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We understand that free particle solutions are meant to be combined into
some sort of localized wave-packet. Now we can take piecewise potentials
and construct stationary states, together with their time evolution — we
expect to find both bound (discrete, normalizable) and scattering (continu-
ous, finite at infinity) states, in general. Our first such potential will be the
Dirac delta spike, so that almost everywhere, the potential is zero, and we
basically have a boundary condition at the location of the spike.

13.1 Boundary Conditions

In electricity and magnetism, you have differential equations that come with
particular boundary conditions. For example, the electrostatic potential
satisfies V2V = —% in regions of space with charge density, and has an
implicit boundary condition at spatial infinity (depending on gauge choice).
It is often useful to cook up charge distributions that are not physically
realizable in the interest of exactness. So, for example, sheets of charge
have p = 0 6(z) (for a sheet of charge lying in the z = 0 plane), and these
idealized sources introduce discontinuities in the potential. In this case, we

have
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above
while the potential itself is continuous (the above is, of course, a manifesta-
tion of the discontinuity in the electric field). The issue never really comes up
in “real life” since you cannot make an infinitesimally thin sheet of charge,
so it’s a moot point. But still, good to know, and computationally useful.
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13.1. BOUNDARY CONDITIONS Lecture 13

In general, a mathematical problem, or mathematization of a physical prob-
lem, requires governing PDE structure, relating changes in time and space
to sources (for example) and boundary conditions. For the wavefunction
we have been discussing, there are some obvious and derivable boundary
conditions that come up, again in the context of idealized potentials.

First, we require that the wavefunction be continuous — that’s reasonable if
we are to interpret |W(x,t)|? as a probability density — we’d like it if it didn’t
matter if we approached an interval from the “left” or “right”. Continuity
of the wavefunction and the potential directly implies continuity of the first
derivative of ¥(z,t). But we want to use a discontinuous potential (a delta
function, or a step function, or what have you). So what is the discontinuity
in the first derivative given a discontinuous potential?

We can integrate over the discontinuity — suppose we have a potential that
is discontinuous at the point xg, then if we integrate from zg — € to xg + €,
we have, from Schrodinger’s equation

h2 To+e d2¢ /xo—l—e

“om 2=

To+e€

Ew(x)dx—/ Viz)o(@)de.  (13.2)
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The plan is to shrink the interval down until it encloses just xg, by sending
e — 0. Assuming that v (z) itself is continuous, as suggested above, the
first integral on the right will go to zero as ¢ — 0, so we neglect this term.
The left-hand-side represents the discontinuity in the derivative of ¥ (x), and
the relevant expression for the limit is

dip(z)
dx

xo+e€ xo+e€
V(z)y(x)de. (13.3)
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Now, as a model for the discontinuity, we’ll take two simple cases: V(z) =
B6(x — wg) and V(z) = B6(z — x0), where!

0 z<0
H(x)—{ L 250 (13.4)

For the delta function, the equation governing the derivative discontinu-
ity (13.3) reads

dy ()
dx

te  9mp

(o) (13.5)

xo—€

!Because the derivative of f(z) “is” the delta function, and because the delta function
1

is symmetric, when we need an expression for 6(0), we take 0(0) = 3.
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13.2. DELTA POTENTIAL Lecture 13

so we find the discontinuity in the derivative (using the identifiers “left” for
x < xo and “right” for z > x¢)

dwright . dwleft
dzx dr

= 20 (o) (13.6)

T=x0

For the step function, the integral on the right is easy — very close to xg, we
have
xo+e€
[ 86— ) i(a) da ~ pevian), (13.7)
xro—€

and the discontinuity in the derivative of ¢ actually vanishes for ¢ — 0.
Evidently, the discontinuity in the potential needs to be fairly severe to make
much of a difference (in fact, the potential needs to make an infinite jump
to cause discontinuity in the derivative of ¥ (x)).

Nevertheless, discontinuity or no, we can use these two boundary conditions
to set what will amount to constants of integration in the solution for the
wave function. The procedure is identical to studying electromagnetic waves
at the interface between two linear media (where the susceptibility is gov-
erned by precisely a step function) — we solve for the fields on “the left”
and “right”, and then match the solutions at the interface. For this reason,
the wavefunction matching is discussed in language very similar to that of
monochromatic plane waves . . . light.

13.2 Delta Potential

As an example of how the boundaries can be used to set constants, consider
a O-function potential well (negative), centered at the origin. For V(z) =
—ad(x), we have scattering solutions for £ > 0, and bound states for £ < 0.

13.2.1 Bound State

Let’s consider the bound state first: To the left and right of the origin, we
are solving
h2 "
—5 V() = —[E[¢(). (13.8)

2m
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The solution, on either side, is a mixture of growing and decaying exponen-
tials,

bi(m)=AeV i T4Be VI Ty (z)=CeV i Pppe VIR

(13.9)
with ¢4 (2) on the right, ¢)_(x) on the left. Now we can impose boundary
conditions based solely on integrability — we cannot normalize exponentially
growing solutions, so on the right, where x > 0, we set A = 0, and on the
left, where x < 0, we set D = 0. This leaves us with

be(@) = Be VT ()= ceV T (13.10)

We want ¢4 (z — 0) = ¥_(z — 0) so that the wave function is continuous,
and that tells us that B = C. Finally, we can normalize (). When did
we set the derivative discontinuity? The now-familiar story: Setting the
boundary condition will impose a restriction on the allowed values of E, the
state energy. From (13.6), we have

2m |E 2m |E 2
_py 2 |<B m| |): T p (13.11)

h? h? h?

so that |E| = ";TZ”, and of course, this is the magnitude, F itself is just
a?m
2h%°
What we have, then, is a single valid bound state. Going back to the wave
function, we can normalize it easily:

[ rar= [ vpans [Topa

T (13.13)
_ 2
=25 (2 \V 2myE|>

poYam (13.14)

E =

(13.12)

so that

The final solution, and it is the only solution for E < 0, is

am|z - aZm
v O;,Lm BT (13.15)

The fact that we have only one bound state is an artifact of our potential.

U(z,t) =
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13.2.2 Scattering States

If we take 2 > 0, then we recover the usual plane wave solutions,

2mE 2mE 2mE

D ( “yBe VR bi(x)=Ce'V w2 “ype V2 "
(13.16)
Using our boundary conditions, we require that:
Y_(x=0)=9¢;(x=0—A+B=C+D (13.17)
and v v )
@y Y= __smo _
( dz  dz > - V@ =0)
= (13.18)
o 12m 2mao
i 7(—C’+D+A—B): 2 (A+ B).

Here, we appeal to your experience with monochromatic plane waves — we
think of an incident, reflected, and transmitted wave, and these would cor-
respond to the various terms in W_(z,¢) — written out, we have

m E E . /2mE - E
r—1+t —1 T—1 5=t
Ae'V St ety + Be h2 R <0
/2m E - E i./2mE E
iy/2RE g By T—1i =1t
Ce h2 "+ De h2 >0

where we understand that the A and C terms represent waves traveling
to the right, the B and D terms waves traveling to the left. Suppose we
“send in” a plane wave from the left, then we have a reflected wave and
a transmitted wave, so set D = 0. Our goal, as in E&M, is to relate the
amplitudes of the reflected and transmitted waves to the amplitude of the
incoming wave. We can do this with our boundary conditions — algebraically,

U(x,t) = (13.19)

we have to solve:

2mFE 2ma
2 (A-B-C)= 2

(A+B)=C i (A+ B) (13.20)

for B and C in terms of A. Define k = ¥ 2mE , then

g am 1
k YEn2

and, finally, define the combination 75 = (3, so we have

A. (13.22)
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In electricity and magnetism, we talk about the “reflection” and “transmis-
sion” coefficients associated with monochromatic plane waves impinging on
a surface. We can do the same thing here, define:

_IBE P ICP 1

BEpp~1sm TSR T e

(13.23)

That’s handy, evidently, R and T are related to the percentage of probability
that returns on the left, or heads on in to the right. Keep in mind that this
is, in a sense, “per mode”. Plane wave solutions of the sort we currently
have do not directly represent anything, since they are not normalizable.
What we can, and will do is take a wave packet, send it in and look at
how it scatters off of the delta function. That is a more physically realistic
problem. Certainly, it is mathematically definable in terms of probability
densities, which is a start.

13.3 Moving Gaussian Wave Packet

We studied the temporal evolution of a wavefunction that had a Gaussian
shape at t = 0. But that evolution was dynamically uninteresting, since the
expectation values of position and momentum were zero. The probability
density decayed over time, but this only changed the variance associated
with position, not its mean. If we want to “send in” a wave packet and have
it interact with a scattering potential, we must have a wavefunction whose
initial momentum is non-zero — then assuming no potential, the momentum
will remain at that constant non-zero value.

How can we make a valid density that is normalizable and has some initial
(expectation value of ) momentum? We start by taking the initial density to
be a Gaussian as before, but the wavefunction is not the density — in par-
ticular, we could multiply by e*** and [¢|? is unchanged. The utility of this
particular choice is obvious, the initial density is the same as the Gaussian,
and the expectation value of position will be zero, but the derivative w.r.t.
x will change. In particular, for

™

B 1/4
P(z) = ke (2“) e (13.24)
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we have: o
1= / v pdr =1
(z) = /OO Py de = (13.25)

where the last relation is the usual de Broglie one. Now if we construct ¢(k)
for this initial waveform, and then ¥(z,t), we get

= — (13.26)
pu— 4 .
(b( ) (2 s a)1/4 €
and L -
g NIt rERm e
U(z,t) = <> (13.27)
am 1, 2int
and this has time-dependent expectation values:
hkt
x)y = ——
m
(p) =hk (13.28)
h? (a + k?)
(H) = —5

The expectation value for z moves as we would expect, as (p)t/m. The
energy, similarly, is the “usual” value for a particle with speed p/m, but has
the additional energy required just to have the particle around (the energy
we computed when k = 0).
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Homework

Reading: Griffiths, pp. 68-76.
Problem 13.1
For the traveling Gaussian solution in (13.27), we have:

1 al?t? Rk
@) =—+2" " 4 (13.29)

4a m? m?2

use this and any other expectation values (hint) you find useful, to compute

o2, oy and the product o3 0.

Problem 13.2

Griffiths 2.40 a (part a. only). Here, you will apply the continuity of 1

and its derivative at a, and continuity of ¢ at zero (1/(0) = 0), to find

the relation defining the bound energies (negative E, in this case). That
. : . > G

relation will amount to finding z satisfying: tan(z) = T and you

H _ z
can count the number of times t.he curve tan(z) crosses the curve N
(for appropriate range of z) to find the number of bound states.

Problem 13.3

The delta well V(z) = —ad(z) has a bound state and a continuum of
scattering states. We expect the totality of the stationary states to be
mutually orthogonal — show that the bound state is orthogonal, in the usual
function sense, to all of the scattering states, i.e. 1 - ¥, = 0 with:

2
\/ma _malz| m
h2 Eb

() = = o
( ikx + 1 —zkx> <0 oo hQ ]{32 (1330)
A zkx x>0 k= 2m’
and 3 = 357
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