
Physics 342 Lecture 16

Linear Algebra in Hilbert Space

Lecture 16

Physics 342
Quantum Mechanics I

Monday, March 1st, 2010

We have seen the importance of the plane wave solutions to the potential-
free Schrödinger equation. While not physically interpretable by themselves,
they can be used to build up arbitrary solutions in the presence of simple
potentials.

All of our work so far has been associated with solving the operator eigen-
value equation:

Ĥ ψ(x) = E ψ(x) (16.1)

the time-independent Schrödinger equation. But we have seen a number of
operators, and their eigenvalues and eigenfunctions are also of interest – the
idea is that any operator that commutes with Ĥ shares its spectrum – so
it might be computationally simpler to develop the spectrum of a different
operator.

We need some machinery to make this clear. While it is simple to show that
for matrices A and B, [A,B] = 0 implies a shared set of eigenvalues, what
we mean by [Q̂, Ĥ] = 0 is less obvious.

16.1 Eigenvectors of x

We have been thinking of x as an operator, it “multiplies by x” in expressions
like: ∫ ∞

−∞
Ψ(x, t)∗ xΨ(x, t) dx. (16.2)

Can we find the eigenvalues and eigenvectors of x? What would this mean?
Well, the eigenvector is some function which, when acted on by x returns a
number times the function. Call the “number” x̄, and the function fx̄(x),
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then we want:
x fx̄(x) = x̄ fx̄(x). (16.3)

In this expression, the x on the left is an operator, while the x appearing
as the argument of fx̄(x) is the argument of the function. Now the usual
function we would associate with the above is fx̄(x) = δ(x − x̄). That
certainly has the property that

x δ(x− x̄) = x̄ δ(x− x̄), (16.4)

which is what we want. The “eigenvalue” x̄ here is continuous, which is
familiar from, for example, the “free particle” solutions to Schrödinger’s
equation.

Thinking back to the dot product we have been using for functions, we
have, for two “different” eigenfunctions, fx̄ ≡ fx̄(x) and fx̂ ≡ fx̂(x) (with
eigenvalues x̄ and x̂ respectively):

fx̄ · fx̂ =
∫ ∞
−∞

δ(x− x̄) δ(x− x̂) dx = δ(x̂− x̄) = δ(x̄− x̂) (16.5)

since the delta function is symmetric. This is the analogue of our discrete
cosine basis, for example, where we had em ·en = δmn. And, just as we could
decompose generic functions in the infinite (but discrete) basis set {ei}∞i=1

by taking the weighted sum:

g(x) =
∞∑
i=1

(g(x) · ei) ei, (16.6)

we can decompose a function g(x) in the eigenvectors of the operator x:

g(x) =
∫ ∞
−∞

φ(x̄) fx̄(x) dx̄, (16.7)

to find the “coefficients” φ(x̄) in terms of this basis, we take the “projection
of g(x) onto the basis vector fx̄”:

g(x) · fx̄ =
∫ ∞
−∞

g(x) δ(x− x̄) dx = g(x̄), (16.8)

so the values of g(x̄) are the coefficients of g(x) in the basis fx̄. That is no
surprise, we are specifying a function of x, meaning we are already in the
basis associated with x.
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The identity, analagous to the above (16.6) is

g(x) =
∫ ∞
−∞

(g(x) · fx̄) fx̄ dx̄. (16.9)

The eigenvectors of x clearly form a (trivial) complete basis for functions
f(x), and we see that the notation f(x) itself is indicative of a projection
onto this basis set. We might wonder, therefore, if a function f(x) has a
more abstract form which would facilitate representation in other bases (i.e.
the eigenvectors of other operators).

16.2 Bra-Ket Notation

Dirac used a notation that freed him from committing to particular repre-
sentations of “vectors”, functions of x are the x-operator-eigenbasis repre-
sentation of a vector. Just as we typically represent finite vectors in terms
of their components with respect to a particular basis, and in the abstract
as a:

a = a1 e1 + a2 e2 + . . . an en

=̇


a1

a2
...
an

 ,
(16.10)

he suggested using the abstract form |a〉 (called “ket a”) to represent a
vector in a space (be it function space or any other). In this language,
the eigenvectors of x are denoted |x̄〉 and we would write the eigenvector
equation as

x |x̄〉 = x̄ |x̄〉 . (16.11)

This makes the situation clear: |x̄〉 is the eigenvector, x is the operator
acting on it, and x̄ is the eigenvalue.

In addition to |x̄〉, he introduced the “bra”, 〈x̄| which is the “Hermitian
conjugate” of |x̄〉 – in the language of finite vector spaces, we would say:

|a〉=̇


a1

a2
...
an


〈a|=̇

(
a∗1 a∗2 . . . a∗n

)
.

(16.12)
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The representation for functions is slightly different – we typically form 〈a|
in preparation for a dot-product – defined to be 〈a||b〉, a natural expression
in terms of the above column and row vectors. Without worrying, yet, about
how the inner product is defined, take the object 〈a||b〉 to be an inner product,
meaning that it satisfies the usual inner product relations (〈a||b〉 = 〈b||a〉∗,
〈a||a〉 is real, etc.).

Now consider the sentiment expressed in (16.8), we have a vector |g〉 in a
function space, and we have the eigenvectors of the operator x, so we would
write:

g(x̄) = 〈x̄||g〉 , (16.13)

i.e. the projection of the vector |g〉 onto the basis formed by |x̄〉. We have
used the 〈x̄| form to construct the inner product. Consider, then, the x-
coordinate representation of the |x〉 ket itself:

fx̄(x) ≡ 〈x||x̄〉 = δ(x− x̄). (16.14)

To be less oblique about all of this, consider writing (16.9) in bra-ket notation
for the |x̄〉 basis:

|g〉 =
∫ ∞
−∞

|x̄〉︸︷︷︸
basis

〈x̄||g〉︸ ︷︷ ︸
coefficients

dx̄

=
∫ ∞
−∞
|x̄〉 g(x̄) dx̄

(16.15)

and this suggets that the unity operator is precisely:

1 =
∫ ∞
−∞
|x̄〉 〈x̄| dx̄. (16.16)

We can now establish the usual function norm (or “L2” norm) of two complex
functions f(x) and g(x) – consider their vector form |f〉 and |g〉, then

〈f ||g〉 =
∫ ∞
−∞
〈f ||x̄〉 〈x̄||g〉 dx̄ =

∫ ∞
−∞

f(x̄)∗ g(x̄) dx̄, (16.17)

precisely the sort of object we have been dealing with. In this notation,
then, our expectation values look like:

〈ψ|x |ψ〉 =
∫ ∞
−∞

ψ(x)∗ xψ(x) dx ≡ 〈x〉

〈ψ| p |ψ〉 =
∫ ∞
−∞

ψ(x)∗ pψ(x) dx ≡ 〈p〉
(16.18)

4 of 9



16.3. OTHER BASES Lecture 16

16.3 Other Bases

Of course, x is not the only operator on the block. We know the momentum
operator, and we can work out its eigenvectors in position space – for the
operator p, we have

p fp̄(x) = p̄ fp̄(x) (16.19)

so that
~
i

dfp̄(x)
dx

= p̄ fp̄(x) −→ fp̄(x) = α e
i p x

~ . (16.20)

The momentum eigenkets |p̄〉, written in the position basis are:

〈x̄||p̄〉 = α e
i p̄ x̄

~ (16.21)

for some constant α. Incidentally, this is the complex conjugate of the posi-
tion eigenvectors |x̄〉 written in the momentum basis (since 〈p̄||x̄〉 = 〈x̄||p̄〉∗).
There is a notion of orthonormality here, and we can use this to set α.
Consider:

〈p||p̄〉 =
∫ ∞
−∞
〈p||x̄〉 〈x̄||p̄〉 dx̄

=
∫ ∞
−∞

α2 ei
x̄ (p̄−p)

~ dx̄

= α2 2π ~ δ(p− p̄)

(16.22)

so set α = 1√
2π ~ . This tells us the representation of the ket |p̄〉 in the

momentum basis (just as 〈x||x̄〉 = δ(x− x̄) was the representation of the ket
|x̄〉 in the position basis):

fp̄(p) = δ(p− p̄). (16.23)

We have the same notion of completeness as we had for |x̄〉 – if we represent
a function in the momentum basis, g(p) = 〈p||g〉, then

|g〉 =
∫ ∞
−∞

|p̄〉︸︷︷︸
basis

〈p̄||g〉︸︷︷︸
coefficients

dp̄ (16.24)

so we can again write the unity operator as:

1 =
∫ ∞
−∞
|p̄〉 〈p̄| dp̄. (16.25)
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But what is the relation between functions written in the position and mo-
mentum basis? We are imagining |f〉, a vector that is in the function space,
and we have just established that we can project this vector onto the basis
|x̄〉 or |p̄〉, there “must” be some deep connection between functions repre-
sented in these two bases.

Suppose we want to take a function of position f(x) and write it in the
momentum basis:

g(p̄) = 〈p̄||g〉 =
∫ ∞
−∞
〈p̄||x̄〉 〈x̄||g〉 dx̄ =

1√
2π ~

∫ ∞
−∞

e−
i p̄ x̄

~ g(x̄) dx̄, (16.26)

evidently, the momentum basis representation of |g〉 is just the Fourier trans-
form of its position representation (modulo a factor of ~).

Similarly, we can write the position representation in terms of the momen-
tum one:

g(x) = 〈x||g〉 =
∫ ∞
−∞
〈x||p̄〉 〈p̄||g〉 dp̄ =

1√
2π ~

∫ ∞
−∞

e
i p̄ x

~ g(p̄) dp̄, (16.27)

confirming that the position representation is the Fourier transform of the
momentum representation, as expected.

Which of these is the “real” wavefunction? It’s great that we can write |ψ〉,
for example, and then talk about 〈p||ψ〉 or 〈x||ψ〉, but what is |ψ〉? This is
the same as asking what a vector a is – we can choose a basis and represent
the decomposition of a in terms of that basis, but without some basis, it
is difficult to say much beyond “a is an element of a vector space.” In our
case, we have been primarily interested in the Schrödinger equation written
in position space, so the familiar object is Ψ(x, t), a function of position.
Then we have been dealing implicitly with Ψ(x, t) = 〈x||Ψ(t)〉 for a ket
|Ψ(t)〉.

16.4 Hilbert Space

We have been referring to “a function space” or even “the function space”
as if it has been defined. What we mean is Hilbert space.

Our wavefunctions satisfy the property∫ ∞
−∞

Ψ(x, t)∗Ψ(x, t) dx = 〈Ψ(t)||Ψ(t)〉 = 1 (16.28)
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so that they are “square integrable” for all times t (guaranteed by Schrödinger’s
equation). The set of all such functions forms a vector space called “Hilbert
Space”. Neither the eigenvectors of position nor momentum are actually in
the Hilbert space, but they still form a basis for it – that’s life in infinite
dimensional vector spaces.

More generally, a Hilbert space on an interval [a, b] is the set of all complex
functions f(x) defined for x ∈ [a, b] with the property that:∫ b

a
|f(x)|2 dx = A (16.29)

for finite A.

The eigenkets of the x and p operators are clearly convenient, but there are
other natural bases that are better behaved: For a discrete basis (akin to the
cosine or sine series, these exist in Hilbert space for some finite domain) we
have an infinite set of basis kets |ei〉 with 〈ei||ej〉 = δij , and we can explicitly
form:

|f〉 =
∞∑
i=1

ai |ei〉 , (16.30)

then our notation tells us that

〈ei||f〉 =
∫ ∞
−∞
〈ei||x〉 〈x||f〉 dx =

∫ ∞
−∞

e∗i (x) f(x) dx = ai. (16.31)
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Homework

Reading: Griffiths, pp. 93–96, 103–106, .

Note: Problems 2–5 are due on Monday, March 8th. Only
problem 1 is due on Wednesday.

Problem 16.1

Think of an “interesting” quantum mechanical problem that you can pose
and solve in no more than ten minutes. Turn in your problem and solution
on Wednesday, March 1st. Remember that the first midterm is on Friday.

Problem 16.2

This problem is meant to suggest an association between the ill-defined∫∞
−∞ e

i k (x−a) dk and the Dirac delta function: δ(x− a).

a. Define

fn(x) ≡ 1
2π

∫ n

−n
ei k (x−a) dk, (16.32)

show that
∫∞
−∞ fn(x) dx = 1 for all n (you may find the definite integral:∫∞

0
sin(y)
y dy = 1

2 π useful).

b. Show that the value of fn(a) → ∞ as n → ∞. It should also be
clear that values other than x = a are small in comparison to ∞.

Problem 16.3

Find the eigenfunctions of the lowering operator:

a− ≡
1√

2m ~ω

(
~
d

dx
+mω x

)
, (16.33)

that is, find functions fα(x) such that a− fα(x) = α fα(x).

Problem 16.4

Griffiths Problem 3.2. Here we are looking at what does and does not live
in Hilbert space.
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Problem 16.5

Griffiths Problem 3.7. Degenerate eigenfunctions of an operator in a func-
tion space.
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