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We are used to the temporal separation that gives, for example, the time-
independent Schrödinger equation. In three dimensions, even this time-
independent form leads to a PDE, and so we consider spatial separation,
familiar from E&M.

21.1 Three Copies

Our one-dimensional replacement: px −→ ~
i
∂
∂x can be generalized to three

dimensions in the obvious way. Cartesian coordinates have no preferential
directions, so we expect the three-dimensional replacement:

p −→ ~
i
∇ (21.1)

applied to the Hamiltonian. In addition, our wavefunctions become func-
tions of all three coordinates: Ψ(x, y, z, t) or any other equivalent set (spher-
ical, cylindrical, prolate spheroidal, what have you).

We can work out the commutation relations for the three obvious copies of
our one-dimensional: [x, px] = i ~, but what about the new players: [x, y]
and [x, py] (and obvious extensions involving z and pz)?

The coordinate operators clearly commute, [x, y] = 0, and the momentum
operators will as well, by cross-derivative equality:

[px, py] = −~2

(
∂2

∂x∂y
− ∂2

∂y∂x

)
= 0. (21.2)

Finally, mixtures of coordinates and momenta that are not related, like
[x, py] will commute since ∂x

∂y = 0 – throwing in a test function to make the
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situation clear, we have

[x, py]f(x, y) =
~
i

(
x
∂f

∂y
− ∂

∂y
(x f(x, y))

)
=

~
i

(
x
∂f

∂y
− x ∂f

∂y

)
= 0.

(21.3)
Tabulating our results, the three-dimensional commutation relations read
(letting ri be r1 = x, r2 = y, r3 = z for i = 1, 2, 3)

[ri, pj ] = i ~ δij [ri, rj ] = [pi, pj ] = 0. (21.4)

The wavefunction itself must now be interpreted as a full three-dimensional
density, with |Ψ(r, t)|2 dτ the “probability per unit volume” of finding a
particle in the vicinity of r at time t. The normalization condition becomes
a volume integral, as do all expectation values:

1 =
∫
|Ψ|2 dτ

〈r〉 =
∫

Ψ∗ r Ψ dτ

〈p〉 =
∫

Ψ∗
(

~
i
∇
)

Ψ dτ.

(21.5)

where the integration is over all space, and dτ is the volume element. In
Cartesian coordinates, dτ = dx dy dz, but it takes different forms depending
on how we’ve parametrized (in cylindrical coordinates, for example, dτ =
s ds dφ dz).

For a finite volume, we have the obvious interpretation∫
Ω
|Ψ|2 dτ (21.6)

is the probability of finding the particle in the volume defined by Ω.

To find the probability flowing into and out of this volume, we can use the
probability conservation statement in three dimensions. Let ρ = |Ψ(r, t)|2,
then we had J = − i ~

2m [Ψ∗∇Ψ−Ψ∇Ψ∗], and

∂ρ

∂t
= −∇ · J −→ d

dt

∫
Ω
ρ dτ = −

∮
dΩ

J · da (21.7)

where the left-hand side is the rate of change of probability inside the volume
Ω, and the right-hand side is the amount of probability flowing out through
the boundary of the volume dΩ, reminiscent of the electromagnetic charge
conservation equation (which has identical form).
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21.1.1 Two Dimensional Example

Suppose we retreat to two dimensions and take the simplest possible
potential (other than the free particle case) – an infinite square “well”.
Our two-dimensional potential can be specified via:

V (x, y) =
{

0 0 < x < a and 0 < y < a
∞ otherwise

(21.8)

We must solve Schrödinger’s equation, with boundary conditions. In this
dimensionally expanded setting, the boundary conditions for ψ(x, y) are:

ψ(0, y) = ψ(a, y) = ψ(x, 0) = ψ(x, a) = 0, (21.9)

and the time-independent Schrödinger’s equation on the interior of the
boundary reads

− ~2

2m

(
∂2

∂x2
+

∂2

∂y2

)
ψ(x, y) = E ψ(x, y). (21.10)

The temporal separation has already occurred here, we had the usual:
Ĥ Ψ(x, y, t) = i ~ ∂Ψ(x,y,t)

∂t , and took Ψ(x, y, t) = ψ(x, y)φ(t). Then we
can separate with constant E, leading to (21.10) and φ(t) = e−i

E
~ t.

If we use multiplicative separation in (21.10): ψ(x, y) = X(x)Y (y), then
we can write the above as(

X ′′(x)
X(x)

+
Y ′′(y)
Y (y)

)
= −2mE

~2
. (21.11)

The usual separation argument holds, on the left, we have two functions,
one only depending on x, one only on y, and together, these must equal
the constant on the right. Then each term must individually be equal
to a constant, and a solution to (21.11) follows from a solution to the
set of three equation:

X ′′(x) = −k2X(x)

Y ′′(y) = −`2 Y (y)

−k2 − `2 = −2mE

~2
.

(21.12)
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The ODEs in X and Y imply sinusoidal dependence on x and y – so we
have

X(x) = A cos(k x) +B sin(k x) Y (y) = F cos(` y) +G sin(` y),
(21.13)

together with our side constraint on the sum of k2 and `2. It’s time to
impose the boundary conditions: The wave function reads:

ψ(x, y) =(A cos(k x) +B sin(k x)) (F cos(` y) +G sin(` y)) . (21.14)

Take x = 0, our boundary condition requires that ψ(0, y) = 0, and this
immediately tells us that A = 0. Similarly, for y = 0, we learn that
F = 0. After imposing these, our wave function looks like

ψ(x, y) = BG sin(k x) sin(` y). (21.15)

We absorb the product BG into a single constant: P = BG, and we
are ready to set the boundary at a. In order to satisfy

ψ(a, y) = P sin(k a) sin(` y) = 0 (21.16)

for all y, we must have k a = mπ for integer m. On the y-side, we want

ψ(x, a) = P sin(k x) sin(` a) = 0, (21.17)

and this gives ` a = nπ for integer n. The wave function, satisfying
Schrödinger’s equation and all boundary conditions, is:

ψmn(x, y) = P sin
(mπ x

a

)
sin
(nπ y

a

)
for m, n ∈ Z+

Emn =
~2

2M

((mπ

a

)2
+
(nπ
a

)2
) (21.18)

(I have denoted mass with M in the above) with P left for overall nor-
malization.

As always, we can normalize the individual wavefunctions. In this case,
we have, with probability one, a particle of mass M localized to the
region (x, y) ∈ [0, a]× [0, a]. Then

1 =
∫ a

0

∫ a

0
P 2 sin2

(mπ x

a

)
sin2

(nπ y
a

)
dx dy =

(a
2

)2
P 2 (21.19)
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so that P = 2
a . Check the units, we now have ψ∗mn(x, y)ψmn(x, y) a

probability density in two dimensions.

As always, the general solution is a linear combination of the particular
solutions:

Ψ(x, y, t) =
∞∑
m=1

∞∑
n=1

cmnψmn(x, y) e−i
Emn t

~ (21.20)

and the set {cmn} are just waiting for an initial ψ̄(x, y) to be provided,
at which point they can be set.

There are a couple of important differences between the one dimensional
infinite square well and this two-dimensional form. The most noticeable
is the degeneracy associated with energy. In one dimension, the energies
were related to an integer n via: En = n2 π2 ~2

2ma2 , so for each n, there was an
energy. In the two-dimensional case, the independent (and orthonormal)
wave functions ψ21(x, y) and ψ12(x, y) both have the same energy. It is
interesting to think about what a measurement of energy does in this
context. Suppose we measure the energy E = 5× π2 ~2

2ma2 , then we know
that the wave function collapses to the associated eigenstate – but which
associated eigenstate – ψ12(x, y) or ψ21(x, y)?

In addition, there is the question – do we have one particle in two di-
mensions, or two particles in one dimension? How could we tell? And
what, really, is the distinction?

21.2 Orbital Motion and Classical Mechanics

Consider the classical mechanics form of the Lagrangian governing, for ex-
ample, orbital motion in a spherically symmetric gravitational field:

L =
1
2
m (ṙ2 + r2 θ̇2 + r2 sin2 θ φ̇2)− U(r) U(r) = −GM m

r
. (21.21)

We have written the Lagrangian in terms of spherical coordinates, related
to the Cartesian ones in the usual way:

x = r sin θ cosφ y = r sin θ sinφ z = r cos θ. (21.22)
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We can form the Hamiltonian as usual, the canonical momenta are:

pr =
∂L

∂ṙ
= m ṙ

pθ =
∂L

∂θ̇
= mr2 θ̇

pφ =
∂L

∂φ̇
= mr2 sin2 θ φ̇,

(21.23)

and then the Hamiltonian is just the Legendre transform of L

H =
(
ṙ pr + θ̇ pθ + φ̇ pφ − L

)∣∣∣∣
(pr,pθ,pφ)

, (21.24)

where the “evaluated at” sign reminds us to evaluate the Hamiltonian in
terms of the momenta (which we can do by inverting (21.23)) rather than
the time derivatives of the coordinates. Written out, we have

H =
1

2m

(
p2
r +

p2
θ

r2
+

p2
φ

r2 sin2 θ

)
+ U(r). (21.25)

The first term, is of course, p · p in spherical coordinates. Regardless, our
usual observation is that we can set motion into the x−y plane by requiring
θ̇ = 0 and θ = π

2 , then the Hamiltonian simplifies:

H =
1

2m

(
p2
r +

p2
φ

r2

)
+ U(r), (21.26)

and finally, we know from the equations of motion1 that ∂H
∂φ = −ṗφ = 0

so that pφ is a constant. The problem of orbital motion reduces to a one-
dimensional Hamiltonian – the radial coordinate is the only “interesting”
equation of motion, and it is governed by an “effective potential”. If we
write:

H =
p2
r

2m
+

(
U(r) +

p2
φ

2mr2

)
(21.27)

then we may as well be considering the one-dimensional problem: Find the
motion r(t) given a Hamiltonian that is a function only of pr and r (pφ,

1This is also an example of Noether’s theorem – the lack of dependence on φ means that
φ itself is “ignorable”, and we can add a constant to φ without changing the Lagrangian
at all – that symmetry implies conservation, in this case, of the z-component of angular
momentum.

6 of 11



21.3. QM IN SPHERICAL COORDINATES Lecture 21

as we have just established is a constant). We mention all of this because
the same basic breakup occurs when we consider the quantum mechanical
analogue of the above, wavefunctions governed by a spherically symmetric
potential. That we should be interested in such a restrictive form for the
potential is dictated by the ultimate problem we wish to solve over the next
few days: the Hydrogen atom, with its Coulombic potential.

Note that the above use of pr, pθ and pφ induces the question: What are
the quantum mechanical operators associated with these classical momenta?
We will sidestep the issue for now, but be on the lookout for a return later
on.

21.3 QM in Spherical Coordinates

Without going through the explicit transformations to spherical coordinates,
we note that Schrödinger’s equation still reads:

H Ψ(r, t) = i ~
∂Ψ(r, t)
∂t

, (21.28)

and now the Hamiltonian is

H =
p · p
2m

+ U(r) −→ Ĥ = − ~2

2m
∇2 + U(r) (21.29)

using the usual replacement, and assuming that the potential U(r) depends
only on the distance to the origin (i.e. U(r) = U(r) is spherically symmetric).
Now, we already know the Laplacian in spherical coordinates:

∇2 Ψ(r, θ, φ, t) =
1
r2

∂

∂r

(
r2 ∂Ψ

∂r

)
+

1
r2 sin θ

∂

∂θ

(
sin θ

∂Ψ
∂θ

)
+

1
r2 sin2 θ

(
∂2Ψ
∂φ2

)
.

(21.30)
Assuming that the potential U(r) is time-independent, we can once again
separate the temporal and spatial portions of the wavefunction, Ψ(r, t) =
ψ(r)φ(t) and recover the time-independent Schrödinger equation

Ĥ ψ = E ψ φ(t) = e−i
E
~ t, (21.31)

allowing us to focus on the spatial portion ψ(r).
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We can separate further: Let ψ(r, θ, φ) = R(r) Θ(θ) Φ(φ), then the Hamil-
tonian operator can be written as 1
R

d

dr

(
r2 dR

dr

)
+

1
sin2 θ

(
sin θ

Θ
d

dθ

(
sin θ

dΘ
dθ

)
+

1
Φ
d2Φ
dφ2

)
︸ ︷︷ ︸

(θ,φ)

− 2mr2

~2
U(r)

= −2mr2

~2
E.

(21.32)
The angular and radial portions are now separated – we will call the sep-
aration constant ` (` + 1) (for reasons which should be familiar from, for
example, electrodynamics).

21.3.1 The Angular Equations

Set the angular terms equal to the negative of the separation constant:

1
sin2 θ

(
sin θ

Θ
d

dθ

(
sin θ

dΘ
dθ

)
+

1
Φ
d2Φ
dφ2

)
= −` (`+ 1). (21.33)

Now, one of the terms depends only on Φ, so we will set it equal to a
constant, call it m2:

1
Φ
d2Φ
dφ2

= −m2 −→ Φ(φ) = Aeimφ +B e−imφ, (21.34)

and by allowing m to be positive or negative, we can recover either solution,
so we will just set:

Φ(φ) = eimφ (21.35)

where we float the normalization – since this is multiplicative separation, we
know there will be an overall constant that we can set at the end. At this
point, we see that the particulars of this form for Φ(φ) will not play a role
in the probability density, since |Ψ|2 will have Φ∗Φ = 1 built in. Still it is
“usual” in terms of E&M in particular, to require that Φ(φ) = Φ(φ + 2π),
which implies that m is an integer, although this will also be forced on us
from the rest of the angular separation.

For the Θ(θ) portion, we have:

sin θ
d

dθ

(
sin θ

dΘ
dθ

)
+ (` (`+ 1) sin2 θ −m2) Θ = 0. (21.36)
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To bring this into more familiar form, let z = cos θ, then d
dθ = dz

dθ
d
dz =

−
√

1− z2 d
dz , and the above becomes (thinking of Θ as a function of z, now)

−(1−z2)
d

dz

(
−(1− z2)

dΘ(z)
dz

)
+(` (`+1) (1−z2)−m2) Θ(z) = 0, (21.37)

or
d

dz

(
(1− z2)

dΘ(z)
dz

)
+
(
` (`+ 1)− m2

1− z2

)
Θ(z) = 0 (21.38)

which is the standard form for the “associated Legendre equation”2. Its
solutions are known as “associated Legendre Polynomials”, and are defined
in terms of the Legendre polynomials via

Pm` (z) = (1− z2)|m|/2
d|m|

dz|m|
P`(z). (21.39)

Since this is a second order differential equation, there is, of course, another
solution (associated Legendre “Q” functions), but these blow up at z = ±1.
As a further restriction, these functions are only defined for integer m ∈
[−`, `] for a given ` (which must then also be an integer).

We have, finally, the form for the angular solution (at least, separable solu-
tion) for Schrödinger’s equation with spherically symmetric potential:

Θ(θ) Φ(φ) ∼ eimφ Pm` (cos θ). (21.40)

Looking ahead to the full normalization for the probability density, we have
(introducing a factor A in front of the angular terms):

1 =
∫
|Ψ|2 dτ =

∫ ∞
0

∫ π

0

∫ 2π

0
|A|2R∗ r RΘ∗Θ Φ∗Φ r2 sin θ dφ dθ dr

=
∫ ∞

0
R∗Rr2 dr

(∫ π

0
2π |A|2 (Pm` (cos θ))∗ Pm` (cos θ) sin θ

)
.

(21.41)
We can normalize the angular part by itself3, by setting A such that(∫ π

0
2π |A|2 (Pm` (cos θ))∗ Pm` (cos θ) sin θ

)
= 1. (21.42)

2See, for example, Riley, Hobson & Bence p. 666. Notice that the m = 0 case gives
back Legendre’s equation.

3Keep in mind that this will mean we need to separately normalize the radial part,R∞
0
R∗Rr2 dr = 1.
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It turns out that the value of A is,

A = ε

√
(2 `+ 1)

4π
(1− |m|)!
(1 + |m|)!

ε ≡
{

(−1)m m ≤ 0
1 m > 0

(21.43)

With this normalization, the angular solutions are called “spherical harmon-
ics”, denoted Y m

` (θ, φ) (spherical since they are in spherical coordinates,
harmonic because they are associated with solutions of Laplace’s equation:
∇2 F = 0). Written out:

Y m
` (θ, φ) = ε

√
(2 `+ 1)

4π
(1− |m|)!
(1 + |m|)!

eimφ Pm` (cos θ) (21.44)

These are orthonormal in the sense that∫
Y m
` (θ, φ)∗ Y m′

`′ (θ, φ) dΩ =
∫ 2π

0

∫ π

0
Y m
` (θ, φ)∗ Y m′

`′ (θ, φ) sin θ dθ dφ

= δ``′ δmm′ .
(21.45)
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Homework

Reading: Griffiths, pp. 131–139.

Problem 21.1

Griffiths 4.1. Here, you will work out the relevant, Cartesian, commutators
for position and momentum. Feel free to use indexed notation, and in
particular, the relation: ∂xi

∂xj
= δij (think of ∂x

∂x = 1, and ∂x
∂y = 0).

Problem 21.2

Griffiths 4.2. Finding the stationary states of a three-dimensional infinite
“well”.

Problem 21.3

The ordinary differential equation:

ż(t) + α z(t) = 0 (21.46)

is solved by z(t) = z0 e
−α t for initial value z(0) = z0. In this problem, we

will develop the series solution (Frobenius method) in preparation for our
work to come.

a. Start by setting z(t) = tp
∑∞

j=0 cj t
j (for unknown p). Take the

derivative of this function (as a series) with respect to t.

b. Insert z(t) and your expression for ż(t) in (21.46), collecting
all like powers of t into a single expression, i.e. fill in the . . .s in:

tp
[
(. . .) t−1 +

∑∞
j=0(. . .) tj

]
= 0.

c. You should have a lone t−1 term, use this to set p = 0, and, from
the independence of powers of tj , develop the recursion relation between
the coefficients cj+1 and cj . Solve the recursion, starting with c0 = z0, and
compare with the Taylor series expansion of z0 e

−α t.
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