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We have seen a few different types of behavior for the stationary states
of piecewise potentials – we can have oscillatory solutions on one or both
sides of a potential discontinuity, we can also have growing and decaying
exponentials. In general, we will select between the oscillatory and decaying
exponential by choosing an energy scale for the stationary state.

Remember the process we are going through over and over (and over): Given
a potential, find the stationary states, use those to form the general solution
to Schrödinger’s equation by appending the appropriate temporal factor
(e−i E t~ ), and exploit completeness to decompose some initial ψ̄(x) waveform.
In practice, as should be evident from our studies so far, this program is
sensible but difficult. The initial distribution of choice, a Gaussian, has
unwieldy decomposition in bases other than ei k x (the natural, Fourier set)
– is there another/easier way to get a basic idea of what an initial Gaussian
distribution does when evolved in time under the influence of a potential?
Yes, and we discuss the simplest possible numerical solution.

15.1 Numerical Solution

There are a variety of ways to solve Schrödinger’s equation numerically. Any
method will require spatial discretization, and there is a well-defined way
to turn differential operators like d2

dx2 into matrices. The basic idea is to
approximate:

d2f(x)
dx2

∼ f(x+ ∆x)− 2f(x) + f(x−∆x)
∆x2

(15.1)

on a grid of evenly spaced points, say, xj = j∆x. Then we can form a
vector of f(x) evaluated at the grid points: fj ≡ f(xj), and a matrix that
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repeats the above stencil for each grid point. Call this operator H – then
Schrödinger’s equation can be written as:

i ~ Ψ̇ = H Ψ (15.2)

as a matrix-vector equation (with the elements of Ψ defined to be ψj ≡
ψ(xj)).

15.1.1 Discrete Eigenvalues

Since the grid is discrete, and H = HT , we can calculate the numerical
eigenvalues and eigenvectors associated with H, define:

Hψn = λnψn, (15.3)

then the solution to (15.2) is given, for each of the eigenvectors, as

i ~ Ψ̇n = λn Ψn −→ Ψn = α e−i λn~ tψn, (15.4)

for any overall α. This is a vector, remember, and we can construct a general
solution by decomposing some initial waveform given at t = 0 – the general
solution is:

Ψ =
N∑

j=1

αj e
−i λn~ tψn (15.5)

where N is the number of gridpoints (hence the number of eigenvectors).
Given Ψ(t = 0), we just decompose as usual:

αj = ψj ·Ψ(0) (15.6)

and use these αj ’s in our full solution (15.5). It’s a nice idea, especially
since it exactly parallels what we have been doing with continuous func-
tions. There are a few difficulties, though – even for the simplest Gaussian
wavepacket, we expect nontrivial dependence on all eigenvectors, and these
eigenvectors are finite – while we can perfectly represent a wave packet on
the grid, there is no way to ensure that the wavepacket travels smoothly.
Effectively, we need too large of a grid to ensure enough eigenvectors to
correctly decompose the packet as it moves along the grid. The result of too
few eigenvectors is a solution plagued by “Gibbs’ phenomena”, ringing from
unresolved modes that travel at inexact speeds (remember, our spectrum
for a matrix is finite, at some level a poor approximation to the infinite
spectrum we expect).
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15.1.2 Implicit Differencing

Rather than use the separated form of Schrödinger’s equation, we can work
directly from (15.2) by introducing a finite temporal “grid”, and approxi-
mating the time derivative of the solution vector as:

Ψ̇(x, t) ∼ Ψ(x, t+ ∆t)−Ψ(x, t)
∆t

, (15.7)

so that if we let Ψn represent the vector (on the finite spatial grid) solution
at time tn ≡ n∆t, our method is defined by:

Ψn+1 =
(

I +
∆t
i ~

H
)

Ψn. (15.8)

We could start with a known initial waveform at t = 0 (a Gaussian, for
example), and propagate the solution vector forward in time using the above.
But it is easy to show that repeated multiplication by a matrix has the
property that any initial vector rotates into the direction of the matrix’s
maximum eigenvector (that is, the eigenvector associated with the largest
eigenvalue), and this property, for maximum eigenvalue > 1 will artificially
spoil the numerical solution allowing the wavefunction, in this case, to grow
exponentially with time. The matrix in (15.8) has maximum (absolute value)
eigenvalue greater than one, and the resulting numerical method is known
to be unstable.

The fix is relatively simple – we want an approximation equivalent to the
above, but one with a matrix whose iterated multiplication will not arti-
ficially favor its maximum eigenvector – that is, a matrix that has largest
eigenvalue < 1, but yields the same approximation. We can form such a
matrix via:

i ~
Ψn+1 −Ψn

∆t
= H Ψn+1, (15.9)

that is, replace the vector evaluation on the right with the updated vector.
Now rearranging, we have:

Ψn+1 =
(

I− ∆t
i ~

H
)−1

︸ ︷︷ ︸
≡P

Ψn, (15.10)

and while we now have to invert a matrix, it is the case that P has largest
eigenvalue with unit magnitude. This “implicit” method is stable, however
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it implies a decrease in the “normalization” of the wave function – i.e. we
lose probability artificially. As it turns out, an “average” of the explicit and
implicit methods gives a numerical method that, like Schrödinger’s equation
itself, preserves the initial normalization of the wavefunction.

15.2 Examples

To check the method, we’ll start with a Gaussian bump with some initial
momentum p and expected value for position b – so our initial wave-function
is

ψ(x, 0) =
(

2 a
π

)1/4

ei p x e−a (x−b)2 . (15.11)

The time evolution of this initial waveform is shown in Figure 15.1.
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Figure 15.1: The temporal evolution of a Gaussian bump initial wave-
form (15.11). We are plotting probability density for the one-dimensional
grid in each pane.

We can introduce a potential barrier, then the behavior of the wavefunction
depends on the magnitude of the barrier height. For a “large” barrier, we
get essentially reflective decomposition, shown in Figure 15.2

Finally, we can use a moderate-sized barrier, one for which the maximum
energy modes of the initial Gaussian are both bigger and smaller than the
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Figure 15.2: Time evolution of a Gaussian wavepacket under the influence
of a large potential barrier centered at the origin.

height of the barrier. Now the probability density spreads out over the
entire domain after some time has passed. The temporal evolution is shown
in Figure 15.3.

Homework

Reading: Griffiths, pp. 78–83.

Problem 15.1

Find the scattering states, reflection and transmission coefficients for a delta
potential: V (x) = α δ(x), with α > 0 this time.

Problem 15.2

Griffiths 2.27. Here you are finding the bound state(s) of a pair of delta
wells.
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Figure 15.3: Probability density evolution under the influence of a medium
sized finite barrier.
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