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We begin our spherical solutions with the “simplest” possible case – zero
potential. Aside from being uncommon, this allows us to clearly see the
role of the various terms in the separation. From the solution regular at
the origin, we can develop the infinite barrier cases, in which we consider
the three-dimensional, spherically symmetric analogue of the infinite square
well from one dimension.

23.1 The Radial Equation

When we combine the potential, which depends only on r with the angular
“constant” (−` (`+1)), we obtain the ordinary differential equation for R(r):

1
R

d

dr

(
r2
dR

dr

)
− ` (`+ 1)− 2mr2

~2
(U(r)− E) = 0. (23.1)

If we define u(r) ≡ rR(r), then the above simplifies:

− ~2

2m
d2u

dr2
+
(
U(r) +

~2 ` (`+ 1)
2mr2

)
u = Eu. (23.2)

Compare the term in parenthesis to the classical orbital effective potential
we found last time:

Ueff = U(r) +
p2
φ

2mr2
, (23.3)

this is, in a sense “precisely” the same term we had there – if only we knew
how to associate p2

φ with the numerator of the above, we could have written
this down directly.
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23.2. NO POTENTIAL Lecture 23

23.2 No Potential

Suppose we have in mind no explicit potential, i.e. U(r) = 0. Then we can
solve the above for u – but what are the relevant boundary conditions? We
pretty clearly want the wavefunction to go to zero as r −→ 0. Near the
origin, we want the probability to be finite. Think of what this means for
the radial wavefunction – the probability will be proportional to R∗Rr2 dr,
and this is just u∗ u dr in our new notation, but then we want u −→ 0 (or,
potentially, a non-zero constant) as r → 0. The point is, R(r) ∼ 1/r is
allowed, but no higher power.

Now we can return to the ODE (23.2) – written in standard form, this is

d2u

dr2
=
(
` (`+ 1)
r2

− 2mE

~2

)
u, (23.4)

and we define k2 ≡ 2mE
~2 . Very “far” from the origin, where the constant

term dominates, we recover a sinusoidal solution, cos(k r) and sin(k r) – and
we suspect that the radial wavefunction is not normalizable – that comes
as no surprise, since the Cartesian solution with zero potential was also
not normalizable. Still, it is instructive to look at the solutions, if only in
preparation for finite range. The solutions to the above ODE are spherical
Bessel/Neumann functions (more explicitly, the R(r) solutions are spherical
Bessel functions, u(r) gets multiplied by r):

u`(r) = α r j`(k r) + β r n`(k r). (23.5)

These are related to the Bessel functions (and Bessel’s equation, of course),
and can be defined via:

jp(x) = (−x)p
(

1
x

d

dx

)p sinx
x

np = −(−x)p
(

1
x

d

dx

)p cosx
x

. (23.6)

We are interested in the asymptotic behavior here – both jp and np reduce
to cosine and sine as r → ∞ as they must, and this is the source of the
normalization issue. But near the origin, we have:

jp(x ∼ 0) =
2p p!

(2 p+ 1)!
xp np(x ∼ 0) = −(2 p)!

2p p!
x−(p+1), (23.7)

so the well-behaved solution near the origin is the jp one1.

1Compare with your electrodynamics experience – there, we cannot have a single solu-
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Consider, for example, the p = 0 form, j0(k r) = sin(k r)
k r , this is finite close

to k r ∼ 0, as is clear from its Taylor expansion, sin(k r)
k r ∼ k r+O((k r)2)

k r ∼
1 + O(k r). While not normalizable, we can plot the wavefunction (the
angular portions are unity) to get a sense for the eventual density. Working
back to R(r), we have:

R(r) =
1
r
u(r) = α j0(k r) (23.8)

and this is plotted (with α = 1) in Figure 23.1.
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Figure 23.1: The zeroth spherical Bessel function – this gives the radial
wavefunction for a free particle in spherical coordinates (for ` = 0).

Spherical Bessel Functions

We quoted the result above, the differential equation (23.4) has solu-
tions that look like u`(r) = α r j`(k r) (finite at the origin). But how
could we develop these if we didn’t know them already? Well, there’s
always Frobenius, that would be one way. We could also connect these
special functions to simpler ones, as we did for the associated Legendre
polynomials, for example. Here we consider yet another way to get the

tion to Laplace’s equation that is well-behaved at both the origin and infinite. Here, the
requirement is less stringent, we can allow some “explosive” behavior on either end, since
the wavefunction, unlike E and B, is not the “observable” or at least, experimentally com-
parable object. In quantum mechanics, it is R∗ R that is important, and the requirement
is that R∗ R r2 be integrable.
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solutions – we can use an integral transform (like the Fourier transform,
or Laplace transform) to simplify the ODE. What we will end up with
is an integral form for the spherical Bessel functions.

Our goal is to solve:

u′′ −
[
` (`+ 1)
r2

− k2

]
u = 0 (23.9)

with k2 ≡ 2mE
~2 as usual. We make the ansatz:

u(r) = rp
∫
er x f(x) dx (23.10)

where p, f(x) and the integration limits (x can be complex here) are to
be determined by our solution. This is similar to our usual Frobenius
ansatz, but with an integral rather than a sum. First we need the
derivatives:

u′(r) = p rp−1

∫
er xf(x) dx+ rp

∫
x er x f(x) dx

u′′(r) = p (p− 1) rp−2

∫
er x f(x) dx+ 2 p rp−1

∫
x er x f(x) dx

+ rp
∫
x2 er x f(x) dx.

(23.11)

Now if we input this into the ODE, we get:

0 = rp−2

∫ [
p (p− 1)− ` (`+ 1) + 2x r p+

(
x2 + k2

)
r2
]
er x f(x) dx.

(23.12)
The analogue of the Frobenius “indicial” equation is the r0 portion of
the above: p (p − 1) − ` (` + 1) = 0 – this has solutions: p = −` and
p = ` + 1. How should we choose between these? Think of the case
p = −` – then in front of the integral, we have r−`−2 which, for ` > 0
will lead to bad behavior at r = 0. If we take p = ` + 1 for ` > 0, we
will have a vanishing term in front of the integral. So take p = ` + 1.
We are left with

0 = r`
∫
f(x)

[
2 (`+ 1) x+ (x2 + k2) r

]
er x dx

= r`
∫
f(x)

[
2 (`+ 1) x+ (x2 + k2)

d

dx

]
er x dx.

(23.13)
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Notice the replacement in the second line, r → d
dx acting on er x. This

comes from the observation that d
dx e

r x = r er x.

We still don’t know what our limits of integration are, nor do we have
f(x). All we have done so far is choose a value for p. Keep in mind
that the choices we make: p, f(x), and the integration path itself, all
serve to limit our solution – we will not obtain the most general solution
to (23.9).

We can use the product rule to rewrite our integral again:

0 = r`
∫
f(x)

[
2 (`+ 1) x+ (x2 + k2)

d

dx

]
er x dx

= r`
{∫

f(x) (2 (`+ 1) x) er x dx+
∫

d

dx

[
f(x)

(
x2 + k2

)
er x
]
dx

−
∫
er x

d

dx

[
f(x) (x2 + k2)

]
dx

}
.

(23.14)
Again in the interests of specialization – we could make the above zero
by setting:

0 = 2 (`+ 1) x f(x)− d

dx

[
f(x) (x2 + k2)

]
0 =

∫
d

dx

[
f(x) (x2 + k2) er x

]
dx

(23.15)

there are other ways to get zero from the integral, but we are not cur-
rently interested in them. These two equations are enough to set the
function f(x) and at the same time, determine the integration region.

Taking the ODE first – from inspection, a good “guess” is f(x) = (x2 +
k2)q, then:

2 (`+ 1) x f(x) =
d

dx

[
f(x)

(
x2 + k2

)]
−→ q = `. (23.16)

This gives us

f(x) =
(
x2 + k2

)`
. (23.17)

With f(x) in hand, we need to choose integration limits for the sec-
ond equation in (23.15). Suppose we think of this as one-dimensional
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integration (for x ∈ C, we could have in mind a complicated contour
integral), then: (

x2 + k2
)
er x
∣∣∣∣xf

x=x0

= 0. (23.18)

If we set x0 = −i k, xf = i k, then each endpoint vanishes separately.
This suggests we take:

u(r) = r`+1

∫ i k

−i k
er x

(
x2 + k2

)`
dx. (23.19)

We can rewrite (23.19) by taking z = 1
i k x, then

u(r) = r
(
i k`
)

(k r)`
∫ 1

−1
ei (k r) z

(
1− z2

)`
dz. (23.20)

Now, the integral form of the spherical Bessel functions is:

j`(x) =
x`

2`+1 `!

∫ +1

−1
ei x z

(
1− z2

)`
dz, (23.21)

and noting that constants don’t matter (since we will normalize the
radial wavefunction at the end, anyway), we can write

u`(r) = Ar j`(k r) (23.22)

23.2.1 Spherical Barrier

We cannot extend the free particle range to infinity, but it is possible to
cut off the spherical Bessel solutions at a particular point – we imagine a
“perfectly confining” potential like the infinite square well, but w.r.t. the
radial coordinate. This imposes a boundary condition – if we take

U(r) =
{

0 r ≤ R
∞ r > R

(23.23)

then the free particle solutions described above have u(r = R) = 0, so as to
match with the perfect zero outside the infinite (spherical) “well”.
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With the cut-off in place, the solutions are normalizable, we just integrate
from r = [0, R], which is more manageable than an infinite domain. But,
we have to choose a value for k that makes j`(k R) = 0 – the zeroes of the
Bessel function are, like cosine and sine, finite in any given interval. The
spacing is not so clean as simple trigonometric functions. If this were sine or
cosine, we would just set k R = nπ or a half-integer multiple and be done.
With the spherical Bessel functions, it is possible to find zero-crossings (and
also to determine how many zero crossings are in an interval), but there is
no obvious formula.

For the ` = 0 case, we do, in fact, know the zero crossings, since j0(k r) =
sin(k r)
k r , and k R = nπ for integer n gives zero. Then, the usual story: Our

boundary condition has provided quantization of energy. Remember that
we get E out of this process. The quantized k = nπ

R =
√

2mE
~ gives

E =
~2 n2 π2

2mR2
(23.24)

for integer n. Now, this is relatively uninteresting as a three-dimensional
solution to Schrödinger’s equation: There is no angular component since we
solved with ` = 0, and Y00(θ, φ) = 1

2
√
π

is the only available term. We have
for ` = 0, an n-indexed set of wavefunctions (normalized):

ψ(r, θ, φ) =
sin(nπR r)
√

2π R r
. (23.25)

This “ground state” (state with lowest energy) is spherically symmetric, it
shares the symmetry of the potential itself (an idea to which we shall return).

In general, we can denote the nth zero crossing of the `th spherical Bessel
function as βn` The full spatial wavefunction reads:

ψn `m(r, θ, φ) = An ` j`

(
βn ` r

R

)
Y m
` (θ, φ). (23.26)

with normalization An `. The energy, then, is given by

k R = βn ` −→ En ` =
~2 β2

n `

2mR2
(23.27)

and we can use this in the full time-dependent solution:

Ψn `m(r, θ, φ, t) = ψn `m(r, θ, φ) e−i
En ` t

~ . (23.28)
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Each energy En ` is shared by the 2` + 1 values of m that come with the
angular solution.

In Figure 23.2, we see the probability density (unnormalized) for the ` = 0
and n = 1, 2, 3 states (top row) and the densities for ψ11−1, ψ110 and ψ111

(trivially related to ψ11−1). Notice that as with the one-dimensional square
well, the number of “nodes” in the r direction (top row) is directly related
to the energy of the state.
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Figure 23.2: Probability densities (ψ∗ ψ r2 sin θ in this case, given the flat
graphical representation) for ψ100, ψ200, ψ300 (top row) and ψ11−1, ψ110,
ψ111 (bottom row). The horizontal axis of each plot is the radial direction,
the vertical direction goes from 0 to π in θ.

23.3 Example of Similar Problem (PDE + BC)

Before we begin our onslaught – the Coulomb potential and Hydrogenic
wavefunctions – let’s review some of the other applications of our current
techniques, just to highlight the familiarity of the procedure of solving the
Schrödinger equation, even while its interpretation is new. First of all, we
recognize that solving the PDE requires some boundary conditions – in the
above infinite potential, we wanted regular solutions on the interior of the
sphere of radius R. This is similar to solving Laplace’s equation for the
electrostatic potential inside and outside a distribution. Consider a sphere,
if we are inside some spherically symmetric distribution of charge, and the
origin r = 0 is enclosed, then solutions must go like rp. If we are solving
for the potential outside the distribution, where spatial infinity is included,
we expect V ∼ r−p. All of this is in the name of boundary conditions. The
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same is true for quantum mechanical problems: Our domain of interest (or,
in some cases, the energy scale of interest) defines the types of solution we
accept physically.

Take a uniformly charged spherical shell with surface charge σ. We rotate
the shell with angular velocity ω = ω ẑ (about the ẑ axis). Our goal is to
find the magnetic field, outside the sphere, say. Well, for r ≥ R, we know
that the magnetic vector potential satisfies:

∇2 A = 0
(
dAout

dr
− dAin

dr

)∣∣∣∣
r=R

= −µ0 K. (23.29)

First, from the physical setup, we automatically know the surface current:
K = σ v = σ ωR sin θ φ̂. So we know pretty quickly that A ∼ sin θ φ̂. Now
sin θ is not one of your usual Legendre polynomial solutions to Laplace’s
equation, so there is something strange going on here. Suppose we take the
ansatz: A = A(r, θ) φ̂, then the vector Laplace equation reads:

0 = ∇2 A = (∇2A)φ̂+A∇2 φ̂. (23.30)

The absence of Legendre polynomials comes as no surprise – we are not
solving Laplace’s equation (remember that ∇2 φ̂ 6= 0, the spherical ba-
sis vectors are position dependent). One can easily (if tediously) calculate
∇2 φ̂ = − 1

r2 sin2 θ
φ̂, so the equation we are trying to solve looks like:

∇2A− A

r2 sin2 θ
= 0 (23.31)

and this looks more like the Schrödinger equation. If we use our usual
separation of variables, factoring A(r, θ) into A(r, θ) = Ar(r)Aθ(θ), then
the above becomes

d
dr

(
r2A′r

)
Ar

+
[

1
Aθ sin θ

d

dθ

(
sin θ

dAθ
dθ

)
− 1

sin2 θ

]
= 0. (23.32)

We can make our separation ansatz as before, with constant ` (`+ 1):

d
dr

(
r2A′r

)
Ar

= ` (`+ 1)[
1

Aθ sin θ
d

dθ

(
sin θ

dAθ
dθ

)
− 1

sin2 θ

]
= −` (`+ 1).

(23.33)

For the angular equation, we now need to solve:

sin θ
d

dθ

(
sin θ

dAθ
dθ

)
+ (` (`+ 1) sin2 θ − 1)Aθ = 0. (23.34)
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But that is very close to an equation we encountered in our development of
Y m
` , think of [4.25]:

sin θ
d

dθ

(
sin θ

dAθ
dθ

)
+ (` (`+ 1) sin2 θ −m2)Aθ = 0. (23.35)

This was solved by the associated Legendre function Pm` (cos θ) that makes
up the θ dependence of the spherical harmonics. Comparing (23.34) to (23.35),
we see that for our current purposes, we are interested in m = ±1 (it doesn’t
really matter which sign we choose, take m = 1). So the angular portion is
Aθ(θ) ∼ P 1

` (cos θ). We can go further, though – the boundary condition(
A′outr (R)Aoutθ −A′inr (R)Ainθ

)
= −µ0 σ ωR sin θ (23.36)

suggests that we want ` = 1 (the associated Legendre polynomials are order
` in sin θ and cos θ). In fact, if we look up P 1

1 (cos θ) = sin θ, just what we
want. With ` = 1 in hand, we can return to the radial equation:

d
dr

(
r2A′r

)
Ar

= ` (`+ 1) = 2 −→ Ar(r) = α r +
β

r2
. (23.37)

This second order differential equation has actually given us both the interior
and exterior cases. For the interior, we set β = 0 so that the potential does
not blow up at the origin. For the exterior, we set α = 0 to get good behavior
at r −→∞.

We can finish the whole job now:

Aout =
α

r2
P 1

1 (cos θ) φ̂ Ain = β r P 1
1 (cos θ) φ̂, (23.38)

and P 1
1 (cos θ) = sin θ (perfect). Just apply the boundary condition (23.36)

and continuity (Aout = Ain)

−2α
R3

sin θ − β sin θ = −µ0 σ ωR sin θ φ̂
α

R2
= β R

(23.39)

to get α = 1
3 µ0 σ ωR

4 and β = 1
3 µ0 σ ωR. The end result is

Aout =
µ0 σ ωR

4 sin θ
3 r2

φ̂ Ain =
1
3
µ0 σ ωR r sin θ φ̂. (23.40)
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Homework

Reading: Griffiths, pp. 140–145.

Problem 23.1

It is often useful to obtain an energy discretization relation without con-
structing the full (radial) wavefunction. We have been associating dis-
crete spectra with boundary conditions – either explicit (like the infinite
square well) or implicit (like the requirement of normalizability from the
harmonic oscillator). In this problem, we will get the spectrum of the three-
dimensional harmonic oscillator, without worrying about the wavefunctions
themselves.

a. Write the three-dimensional harmonic oscillator potential as V (r) =
1
2 mω2 r2, and insert this into the one-dimensional radial equation with
effective potential built-in (remember that u(r) = r f(r) where f(r) is the
actual radial portion of ψ(r, θ, φ) = f(r) g(θ)h(φ)):

− ~2

2m
u′′(r) +

[
V (r) +

~2

2m
` (`+ 1)
r2

]
u(r) = E u(r). (23.41)

Identify a constant A (that depends on ω, among other things) with units
of L−1, and use this to rewrite the above in terms of z = Ar, i.e. find the
unitless form.

b. As with the one-dimensional harmonic oscillator, u(z) ∼ e±
1
2
z2 for

large z – rewrite your equation from part a. in terms of ū(z) defined by

u(z) = e−
1
2
z2 ū(z). (23.42)

At the end, you should have:

ū′′ − 2 z ū′ +(α− 1) ū− ` (`+ 1)
z2

ū = 0, (23.43)

with α ≡ 2E
~ω .

c. Set

ū = zp
∞∑
j=0

cj z
j (23.44)
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and insert into your ODE from part b. Solve the indicial equation (use
the value of p that leads to non-infinite ū(0)), write the recursion relation,
assume the series truncates at some value (this is the same as the argument
for the one-dimensional case) j = J and use this truncation to find EJ .

Problem 23.2

The three-dimensional harmonic oscillator potential can also be solved using
Cartesian separation – write the time-independent Schrödinger equation in
three dimensional Cartesian coordinates for V (r) = 1

2 mω2 r2. Now argue
that you have three one-dimensional oscillators, and use this to find the
energy E associated with the three-dimensional oscillator. You should have
three constants of integration in your solution. Does your solution make
sense when compared to the energy discretization you got in Problem 23.1?

12 of 12


