
Physics 342 Lecture 12

Free Particle Comparison

Lecture 12

Physics 342
Quantum Mechanics I

Friday, February 19th, 2010

Here, we will compare our solutions so far (harmonic potential, infinite
square well) with the free particle solution. There are three properties that
we have relied upon in our approach to quantum mechanical problems in-
volving “bound states”:

• The stationary states are normalizable.

• Stationary states {ψn(x)} form a complete basis and can be indexed
with integers.

• The energy spectrum is (via the discrete form of ψn) discrete.

For a free particle, Ĥ ψ(x) = E ψ(x) has solution:

ψk(x) = Ae±i k x k2 ≡ 2mE

~2
(12.1)

and already, we notice that the stationary state here is: 1. Not normalizable,
and 2. Does not lead to a discrete energy spectrum. We do have a notion
of completeness, though, provided by the Fourier transform. Write our
continuous solution with the arbitrary normalization and sign choice:

ψk(x) =
1√
2π

ei k x. (12.2)

When the stationary states are discrete, we have:

Ψ(x, t) =
∞∑
n=1

cn ψn(x) e−i
En
~ t (12.3)
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12.1. GAUSSIAN INTEGRALS Lecture 12

and use orthonormality to set

cm = ψm(x) · ψ̄(x) ≡
∫ ∞
−∞

ψ∗m(x) ψ̄(x) dx (12.4)

for some initial wavefunction ψ̄(x).

When the stationary states are “indexed” by a continuous variable k, the
sum in (12.3) becomes an integral (over k)

Ψ(x, t) =
∫ ∞
−∞

φ(k)ψk(x) e−i
Ek
~ t dk Ek =

~2 k2

2m
(12.5)

and the φ(k) play the role of the cn’s. As another point of similarity, we
obtain the “coefficients” φ(k) from a dot product with a provided initial
wavefunction ψ̄(x):

φ(k) = ψk(x) · ψ̄(x) =
∫ ∞
−∞

ψ∗k(x) ψ̄(x) dx =
1√
2π

∫ ∞
−∞

e−i k x ψ̄(x) dx,

(12.6)
which tells us that φ(k) is interpretable as the Fourier transform of the initial
wavefunction ψ̄(x).

In the end, the only major deviation is the normalizability of the stationary
states – e±i k x doesn’t vanish at spatial infinity, and cannot be integrated
over all space. So by itself, this is not a candidate for an initial state, nor
can we give ψk(x) a statistical interpretation (except locally) – but as a basis
for functions, ψk(x) is still good.

12.1 Gaussian Integrals

In studying Gaussian initial wavefunctions, which are relevant given exper-
iment1, we often encounter integrals of the form:∫ ∞

−∞
e−(Ax

2+B x+C) dx, (12.7)

and we would like to develop a method for evaluating these in terms of the
fundamental Gaussian integral:∫ ∞

−∞
e−y

2
dy =

√
π. (12.8)

1after all, do we ever really know where a particle is? There is, at the very least, always
an experimental tolerance to our apparati. Gaussian distributions encode that tolerance
via a choice of width.
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12.2. FOURIER SERIES Lecture 12

What we need is a factorization in terms of y, so consider the product:(√
Ax+ F

)2
= Ax2 + 2

√
AF x+ F 2, (12.9)

and notice that if we were to set:

2
√
AF x = B x −→ F =

B

2
√
A
, (12.10)

then we could define y ≡
√
Ax+ F , and have:

y2 − F 2 = Ax2 +B x −→ y2 − B2

4A
= Ax2 +B x, (12.11)

so that our integral becomes:∫ ∞
−∞

e−(Ax
2+B x+C)dx = e−C

∫ ∞
−∞

e
−

“
y2−B

2

4A

”
dy√
A

=
e−C+B2

4A

√
A

∫ ∞
−∞

e−y
2
dy

=
√
π

A
e−C+B2

4A .

(12.12)

We are assuming, in the above, that the real part of A is greater than zero
so that e−Ax

2
really does decay.

12.2 Fourier Series

I would like to connect the familiar Fourier series to the Fourier transfor-
mation in the usual way (see Arken, Boas or your favorite mathematical
methods book) – this helps make the move from discrete energy with integer-
labelled stationary states (like those associated with the infinite square well,
or harmonic oscillator potential) to continuous states with a continuum of
allowed energies.

A periodic function f(x) defined on x ∈ [0, a] has a Fourier series expansion:

f(x) =
∞∑

m=−∞
cm e

i 2πmx
a (12.13)

if the Dirichlet conditions hold:
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12.2. FOURIER SERIES Lecture 12

• The function f(x) is periodic with period a (assumed in definition).

• f(x) has a finite number of minima, maxima and discontinuities on
[0, a].

•
∫ a

0 |f(x)| dx is finite.

What we mean by “has a Fourier series expansion” is: The series on the
right converges to f(x) at all points x ∈ [0, a] where f(x) is continuous, and
converges to the midpoint of any discontinuities in f(x).

When the Fourier series exists, we can access the coefficients of the expansion
by exploiting: ∫ a

0
e−

i 2πmx
a e

i 2π nx
a dx = a δmn. (12.14)

Then
cm =

1
a

∫ a

0
e−

i 2πmx
a f(x) dx. (12.15)

12.2.1 Example

Take the discontinuous function:

f(x) =
{
x x < 1

2 a
x+ 1 x > 1

2a
. (12.16)

According to (12.15), we have:

cm =
1
a

(∫ 1
2
a

0
x e−

i 2πmx
a dx+

∫ a

1
2
a
(x+ 1) e−

i 2πmx
a dx

)

=
1
a

(∫ a

0
x e−

i 2πmx
a +

∫ a

1
2
a
e−

i 2πmx
a dx

)
.

(12.17)

Using integration-by-parts on the first term, and integrating the second, I
get:

cm =
i a

2πm
− i (−1 + (−1)m)

2πm
. (12.18)

There is clearly a special case here, at m = 0, and this sets an overall
constant for the function f(x). If we define the approximate series:

fn(x) = 1 +
n∑

m=−n
cm e

i 2πmx
a , (12.19)
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with m 6= 0, we can get a sense for the “convergence”. A few values for n
are shown in Figure 12.1.
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Figure 12.1: Approximate Fourier Series for the function defined in (12.16),
f(x) itself is shown in black.

Finally, note that we can, clumsily, introduce the cm directly into the ex-
pansion:

f(x) =
∞∑

n=−∞

1
a

(∫ a

0
e−

i 2π nx
a f(x) dx

)
e
i 2π nx

a (12.20)

12.3 Fourier Transform

One way to think of the continuous Fourier transform is to consider our
function f(x) to be periodic with a → ∞. This allows us to make a con-
nection with the Fourier series, but does not count as a proof of existence,
uniqueness or anything else. The following is for motivation only, my goal
is to give us a way to talk about the Fourier transform, not rigor (for now).

Our first move will be to symmetrize the interval – suppose we define f(x)
on x ∈ [−a, a], this changes almost nothing – we can rewrite (12.20) to
reflect the change:

f(x) =
∞∑

n=−∞

1
2 a

(∫ a

−a
e−

i π n x
a f(x) dx

)
e
i π n x
a . (12.21)

Let pn ≡ π n
a , so that we can think of a “grid” of values pn indexed by the

integer n. The spacing of this grid is pn+1 − pn = π
a ≡ ∆p. The eventual

“limit” a −→ ∞ will be taken by sending ∆p −→ 0, giving us a continuum
of values p. For now, we have

f(x) =
∞∑

n=−∞

∆p
2π

(∫ π/∆p

−π/∆p
e−i pn x f(x) dx

)
ei pn x. (12.22)
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Now we can think about the limit. We know that an integral can be ap-
proximated by box-sums:∫ A

−A
g(p) dp ∼

N∑
n=−N

g(pn) ∆p. (12.23)

The right-hand side can be thought of as the starting point in the definition
of the integral (without the limit). What we have, in (12.22) is precisely
such an expression, with:

g(pn) =
ei pn x

2π

∫ π/∆p

−π/∆p
e−i pn x f(x) dx (12.24)

and N going to infinity. This would be the source of some fancy footwork
in carefully taking the limit, but we are motivating only.

Squinting, now, we take ∆p −→ 0, leaving us with a continuous variable
pn −→ p, and an integral over p:

f(x) =
1

2π

∫ ∞
−∞

ei p x
[∫ ∞
−∞

e−i p x f(x) dx
]
dp. (12.25)

It is from here that we arbitrarily factor the 1
2π and define:

f̃(p) =
1√
2π

∫ ∞
−∞

e−i p x f(x) dx

f(x) =
1√
2π

∫ ∞
−∞

ei p x f̃(p) dp.
(12.26)

The pair above encapsulates the content of (12.25), and our interpretation
of f̃(p) as “coefficients” in the decomposition of f(x) into ei p x comes from
the fact that they naturally inherited the role of the cm from the Fourier
series, that is where they came from.

12.4 Orthonormality

For sine and cosine series, we have an inner product defined by conjugation
and integration, and with respect to that inner product, these functions are
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orthogonal (and can be normalized). Thinking of the infinite square well

solutions: ψj(x) =
√

2
a sin

(
j π x
a

)
, we know that:∫ a

0
ψj(x)∗ ψk(x) dx = δjk, (12.27)

and similarly for the harmonic oscillator case:∫ ∞
−∞

ψj(x)∗ ψk(x) dx = δjk (12.28)

for the ψj solving H ψj = Ej ψj with H the harmonic oscillator Hamiltonian
operator (with V (x) = 1

2 mω2 x2).

For free particle solutions ψk(x) = 1√
2π
ei k x (I am putting the factor of

√
2π
−1

on the spatial part of the wavefunction). From (11.12), we have:∫ ∞
−∞

ψj(x)∗ ψk(x) dx =
1

2π

∫ ∞
−∞

ei x (k−j) dx = δ(k − j), (12.29)

so our orthonormality condition has gone from the discrete Kronecker delta:
δjk for integers j and k, to the continuous Dirac delta δ(k−j) where j, k ∈ IR.

Homework

Reading: Griffiths, pp. 59–67.

Problem 12.1

Using the free particle states to construct general solutions to Schrödinger’s
equation.

a. Check that:

Ψ(x, t) =
1√
2π

∫ ∞
−∞

φ(k)ψk(x) e−i
E(k)

~ t (12.30)

with ψk(x) = ei k x and E(k) = ~2 k2

2m satisfies Schrödinger’s equation for
V (x) = 0:

− ~2

2m
∂2Ψ(x, t)
∂x2

= i ~
∂Ψ(x, t)
∂t

(12.31)
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b. Verify that Ψ(x, t) from (11.20) (in Lecture 11) does indeed solve

Schrödinger’s equation (i.e. compute ∂2Ψ(x,t)
∂x2 and ∂Ψ(x,t)

∂t explicitly – have
to do it once in life).

Problem 12.2

The Gaussian wave-packet solution from (11.20) has 〈x〉 = 0, so its “center”
doesn’t move. Suppose we wanted to develop a wavefunction Ψ(x, t) that
had, at time t = 0:

ψ̄(x) =
(

2 a
π

) 1
4

e−a x
2

(12.32)

but gave a time-dependent 〈x〉 moving to the right (say). This could be
achieved by finding a wavefunction that had 〈p〉 = p0, a constant.

a. Show that ψ̃(x) = ei f(x) ψ̄(x) leads to the same initial probability
density as ψ̄(x) in (12.32).

b. Find the simplest function f(x) for use in ψ̃(x) that gives a constant
〈p〉 initially. (here, “simplest” means the one for which no integration is
necessary).

Problem 12.3

If x has units of meters, what units must δ(x) have?
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