first two terms involving second derivatives are automat-
ically zero. Then, in vector notation, we can write:

Ĥ L̂ f(rn) =
~
i

[
− ~2

2m
r×∇ (∇2 f) + U(r) r×∇ f

]
. (26.11)

Now consider the other direction,

i

~
L̂i Ĥ f(rn) = εijk rj ∂k

(
− ~2

2m
∂q ∂q f(rn) + U(r) f(rn)

)
= − ~2

2m
εijk rj ∂k ∂q ∂q f(rn) + εijk rj

(
∂U

∂r

∂r

∂rk
f(rn) + U(r) ∂k f(rn)

)
(26.12)

where, once again, ∂r
∂rk
∼ rk so the term involving the derivative of U will

vanish, leaving us with

L̂ Ĥ f(rn) =
~
i

[
− ~2

2m
r×∇ (∇2 f) + U(r) r×∇ f

]
. (26.13)

So it is, indeed, the case that [Ĥ, L̂i] = 0.

26.2.1 L̂i Commutators

Before exploring the implications of the shared eigenfunctions of Ĥ and L̂i,
let’s calculate the commutators of the components of L̂i with themselves.
Consider, for example

− 1
~2
L̂i L̂j f(rn) = εipq rp ∂q (εjuv ru ∂v f(rn))

= εipq rp εjqv ∂v f(rn) + εipq rp εjuv ru ∂q ∂v f(rn)
(26.14)
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and the other direction, obtained by interchanging i↔ j:

− 1
~2
L̂j L̂i f(rn) = εjpq rp εiqv ∂v f(rn) + εjpq rp εiuv ru ∂q ∂v f(rn), (26.15)

then the commutator is

− 1
~2

[L̂i, L̂j ] f(rn) = εipq rp εjqv ∂v f(rn)− εjpq rp εiqv ∂v f(rn). (26.16)

Using the identity εqip εqjv = δij δpv − δiv δpj , we can rearrange

− 1
~2

[L̂i, L̂j ] f(rn) =(δiv δpj − δjv δpi)] rp ∂v f(rn)

= −(δip δjv − δiv δjp) ∂v f(rn)
= −ε`ij ε`pv rp ∂v f(rn)

= − i
~
ε`ij L̂`,

(26.17)

or, finally
[L̂i, L̂j ] = i ~ ε`ij L̂`. (26.18)

We learn that, for example, [L̂x, L̂y] = i ~Lz. This tells us that it is impos-
sible to find eigenfunctions of Lx that are simultaneously eigenfunctions of
Ly and/or Lz.

So returning to the issue of [Ĥ, L̂i] = 0, we can, evidently, choose any one of
the angular momentum operators, and have shared eigenfunctions of Ĥ and
L̂i, but we cannot also have these eigenfunctions for L̂j . That may seem
strange – after all, if a vector is an eigenvector of Ĥ and L̂x, and we can also
make an eigenvector that is shared between Ĥ and L̂z, then surely there is
an eigenvector shared by all three? The above says that this is not true, and
we shall see some explicit examples next time.

For now, let’s look for combinations of angular momentum operators that
simultaneously commute with Ĥ and L̂z, for example (we are preferentially
treating L̂z as the operator that shares its eigenstates with Ĥ, but this is
purely a matter of choice). The most obvious potential operator is L̂2:

[L̂2, L̂z] = [(L2
x + L2

y + L2
z), Lz] = Lx [Lx, Lz]− i ~Ly Lx + Ly [Ly, Lz] + i ~Lx Ly + 0

= Lx (−i ~Ly) + Ly (i ~Lx)− i ~Ly Lx + i ~Lx Ly
= 0

(26.19)
and the same is true for [L̂2, L̂x] and [L̂2, L̂y]. In addition, it is the case that
[L̂2, Ĥ] = 0, clearly, since the individual operators do.
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26.3 Raising and Lowering Operators

We can make a particular algebraic combination of L̂x and L̂y that plays a
role similar to the a± operators from the harmonic oscillator example. Take

L± ≡ Lx ± i Ly, (26.20)

then the commutator of these with Lz is

[L±, Lz] = [Lx, Lz]± i [Ly, Lz] = −i ~Ly ∓ ~Lx = ∓~ (Lx ± i Ly)
= ∓~L±.

(26.21)

For an eigenfunction of Lz, call it f such that Lz f = α f , the operator L+

acting on f is also an eigenfunction, but with eigenvalue:

Lz (L±f) = (L±Lz ± ~L±) f = (α± ~) (L± f) (26.22)

so acting on f with L± increases (or decreases) the eigenvalue by ~.

Similarly, if we take the function f to be simultaneously an eigenfunction of
L2 (which we know can be done), the L±f is still an eigenfunction, with2

L2 (L± f) = L± L
2 f = β L± f (26.23)

for eigenvalue β – in other words, L±f is an eigenfunction of L2 with the
same eigenvalue as f itself. The last observation we need is that there must
be a minimal and maximal state for the L± operators – since the state
L±f has the same L2 eigenvalue as f does, while its eigenvalue w.r.t. Lz is
going up or down, there will be a point at which the eigenvalue (result of
measurement) of Lz is greater than the total magnitude of the eigenvalue
w.r.t. L2 (the result of a measurement of total angular momentum) – so
we demand the existence of a “top” L+ft = 0 and, for the same reasons, a
“bottom” L−fb = 0

So what? So remember that for the harmonic oscillator, we wrote H in
terms of the products a±a∓, and that allowed us to build a lowest energy
state from which we could define |0〉 as a wavefunction. The same type of
game applies here, we will write L2 in terms of L± L∓:

L± L∓ = (L2
x ∓i Lx Ly ± i Ly Lx︸ ︷︷ ︸

=∓i [Lx,Ly ]

+L2
y) = L2

x + L2
y ± ~Lz (26.24)

2I’m going to do a commutator down here – too many in the main portion gets boring.
Since [L2, Li] = 0, we have [L2, Lx ± iLy] = 0.
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so that we can write
L2 = L± L∓ + L2

z ∓ ~Lz. (26.25)

Our first goal is to relate the spectrum of L2 to that of Lz – consider the
top state ft with eigenvalue Lz ft = ~ ` ft (the ~ is in there just to make
the eigenvalue under lowering a bit nicer), and L2 ft = α ft. Now from the
above factorization of L2 (26.25), we have

L2 ft = (L−L+ + L2
z + ~Lz) f = (0 + ~2 `2 + ~2 `) f = α f (26.26)

so the maximum eigenvalue for Lz is related to the eigenvalue α via α =
~2 ` (`+ 1). Similarly, if we take the minimum eigenvalue for Lz correspond-
ing to the state fb: Lz fb = ~ ¯̀fb, then we use the other factorization and
get α = ~ ` (`− 1), which tells us that ¯̀= −`.

So L+ takes us from fb with eigenvalue −` to ft with eigenvalue ` – it does
so in integer steps, since Lz (L+ fb) = ~ (`+ 1)L+ fb, so ` itself must either
be an integer, or, potentially, a half-integer.

We have described the eigenstates of L2 and Lz, then, in terms of two
numbers: ` = 0, 1

2 , 1,
3
2 , 2, . . . and m which, for each ` takes integer steps

from m = −` to m = `. The states can be labelled fm` , and, if we are lucky,
these will be the simultaneous eigenstates of H. . .

26.4 Eigenstates of L2

To find the eigenstates of L2, let’s first work out, carefully, the classical value
– then we will attempt to make scalar operators which will be easy to write
down in spherical coordinates:

L2 = (εijk rj pk) (εimn rm pn) = (δjm δkn − δjn δkm) rj pk rm pn
= rj pk rj pk − rj pk rk pj .

(26.27)

There are some obvious simplifications here, but remember that while it
is true, classically, that rj pk = rk pj , this is not true when we move to
operators, so let’s keep the ordering as above, and input pk −→ ~

i ∂k etc. We
will introduce the test function f to keep track:

L2 f = −~2 [(rj ∂k) (rj ∂k f)− (rj ∂k) (rk ∂j f)]

= −~2 [rj δjk ∂k f + rj rj ∂k ∂k f − (rj ∂k) (∂j (rk f)− δjk f)]

= −~2
[
r · ∇ f + r2∇2 f − (rj ∂j ∂k (rk f)− rk ∂k f)

]
= −~2

[
r · ∇ f + r2∇2 f − (r · ∇ (3 f + r · ∇ f)− r · ∇ f)

]
,

(26.28)
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and combining terms, the final scalar form can be written:

L2 f = −~2
[
r2∇2 f − r · ∇ f − (r · ∇) (r · ∇ f)

]
. (26.29)

Now, think of the operator r · ∇ f in spherical coordinates, that’s just r ∂f∂r
and we know the ∇2 operator, so in spherical coordinates, we can write the
above trivially:

L2 f = −~2

[
∂

∂r

(
r2
∂f

∂r

)
+

1
sin θ

∂

∂θ

(
sin θ

∂f

∂θ

)
+

1
sin2 θ

∂2f

∂φ2
− r ∂f

∂r
− r ∂

∂r

(
r
∂f

∂r

)]
= −~2

[
1

sin θ
∂

∂θ

(
sin θ

∂f

∂θ

)
+

1
sin2 θ

∂2f

∂φ2

]
.

(26.30)
But this is precisely the angular portion of the Laplacian itself – and we
know the solutions to this that have “separation constant” ` (` + 1), they
are precisely the spherical harmonics, conveniently indexed appropriately.
We have

L2 Y m
` = ~2 ` (`+ 1)Y m

` . (26.31)

26.5 Eigenstates of Lz

The fastest route to the operator expression for Lz comes from the observa-
tion that classically, if we had a constant angular momentum pointing along
the ẑ axis, then we have counter-clockwise rotation in the x − y plane. If
we use cylindrical coordinates (with x = s cosφ, y = s sinφ), then the only
“motion” is in the φ̂ direction. We might mimic this on the operator side
by considering a test function that depends on φ only. Then

Lz f(φ)=̇(rx py− ry px) f(φ) =
~
i

[
r cosφ

∂f

∂φ

∂φ

∂x
− r sinφ

∂f

∂φ

∂φ

∂y

]
(26.32)

and from φ = tan−1(y/x), we have ∂φ
∂x = − sinφ

r and ∂φ
∂y = cosφ

r , then

Lz f(φ) =
~
i

(
cos2 φ+ sin2 φ

) ∂f
∂φ

(26.33)

or, to be blunt,

Lz =
~
i

∂

∂φ
. (26.34)
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The eigenstates of Lz are defined by Lz f = ~mf for integer m (now m is
an integer aside from any periodicity concerns, it comes to us as an integer
from the algebraic approach). The solution is f = eimφ, and of course, this
is the φ-dependent portion of the spherical harmonics,

LzY
m
` =

~
i

∂

∂φ

(
Am` P

m
` (cos θ) eimφ

)
= m ~Y m

` (26.35)

where we have written the ugly normalization as Am` .

In the end, the Y m
` (θ, φ) are eigenstates of both the L2 and Lz operators. In

addition, to the extent that they form the angular part of the full Hamilto-
nian, ψn`m ∼ Rn(r)Y m

` (θ, φ) is an eigenstate of H: Hψn`m = En ψn`m, and
of course, the angular momentum operators do not see the radial function
at all (there being no radial derivatives in L2 or Lz), so

L2 ψn`m = ~2 `(`+ 1)ψ Lz ψn`m = ~mψn`m, (26.36)

and these separated wavefunctions (spherical infinite well, Hydrogen, etc.)
are eigenstates of all three H, L2 and Lz.

Homework

Reading: Griffiths, pp. 160–170.

Problem 26.1

Griffiths 4.19. Showing that L2 and Lz commute with H (for central
potentials, with V = V (r)).

Problem 26.2

Find the derivative of arctangent:

d

dx
tan−1(x) = ? , (26.37)

show your work, don’t just quote the result. Hint: Try using the chain rule
on: tan

(
tan−1(x)

)
= x.
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